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INVERSE PrROBLEMS —~ GAUW:AN Beams AND COMPUTATIONS.

I am = repressntative of =3 nverse probiem  groun of the
St.Petersburg Branch dathematical Instituts (POHL . The grous

cansists of three members - M. Bslishsyv, &. Eatchslov, Ya.
i

Furviev. At the beginning of my  talk want to discuss sSons
rasulits aobtained by our group during sgversl yaars of
investigations.

1. The problem under consideration
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wherz L is one of the following elliptical operators  i(sse  also
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the paper of Belishevy & FHurvisv and preprint of Be
Fatchalov)
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A — gu, gix) is a potential,
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ivy Lu = ?ng F [ T eg (x} F } is the Belitrami-Laplace

o

operator in local coordinstes x ., i, 1% & metric ifsnsor of  thse
LK
. ik L n
manifold Q, g g = & g = detd N .
A X i ST et

The problem is to recover material parameters of media (density
oy, tension p, potential q or metric tensor g, ) in the domain Q
via inverse data.
2. Inverse data.

To solve these problems we use two type of data — specitral data
and dyvnamic inocnstationaryd inverse data {a nonstationary
response operator).

i} Spectral inverse datsa.

To describe spectral inverse data 1lest’s consider & bounded
domain O and thes slliptical differential operator L with the
Dirichlet or Meumann boundary condition on D = 8Q. For the
Neumann boundary condition spectral inverss data consist of  the

L, 0 . . . .
spectrum A ¥ s and tracses on ths boundary [0 of normatlized
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mondition they consist of the spectrum Lfl and iIraces ot

= = =] inverse data iz a nonstationar
response oparatar. To describs it let™s consider the following
t

isl-poundary value problem in the domain Q

U, L =0 in(ix{g,T:
e | = 123
t<o
i =F
frxio T3 - Su
{for the cass i1 we should replace -~ on Hzm; 0 the boundary
HES HiH
. ] . . . -T - -
condition?. The boundary function fi{p.tie F = fzilxiva:}ﬁ o
f :
contirol generate a soclution o ik, of the probless {2 or wave

- T T . f
cpsrator R in F, R zFip. 5} — giyp.t} = u ’F‘? 1" The aiul=ly ¥
KL, TI
T .
R iz known as a nonstationasr response  opesrator. £t has an
integral representation
T.. . . . . P -
(R Fiiy,.k: f jf L, O Tl i~ b adip 1., (=

rmCO,TJ
g2 consider this operator {(or its kernel) as datas o soclve our

inverse problems.

Remark 1. Spectral variant of the problem can be reduced (o a
or the Neumann boundary

nonstationary ons. For esxamplse, §
condition we have the following eguality

o sinvx -t
(RT£) €;/,t}=f dl’“y,-:it' £ B (y)e® (2 efiy, ). (D)

'<x[o,T1 =t k

This equaliiy Bxpresses the nonstatioconsr responsse opsrastor via
spectral inverse data. For the Dirichlet  boundary conditions
there is analogous formuls. So further we may conside only

dvnamic inverse data to sclve inverse problems.

3. Formulation the problem. BCT approach.
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Where we can recover material paramsisrs of the sedium for  th
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given response operator R P To answer  this question we should
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Distance i(travel time! is mesasursed in a metric gensrated by ths
iy . , , . T - . .
giliptic gperator L. Let the subdomain O = { xe Q, Tixid Ti.

" imore precissly ocutside the cut locus of

v of
normals to the boundary M) owe have a semigecdesic ira
tem {y.7i, ye I'. We can recover material parameter

-
given R . Doubling timse is connected with very simple
T

the wave should
return to the boundary. Method of
T} approach. The spproasch was

put forward by M. Belishsv., Further we describs vary shorily main

4. Recovering c’ operator.
et’s consider the functional spacs H in the domain Q {inner
zpace! wiith the inner product genesrated by Lhe :gEFa*’F .  For
the problem i) for suampls it i=s LZ (., Uzming the solution of
s O
the {1} we can define s control operator MT:FT»m; W =
1$~oan. it is clear that ®F' < mT§wher§ H' = fue H, supo L=
03, The main suggesstion of BUT approach is
C1 WEFES = H . =
& system consicted of the domain Q and material paraaseters (o, U,
. O} in it we Ccall the contrcliable one i+ the properity (5 is

valid. It is eguivalsnt to the Holmgren -~ Jdohn unicusness
theorem. [+ 1t is truese we can use the inner product in the oacs
- . T
H to define some new inner product in the soace F
, T T . f - )
<E,g> = W F. Mgl = Wwis,Tr,u%{a,Ti) . (&)
b = u_{ = 3 ﬂ_i
E0 we have some opsrator U definsd by the formuls
!’!"" "a - - -
L +.07 SHEL A S JEgS L7}
ST
T G- — - H N .y & r=T 3 o= . T £ L < + — - ~““-T
it is possibie to prove that © is a3 s=lfadioint operator, e
being positive for T ?* - fhe criticsl tims ?* igs thsat of Ffilling
o 5 - ~ ~T [ T B 3 e, o o I T
the domain O, Q% = Q. Let & bz a completion of T according e

