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1. Introduction
The minimal surface equation of z=f(x,y) due to the Cartesian

coordinates is found by Lagrange in the following form of par-

tial differential equation (Morgan).

(1+fy2) fxx_zfxfyfxy+(l+fx2) £ y~0 (1)
The £finding of the minimal surface determined by the boundary
condition of a given closed curve had attracted interest of
researchers after a Belgian mathematician J.A.F.Plateaﬁ (1801~
-1883). Helicoid and catenoid are famous example of the minimal
surface thus found.

Modern engineering tends to demand the knowledge about
shape of minimal surface as meta-knowledge for membrane struc-
tures with minimum weight. Attention has been paid to shape
of droplet from the viewpoint of condensation technique for
heavy metal separation. In such cases, the magnitude of con-
tained volume inside a surface is more important than the
boundary shape of closed curve, and the effect of surface ten-
sion, in other words, surfacé free energy and gravitation
energy must be taken into account. This paper deals with discre-
tized models and variational calculus proposed to find shape of
soft bodies like foam and droplet. Stationary condition of the

functionals in terms of surface tension and gravitation energy

and derived from the discretized models is employed for the
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shape finding, instead of solving the aforementioned partial
differential equation. Common assumptions are made for foam and
droplet as follows.

1. Their surface tension coefficient and mass density are

homogeneous, isotropic and constaﬁt.

2. No mass transportation takes place.

3. Foam and droplet are in equilibrium at a standstill.
The numerical examples are concerned with the shapes of sglitafy

foams and droplets.

2. Surface Discretization into Segments

The surface under interest is discretized by segments. The
shaded = segments illustrated in Figs. 1 and 2 cover all the sur-
face without overlapping and gap. The ségments of truncated
conical shell type are employed in case of axisymmetric surface,
and those of planar triangle type in case of tree-dimensional

surface. The connection between the segments are called node. The

radius from the origin to the n-th node r , is taken wunknown,

0 X

Fig.1 Axisymmetric case Fig.2 Three-dimensional case
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while the direction angle of the nodal coordinates 1is taken
known, because they can be determined at the time of segment dis-
cretization. Shape finding is considered completed when the nodal
coordinates are made known. The surface area Sn of a segment
can be epressed as a nonlinear function of the nodal coordinates
as well as the volume Vn of the region corresponding to the

segment which is indicated by broken lines in the figures.

3. Formulation Based on Minimal Surface Tension

It is well known that sphere has minimal surface for a cer-
tain volume. Surface tension acts in the tangential direction of
surface to diminish the area. A spherical foam floating in the
air may be degraded into a point, unless the other natural ele-
ment is present. The inner pressure of a foam keeps its shépef
cbrresponding to the volume of inside gas. Laplace's formula of
Eg. (2) gives the relationship between the pressure difference
P4-P, between the inside and outside and the principal radii R1
and R2 of the surface for the surface tension coefficient of the
foam ar, (Landau and Lifshitz).

pl—p2=aL(l/Rl+l/R2) (2)

This equation implies that the sﬁrface tension makes the surface
of foam as small as possible for a certain volume inside the
surface, and the surface shape is governed by the inner bressure
and surface tension in equilibrium. The smallest surface gives
rise to the smallest surface tension under the assumption of
constant surface tension coefficient. The effect of gravity can
be assumed to be small negligibly for thin foam. It turns out

that the shape of foam can be found by the premise that the shape
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is determined so that the surface tension is minimal for a cer-
tain volume inside the surféce. The following functional can be
constituted on the basis of the said premise by means of intro-
ducing the equality constraint condition standing for the said
volume C incorporated by the . Lagrange multiplier method,
N N
II=(-11I"r1£18n-|_u'(nzlvnﬂ(:) (3)
where N denotes the number 6f segments, and U the Lagrange
multiplier. In the case of axisymmetric surface, the unknown

radii should be remain positive. Such a transformation as r_=u 2

n n
is employed to ensure the positiveness. The following formulae
are used when the stationary condition of the functional 1is

derived with respect to the unknown UN and MU in the case of

axisymmetric shape.

_ (4)
Sn—ﬂ(rn+1cosen+1+rncosen)ln
2, 2 .y 1/2
lnz{rn+_1 Ty —2rn+lrncos(6n+l en)} (5)
= i .. .—=0 3
Vn—ﬂrn+lrn(rn+lc056n+l+rncosen)51n(9n+l n)/
2 2 (6)
BSn/Bun=2ﬂun{lncosen+(un+1 cosen+1+un cosen)
2 2, oy
X(un T UYn+l cos(en+1 en))/ln} (7)
7 /du_=2 u 2(u 2 cos6 +2u 2cose )
avn U =em Uhe1 n+l n+1l n n
(8)

xsin(6n+1—6n)/3

The governing equations of u and u thus obtained are nonlinear
so that an iterative solution is devised by means of introducing

the 1initial guess indicated by the upper bar and small unknowns
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indicated by the triangular mark as follows.
un=an+Aun ' (9)
u=H+AY (10)
Then linear simultaneous equations are obtained for the Aun and
Au . Iteration is to be repeated by solving the linear equations
and modifying the unknowns until they converge.
In case of three-dimensional surface, the derivation of the

said linear equations is so cumbersome that symbolic manipulation

by REDUCE is employed.

