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INVERSE PROBLEMS IN SOLID MECHANICS AND RELEVANT FIELDS
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1. INTRODUCTION

The role of inverse problems in the areas of science and engineering is
getting more important [1-5]. The inverse problems may be regarded as the
problems concerning the determination of inputs or sources from outputs or
responses, in contrast to direct problems in which outputs or responses are
sought from inputs or sources. We can find many inverse problems in solid
mechanics and relevant research areas.

In this paper classification of inverse problems arising in analyses of
variation of physical quantities are made, and it will be stated that there
are five kinds of inverse problenms. Examples of these inverse problems
and their treatments will be demonstrated with special emphasis on inverse
problems in solid mechanics and relevant fields.

2. DEFINITION OF INVERSE PROBLEMS

The term "inverse problems" is used in many ways, depending on research
areas and sometimes on researchers. A rational definition of inverse
problems can be made by referring to direct problems, which can be
considered to be opposite to the inverse problems [3). Let us consider an
analysis of distribution of a field quantity ¢ representing physical states
of concern. The governing equation is expressed as

Ip = f (1)

where L denotes an operator and f being a force acting in domain Q. For a
direct field analysis to be conducted, the information of the following
items is indispensable, as is shown in Fig. 1.

(a) Domain O of concern and its boundary S.

(b) Governing equations representing the variation of the field quantity
®.

(c) Boundary conditions on the entire boundary of domain Q, and
~initial conditions, if necessary.

(d) Forces f acting in domain Q.

(e) Material properties involved in the governing equations.

When full information of these items is available in advance, outputs
or responses can be uniquely determined. We can calculate the outputs or
responses by using conventional numerical schemes, such as the finite
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(a) Direct problems.

(a) Domain Q, Boundary S
(b) Governing Equations

(c) Boundary Conditions >>>—>-> Responses
(Initial Conditions) (Unknown Boundary Values on S)
(d) Forces (Quantity @ in Q)

(e) Material Properties

(b) A direct analysis.

Fig. 1 Direct problems and direct analyses.

element method, the boundary element method, and the finite difference
method. ;

If any of the requisites (a) to (e) is lacking, we can not calculate the
distribution of field quantity o. Those problems, which can not
be classified as direct problems in the sense mentioned above, can be
classified into the inverse problems. :

For the field problem, there may be the following inverse problems
corresponding to the lack of requisites (a) to (e) for direct analyses.

(a)’ Determination of domain Q, its boundary S or unknown inner
boundary (domain/boundary inverse problems).

(b)’ Inference of the governing equations (governing equation
inverse problems).
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(a) Inverse problems.

(a)’ Domain Q ‘
(b) Governing Equations

(c) Boundary Conditions —>->—>->-> (A) Unknown Boundary
(Initial Conditions) 4
(d) Forces Responses

(e) Material Properties

(b) An inverse analysis.

Fig. 2 Inverse problems and inverse'analyses.

(¢)’ Estimation of the ©boundary conditions on the entire or
partial boundary. Estimation of the initial conditions (initial
condition/boundary condition inverse problems).

(d)’ Determination of the forces f acting in @ (force inverse problems).

(e)’ Determination of the material properties defined in ¢ and involved
in the governing equations (material properties inverse problems).

Any combination of thes inverse problems can be another inverse
problem.

The 1inverse problems are inherently lacking in information as compared
with that for direct problems. Additional information is necessary to
conduct inverse analyses. As is shown in Fig. 2, outputs or responses can
be used as additional information to conduct inverse analyses, in contrast
to the direct problem, in which outputs or responses are determined. The
information concerning outputs or responses <can be obtained by



23

measurements. Subsidiary information expressing physical a priori
information and requirements may be used to achieve an effective
estimation. 1In the followings examples of each of the five categorles of
inverse problems will be given.

3. DOMAIN/BOUNDARY INVERSE PROBLEMS

3.1 Electric Potential CT (Computed Tomography) Method

Electric potential method is used for monitoring crack length [7-18].
This method is based on the fact that the existence of cracks gives rise to
disturbance in electric potential distributions. The location, size and
shape of a two- or three-dimensional crack may be identified, if the
measured distribution of electric potential is available. This crack
identification from electric potential distributions can be recognized as
one of the inverse problems of category (a)’. By introducing inverse
analysis schemes formulated on the basis of the boundary element method,
the present authors proposed the electric potential CT (computed
tomography) method to identify the crack location, size and shape [5, 19].

