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Discrepancy inequalities of Erdos-Turan
and of LeVeque

Kazuo Goto and Takeshi Kano

1 Introduction

In [1],Erd6s and Turan obtained an upper bound of the discrepancy in terms of the ex-
ponential sums. In [3] LeVeque obtained another upper bound different from Erdos-Turan
inequality. In [4], Nakajima and Ohkubo obtained an upper bound of the generalized dis-
crepancies using a new Weyl’s criterion for general distribution (mod 1).

In this paper, we generalize the discrepancy of weighted uniform distributed sequence
to that of the regular summation method. We obtain upper and lower bounds of the
generalized discrepancy (called V-discrepancy) of a weighted uniform distributed sequence

having a continuous distribution function and related results. Our methods mainly owe
to [2:Theorem 1.4, 2.4 and 2.5 of Chapter 2] and [5].

2 Definitions and Notations

Let Vi be a regular summation method of the sequence g(1),¢(2),---,g(N) . Let u
be a Borel probability measure on an arbitrary compact metric space X.
We assume that X = [0,1] and F(z) = u([0,z)) is a continuous function.

Definition 1. Let (g(n)) be a sequence and Vy(g(n)) be a summation method of
g(1),---,9(N) . If imy_o Vi(g(n)) = 0 , then (g(n)) is said to be V-summable to o .

Definition 2. The sequence (g(n)) is said to be (V, p)-u.d. mod 1 if for all intervals
J € X , we have

hIl’l VN(C]( / deu,

where C; denotes the characteristic function of J .

Definition 3. Let (g(n)) be a sequence of real numbers and J = [, ) C[0,1] . The
numbers

Dy = sup[VN(CJ g(n))) / Cdul,

and

D = sup [V (Cpoa(9()) = [ Coydel,
0<Lakl X
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are called the (V, ) -discrepancy and the (V, ) - discrepancy respectively.

N
>~ p(n)e , we have the ordinary weighted uniform distribution

n=1

ie. (p(n),p) —u.d. .

Throughout in this paper we use the following notations :

|f(=

f(z) < g(z) means g(z) >0 1121_1_>5£p e ;
(=) = 2(g(x)) means g(z) > 0,limsup L2

s—oo g(2)
X glzr) means imin f( ) f( )

< limsup == < 400
{z} means the fractional part of z.

I

“+o00.

3 Theorems

By Definition 3, we obtain the following .

Theorem 1. The sequence (g(n)) is (V,pu) -u.d. mod 1 if and only if

W, D =0

Remark. Dy <Dy <2Dy.
Theorem 2. If we set, for g(n) €[0,1], n=1,2,-
An(y) = Vn(Cpy(9(n))) — F(y),

then

1 o0

[} Awdy = nlo(n) = G + 55 3 gl (e = [ emar )

1
where Gz/ ydF(y) .
0

Proof. We remark that Ay(y) is a piecewise continuous function in [0, 1] with finitely
many discontinuities at y = g(1),---,g(N). Moreover, we have Ay(0) = Ay(1) .
o0

We expand Ay(y) into a Fourie series Y ane®™*® which will represent Ay (y) apart

h=—0c0
from finitely many points. So we have

1 A
ah=/0 AN(y)e“z’”hydy,
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and

do= [ Ay =Vu ([ Conlot) - [ Fl)dy
= V(1 -g(n)) - (1-G) = =Vn(9(n) - G),

1
where G = / ydF(y) .
0
For h # 0 , we obtain

1 , 1 . 1 .
ap = /0 AN(y)Ghzmhy — VN (/0 C[o,y)(g(n))e‘%”hydy) _/0 F(y)e—zmhydy

1 o v F(y) _ 1 —2mhy
— 2mwihy _ 2nihy
n (/g(n) ¢ dy)) ([ 2mih* ] + / 2mih 4F(y)

1 L,
— V. ~2rhg(n)y __ / —Zthde ) )
27rih( w(e ) 0 ¢ )

By Parseval’s identity, we have

1 00
JRSOREREINE

and the desired result follows immediately.

Theorem 3 For any (V,p) -u.d. sequence (g(n)) in X, where u([0,y)) =y , we have
DN<—-—+ Z VN(e mram |,

Proof. We set for F(y) = v,

An(y) = Ry(y) = V(Cpyp(9(n))) — Fy) for 0<y<1,

and extend this equation with period 1 to R .
We consider first a sequence g(1),---,¢(N) in [0, 1] for which

[ axtdy =0 (1

We put )
Sy = VN(CZNhg(n) - / e%lhde(y)).