4. Formulation Based on Minimal Sum of Surace Tension and
Gravitation Energy

The shape of catenary is so determined that the center of
gravity of the catenary takes the lowest position for a certain
fension. The shape of droplet is affected by the surface tension,
surface condition of the wall, to which the droplet adheres, and
gravity. The wall is supposed horizontal in the following case
studies. The surface tension makes the shape of droplet spheri-
cal, and the gravitation energy acts to iower its center of
gravity for a certain mass. Then, a functional can be devised as
follows under the premise that the shape of droplét is governed
by the two actions for smallest surface tension and lowest center

of gravity,

N N
I=a. % S +(a..-a.)S,+pg & V_z +u( & V_-C)
Ln=1 n SL "S'70 n=1 nn n=1 n (11)
where a denotes the surface tension coefficient between the

SL
droplet material and wall, a5 the one between the wall and envi-

ronment, SO the surface area of the wall, to which the droplet

adheres. The third term of the right hand side of Eq.(11) repre-
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sents the gravitation energy expressed by the mass density p
and 2,, which is the heiéht of the center of gravity of the said
region corresponding to a segment, and g the gravitational accel-
eration. The parameters appearing in tHe second term of the
right hand side of Eq.(11) is replaced by the following Young's
equation,
aSL—aS+aLcosa=0 ‘ (12)

where a denotes contact angle between the wall and droplet
surface at the boundary, which is employed as an index of wetta-
bility in engineering. The formulae and numerical technique
described in Section 3 are applicable generally also to the shape

finding of droplet, inspite of the term added to take the gravi-

tational effect into .account (Nakagiri et al.).

5. Numerical Examples
5.1 Shape of foams

Figure 3 illustrates the cross-scetion of water foams with a
variety of inside volume. The sufface’ tension coefficient is
taken equal to 0.0728 N/m. The foams are supposed to inflate from
a circular boundary of 6 mm in radius so that the shape is axi-
symmetric. The. initial guess of the shape is given as a cone
with the same volume. The cross-sections do not indicate the
enlargement of a foam. Figure 4 depicts contour lines of one
eighth of a foam surface analysed by use of 420 triangular seg-
ments. The foam is supposed to inflate from a square boundary of
12 mm in edge length. Figure 5 proves that the proposed method
results in a spherical foam when the inside volume is so vast

that the effect of boundary shape can be neglected. The radius
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Figure 3 Cross-~section of water foams
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Figure 4 Contour lines a foam with square boundary
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of a sphere and related Langrange multiplier are obtained
numerically as 7.05 mm and 20.8 MPa for a vast volume of C=1450
mm3. The Laplace's formula results in 20.7 MPa for the pressure
difference P1-P2 when the said radius and surface tension coeffi

cient are input to the right hand side of Eqg.(2). This means that
the Lagrange multiplier used in the formulation gives the pres-
sure difference. If the surface tension coefficient ar, is taken
as nondimensiqnal in Eg.(3), the Lagrange multiplier meaﬁs curva-
ture. The shape of foam remains the same irrespective to the

value of AL, when the volume C is kept constant.
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Figure 5 Spherical foam with vast volume

5.2 Shape of droplets
The material of the wall, to which droplet adheres, is
supposed to be Teflon, and then the contact angle is given as 108

degrees 1in case of water droplet. When the contact angle is
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input, the contact area S0 is set free so that the radius of the
wall boundary is taken as unknown. Figure 6 shows the cross-
section of the droplets above Teflon wall, and Fig.7 the one of

the droplets hanging down from the wall. When droplet is down-
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Fig.6 Upward droplets Fig.7 Downward droplets

ward, there is no limitation of the position of the center of
gravity until it drops off, different from upward droplet. The
slender cross-section of the downward droplets "evidences the
difference. It is found that the iterative solution did not
converge, when vast mass is assigned to a droplet. Surface ten-
sion cannot sustain the weight of large downward droplet unlim-
itedly. This implies that the downward droplet is said to drop
off because of short surface tension, when the iterative solution

is not converged for the input mass.



97

6.Concluding Remarks

The formulation to find the shape of soft bodies is pre-
sented on the basis of variational calculus combined with dis-
cretized models of the minimal surface. The functionals are
constituted for the minimal surface tension or the minimal sum of
the surface tension and gravitation energy under the equality
constraint condition of the constant volume of foam and the
constant mass of droplet. The nodal coordinates to  express the
shape of foam and droplet are determined by the linearized sta-
tionary condition of the functional for the iterative solution.
The numerical examples prove that the proposed method is effec-

tive for the shape finding of solitary foam and droplet.
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