3.2 Boundary Conditions of Crack Identification

In a usual direct boundary value problem of electrostatics, boundary S
of domain Q consists of boundary S, where the Dirichlet boundary condition
is imposed, and boundary S. where the Neumann boundary condition is
imposed. The values of the electric potential ¢ are prescribed on the
Dirichlet boundary S,, while the flux ¢ is prescribed on the Neumann
boundary S:. Since thelocation, size and shape of the cracks are unknown
in advance, the cracks constitute themselves other flux-free boundaries.
BOundary S, denotes a hypothetical boundary called an "incompletely-
prescribed boundary", which contains the cracks to be detected. None of
the potential ¢, the flux g and their combination can be given on S,. The
location of S, is not known in many cases. This gives rise to the incom-
pleteness of the boundary conditions.

The existence of this incompletely-prescribed boundary induces a lack of
boundary conditions, which makes the problem unsolvable without giving
additional information. If we introduce supplementally an "over-prescribed
boundary" Ss;, where both ¢ and g are given by measuring the value of ¢ on
some parts of the Neumann boundary S., the inverse problem of crack
identification may be solved.

3.3 Inversion Analysis Schemes for Electric Potential CT Method

Two inverse analysis schenmes, i.e. the . inverse boundary integral
equation method and the least residual method, were proposed based on the
boundary element formulation. The former is formulated by referring to the
formulation of the boundary element method.

The variation of the distribution of D.C. electric potential ¢ is
determined using Laplace’s equation. The value of ¢ at a point located on
the boundary S is expressed by boundary integral, which involves values of
potential ¢, flux ¢ and fundamental solution on boundary S. If the entire
boundary S is divided into boundary elements, and nodes are introduced in
these elements, the boundary integral equation can be written in the form
of matrix equation, which relates potential and flux on boundary S. This
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equation can be solved for boundary values on the incompletely-prescribed
boundary S,, which contains cracks to be detected. The cracked portions in
the plane S, are identified as flux-free portions in S,. Thus, in the
inverse ©boundary integral equation method - the problem of crack
identification of category (a)’ is reduced to the problem of identification
of boundary values, which is one of the inverse problems of category (c)’.

The other inverse scheme, i.e. least residual method, is based on
boundary element potential calculations for assumed cracks. Cracks are
assumed, which are expressed by various combinations of the plane S,
containing cracks, crack location, size and shape. Then S, is separated
into a cracked portion and the remaining uncracked portion. If the
boundary values of q only are used on the over-prescribed boundary S., a
direct analysis can be made, which gives the value of ¢ on the over-
prescribed boundary S;. To determine the most plausible crack, the square
sum R of residuals is evaluated between the computed potential values ¢<<?
and the measured values ¢™> on S; using a weighting factor w. The most
plausible crack is identified as the crack giving the smallest R value
Thus a quasi-solution is sought in the least residual method.

The present authors discussed the uniqueness of the inverse solution in
the crack identification by the electric potential CT method [19, 20].
This discussion is based on the uniqueness of boundary value inverse
problems with over-prescribed boundaries. It is found that cracks can be
uniquely identified from the electric potential distribution, when the
plane S, containing cracks is known in advance. When S, is not known, the
electric potential distributions under two current application conditions
are necessary to determine a single two-dimensional crack embedded in a
body. To determine a single three-dimensional crack in an unknown plane,
the electric potential distributions under three current application condi-
tions are needed.

3.4 Simulations and Experiments of Crack Identification

Numerical simulations of the crack identification by the inverse
boundary integral equation method were made for two-dimensional edge
cracks, embedded cracks and plural embedded cracks [5]. This method was
also applied to the identification of three-dimensional surface cracks and
embedded cracks [21], and it was shown that the inverse boundary integral
equation method was applicable to the determination of crack sizes and
shapes.

- The inverse boundary integral equation method, however, is sensitive to
the errors involved in the potential data used in the inverse analyses.
This is due to the ill-posedness of the boundary value inverse problems.
Some constraints or regularlzatlons are needed to obtain a reansonable
estimate by this method.

The applicability of the least residual method for determining the crack
location, =size and shape of two- and three-dimensional cracks was
demonstrated by computer simulations and experiments [22-27].