T 1 .T.¥% 2T 2T _.T
LoIF = i oY o & o =
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T . .
where 8§ 1is an operator of odd continuation through the time T

Fly, b te (0,7}
8§ (p,t) = ()

e

—f iy, 2Tt} te (T,37:
and YT i= an integrating operator.
J« Recovering the set of orthoprojectors.
Let’s conzider the set of orthoprojectors Ff, F<T on the
subspace mf= PE: H mf an corresponding =1=4 of
orthoprojectors in the " norm on the =parce §T5 Qg: 3T §T,

T T - = . :
i EE = ?fw - It is imporitant that we can reconstruct the set of

)

o . . T
orthoprojectors B {but not PEQ'vza L operator. We can do that

using the following procedure.

. x ; . - I . T
il Let™s take a basizs of controls {%k}b1 in & .
ii} By means of the Shmidt orthogonalizing rocedure  we oan

. T
in O form
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i
construct the orthonormal basizs of controls th
T

e L
=1
T E o1 E
{iCh 3 hf) = (R HR) =5 .
tLohye k L kL
iii} The orthoproiscior ﬁf can be sxpresssd in a term of the basis

6. Wave fields reconstruction.

The third step of ths approach consist in the reconstruction of
weighted wave fislds é{ygr;?ﬁ = ﬁoiygféﬂ;{ygf;f} correspanding
ts a control . It is ssprssssd in the ssmigeodesic cpordinates
{y«.7}. The weighted wave fisld ;f iz a progduct of wave Ffisld uf
on some factor O{ygr}x The field gfinT;T) can  be sxpressec
through c’ operator, proischtors EE and control f

in VeECovering et S eluitinl function 3 and PED cooraginate
Lo ]

T T Ty S S S N o P = imedi i sl R PR £z

LESnETOrmaT I on = oM ¥ Ti e 1T IS IMNOIVIGUSL T OF S LY DE o7

Case i}. The basic squslity for recovering 3 and functions o =
. o]

Lo t .
2 {y.T} cartssian oorginatss o Fim seEmiaesaesic
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function
T ‘T Z ~T T & Fs
corresponding controls g oand F) ovia O operator.  Using thesse
i .
: 4 A Y 2, g s - o~ 3 ‘.“' ’ P ooy A— - <
controls in the formula (147 we abiasin ﬂo and ® {p,71tr. Bo for any
. . 1. . , :
control § we can rescover th2 wave field g ix.ty in cartszsian
- i . . . . . Cs e . . . .
copordinates x . Futting it in an sguation $1: 1t iz sigsmplse o
T

obtain the density p in the domain O .

7. The Riemannian manifold reconstruction.
The described variant of the last step of the procedure can’t

e applied to the case ivl of recovering the Riemannian manifold.

The method of =soclutiocn in that cases bases upon the existence of

some spscial bype of solutions fo ¥ 5. Thess

c=plutions are known as Baussian bsams or guasighotons. They have

the following properties:

i} The guasiphoton is a ray tvpe asyvmpiotic soluticon with a

complexr phasse and without singularities.

ii} The guasiphoton is :ar:en;rjteé near the bhicharacteristic of
ths wave eguation. Fhysically speaking 1t is a wave field

i &

concentrated near a3 point . moving siong & geodesic with G
velocity squal 1.

The solution depsndes upon 3 2 paramster & 2 characterizing the

H

diameter of the guasiphoton and some other parameters {iniitia

coordinates and impulses of the guasiphoton stc.l.
It is convenient to describs ths sclutio in a wicinity of

H

geadesic ¥ = X{t} in & coordinate systes in,t), n = x — L{ti. The

guasiphoton can be expressed as follows
& ® 1
Wiu,t) = sxpi-ige Bin,tii- i%uﬁn,i}izsé s {12}
=0
wherea
i i R -
@in.t: = @ (t¥yn + = Fvit;nvy * aaaa {13%}
1 g 1
H {n. it} = U (£ + ... {147
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