As was described in the foregoing, this crack lying in an unknown plane
can not be uniquely identified from the potential distribution under only
one current application condition. To ensure the uniqueness of the
identification, multiple current application method was proposed, in which
potential data measured under several current application conditions were



25

processed simultaneously [23]. The experiments demonstrated the usefulness
of the multiple current application method. To accomplish efficient
identification of the crack by the least residual method, a hierarchical
analysis scheme was adopted, in which a gradual refinement of assumed
cracks were made.

Experiments were made for determining a three-dimensional surface crack
in a steel plate by using the least residual method [25]. The height of
‘the plane containing cracks and the crack shape in the plane were
determined from the electric potential distributions.

For efficient identification of the three-dimensional surface crack by
the least residual method, a hierarchical inverse analysis scheme was
proposed, in which two-dimensional scanning inverse analyses were combined
with full three-dimensional inverse analyses. By conducting this two-
dimensional inverse analyses for many cross sections, a rough estimate of
the height of the plane containing cracks and the crack shape was obtained.

Following the two-dimensional analyses, three-dimensional least residual
calculations were made to obtain more accurate estimation. Gradual
refinement of assumed cracks was also incorporated in the hierarchical
analyses.

It was shown that the height of the plane containing cracks and the
crack shape can be estimated with good accuracy by the least residual
method, even when the potential data are given on the back surface of the
crack only. ‘

This least residual inverse analysis scheme was applied to the
identification of three-dimensional internal cracks embedded in a body
[27]. Numerical simulations and experiments showed the usefulness of the
method for identifying three-dimensional internal cracks.

To achieve a high speed. computation on a workstation, an analytical
expression of electric potential distribution reported by Johnson is used
in the two-dimensional scanning analysis, and data base of electric
potential distribution on a three-dimensional cracked body is utilized in
the three-dimensional inverse analysis [28, 29]. This scheme can be
applied with minor modification to identify a crack in a pipe or a plate
with curvature. Numerical simulations and experiments has shown that the
proposed scheme is useful for identifying cracks.

The crack identification by the least residual method can be treated as
an optimization problem, when the residual R is used as an objective
function [30, 31]. Several schemes based on the optimization method were
proposed. Applicability of the scheme was assessed by numerical
simulations and experiments. The conjugate gradient method and the
modified Powell method were wutilized as optimization schmes. A
hierarchical scheme was introduced, in which the variable to be optimized
were varied by referring to the results of previous analyses. It was
found that the modified Powell method with the hierarchical procedure was
effective for identification of the surface crack.

4. GOVERNING EQUATION INVERSE PROBLEMS
Governing equation inverse problems deal with the inference of a

differential equation or equations governing the variation of field
quantities of the present concern from observations of the field quantities
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[32, 33]. The estimation of the governing equation can be reduced to the
estimation of the order of the differential equation and coefficients
involved in the equation. The present authors proposed the local .
derivatives method, in which the derivatives are determined approximately
from observed field quantities using finite difference approximation and
the sets of these derivative values are simultaneously used to identify the
coefficients involved in the linear differential equation. This method
can be applied to the estimation of nonlinear differential equation.

The local derivatives method was applied to the estimation of second
order ordinary differential equation. Numerical simulations were made on
the estimation of the governing equation from observed quantities at some
points for certain distribution of the field quantity. When the order of
the differential equation was known in advance, good estimation of the
coefficients could be made from estimated derivative values.

When the order of the differential equation was not known in advance,

the order has to be assumed. When the assumed order was lower than the
real one, inconsistent estimation resulted for different sets of observed
values. When the assumed order was coincident with the real one,

consistent estimation could be made for different sets of the observed
data. When the assumed order was higher than the real one, inconsistent
results were obtained again. Then, the principle of parsimony works well,
in which the assumed order employed in the estimation was increased
gradually and the lowest order giving consistent estimation was adopted as
the solution.

When the assumed order of the differential equation washigher than the
real one, the estimated governing equation can be written as a linear
combination of the original governing equation and its differentiated
forms. The successive elimination method was then proposed, in which
highest order term of the estimated governing equations was eliminated.
Successive elimination finally yields consistent equations, which were
coincident with the real governing equation. Numerical simulations of the
successive elimination method were made and showed the usefulness of the
elimination method.

A method was also proposed to reduce the effect errors involved in the
observations. It was found that it was possible to estimate the governing
equation from noisy observations.

5. INITIAL CONDITION/BOUNDARY CONDITION INVERSE PROBLEMS

Boundary value inverse problems deal with the estimation of unknown
boundary conditions on incompletely prescribed boundaries using over-
prescribed boundary value on other boundaries or in the domain. This kind
of inverse problems are usually ill-conditioned.

A regularizing scheme ‘using a priori information on the unknown
variables was proposed. for solving the ill-conditioned boundary value
inverse problem [34]. The scheme was based on a multivariable constrained
optimization algorithm for determining the most plausible solution
satisfying inequality constraints deduced from information available in
advance. To demonstrate the applicability of the scheme, it was applied
to a boundary value inverse problem with truss-like structures. The
nonpositiveness and nonnegativeness of unknown variables were used as the
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constraint. It was found that the scheme using the constraint was
effective in obtaining reasonable estimates of the unknown boundary values
and was rather insensitive to error in input data, while the unconstrained
scheme was not. :

A finite element-based inverse scheme was proposed for boundary value
inverse problems, in which no boundary values were known in advance on the
incompletely prescribed boundary [35, 36]. This scheme can be applied to
the estimation of force and displacement on unaccessible boundary, such as
contact region. This boundary value inverse problem is also ill-posed.
For the regularization of the problem, function expansion method reducing
the number of parameters was introduced. The use of power functions in
the expansion was studied. For determining the optimum number of terms in
the expansion, estimated error criterion was proposed and examined. The
usefulness of the proposed regularization based on the function expansion
and the estimated error criterion was shown using numerical simulations of
contact force determination.

The Tikhonov regularization method was also introduced in the finite

element inverse analysis scheme for regularizing the inverse solution. As
stabilizing functionals, norm of forces and displacements, their
derivatives, and their second derivatives were employed [36]. For

determining the optimum value of the regularizing parameter in the Tikhonov
regularization, the residual Tbetween the estimated and measured
displacements on the over-prescribed boundary was used. Numerical
simulations of estimation of contact force and displacement demonstrated
the usefulness of the Tikhonov regularization method.

6. FORCE INVERSE PROBLEMS

A deterministic approach was proposed for identifying the force term in
the governing equation [37, 38]. For steady-state heat conduction
problems, it was shown that a volume integral of the intensity of a heat
source multiplied by a harmonic function can be expressed by a boundary
integral. This enables us to determine the intensity and the location of
the heat source by combining the values of the boundary integrals evaluated
using several harmonic functions.

Similar method was also developed for determining the force term
governed by linear partial differential equation. The usefulness of the
proposed method was demonstrated by numerical s1mu1atlos of heat source
identification and concentrated body forces.

This method was further generalized for determining force terms in other
linear differential governing equations from boundary observations. By
introducing adjoint operator and subsidiary function, it is possible to
estimate force terms involved in governing equation expressed in the form
of differential equation.

A method was presented for determining initial residual stress fields
from redistributed residual stresses measured at several points [39, 40].
Determination of the initial residual stress distribution was effectively
achieved by introducing fundamental residual stress distribution functions,
which satisfied physical requirements for the residual stress. The least
residual criterion was used in the determination. An inverse sensitivity
matrix was evaluated to estimate the effect of errors involved in the
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measurements and to select the best combination of measuring points.

Numerical simulations of the determination of initial residual stress

fields and the prediction of fatigue crack propagation lives showed the
usefulness of the proposed method.

7. MATERIAL PROPERTIES INVERSE PROBLEMS

Material properties of individual components of a discrete system are
estimated using the response of the system to several sets of external
inputs [41]. Two inversion scheme were proposed for estimating the
material properties: [K] matrix method and {C} vector method. The [K]
matrix method determined a stiffness matrix of the system for estimating
material properties. The {C} vector method was based on the stiffness
equation expressed in terms of the {C} vector, whose components consist of
parameters of material properties. The usefulness of these methods were
shown by numerical simulations. These methods were successfully extended
to the determination of material properties in a continuum by employing
finite element discretization.

7. CONCLUSIONS

A brief review of inverse problems was made. Inverse problems were
classified into domain/boundary inverse problems, governing equation
inverse problems, boundary value/initial value inverse problems, force
inverse problems, and material properties inverse problems. Examples of
these inverse problems and inverse  analysis schemes for them were
demonstrated.
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