: 0
Then we obtain for A # 0,

Sh _ 1 2mihg(n) /1 2mihy _ _/1 2mihy
5 = o vle e dF(y)) = a_s = i An(y)e™™dy.  (2)

Choose a positive integer m , and let a be a real number to be determined later. From
(1) and (2), it follows that

m ! m /

1
_ —2wtha__~h _ —2niha 2mihy
> (m+1—|Ale _2mh > (m+ 1 [hDe [ Ay(y)e™tidy

h=—jm h=—m
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—fAMy S (m+ 1 [Al)emo)gy
h=-m
m /!
= [ Ax@+a) 3 (m+1—|h])e2mrvdy,
—a h=—m

(3)

where the dash indicates that A = 0 is deleted from the range of summation
By (3),

ml

a2 . 2 . . .
_ 2mihy _ | SID (m+ Vmy/sin® 7y if y is not an integer
R 4

- otherwise,

due to the periodicity of the integrand in (3) we confine the range of the last integral over
11
[—5, 5] . Thus we obtain

sin? Ty

1 sin?(m + 17
[ st

‘/ An(y) Y (m+1—|h])e™dy - em2mhe

h=-m

sin?(m + )7
AN(y+ a) ( ) yd

sin® my

1 ™ |Sh| 1"‘ | Sl

h=1
We have either

(4)

An(b)=-Dy or AnOb+0)=D for some b € [0,1]

We treat only the second alternative, the first one being treated quite similarly.
For b <t < b+ Dy , we have

An(t) = Dy + An(t) — Ax(b+0) > Dy +b

because

An(t) — An(b+0) = Vy(Clo,n(g(n)) —

Cop+o)(g(n))) — (t —b) 2 b — 1.
Now choose a = b + -;—D}"V . Then

Ax(y+a)>2 Dy +b—(y+a)

1
=-Dy—-y for Jyl< ED}"V
Consequently, we obtain

/—% Axly+ @St Dy, (3%

=204 3 sin®(m + D)7
O T [ T Ty
sin’ Y -3D% -3 1Dy sin” Ty

> / D?v )sm (m2+ l)wyd _ Dy, /—%va 81n2(m+ 1)7ryd
sin® 7y -1

sin’® Ty
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_DR’/% 81n2(m+ l)wyd

1Dy sin® Ty

sin? Y sin® Y

_ D’J“V/ 3D% sin?(m + 1)7ryd _ a2y, /% sin®(m + 1)7ryd
1
2
1
Since Sin (m2+ Iy | is even and the definite integral of this function over [0, ] being
sin® 7y

/2 AN(y—{—a)sm (m2+ l)wyd > DN/z sin (m2+ l)wyd 3Dy, /% sz(m-‘r 1)7ryd

-1 sin‘ Ty sin” 7y D% sin? 1y

m+ 1 /«.17 dy m+4

m+ 1 3
> ——D% — 3D}
2 N N D-4y2- 2

DY — =,
2 N9

3
Dy —=-2>
NT 52
Hence we have , by (4)

m+1 3 sin“{m + 1)
Ly S [ e S D,

2 2 s1n2 Y

N]»—-

L .2
2 sin®(m + 1)y |Sk|
< A —— eyl < - 1—h)—.
S| anly+ )=y hzl<m+ =
Thus we have
+ 2 & 1 |
m+1 h;

where Sj, = Vi (e?™*9(™) because of F(y) =y.
If Dy denotes the discrepancy extended over all half-open intervals mod 1,

1
then we have, in case of / An(y)dy =0,
0

DN<—-—+4i1———)| Sl G

We shall show that for any finite sequence g(1),---,9(N) in I , there exists a c € [
1
such that the shifted sequence {g(1) + c},---,{g9(N) + ¢} satisfies / An(y)dy = 0.
0

This proves the Theorem, since both sides of (5) are invariant under the transition
from ¢(1),---,g(N) to the shifted sequence. We have

V(1 —g(n)) = —;—, because Vy (/{)1 C[o,y)(g(n))dy) = /01 F(y)dy, ie 0= /01 Ay(y)dy.

Therefore we have to prove the existence of a ¢ € I for which

Vv({g(n) +¢c}) =5
For any c € I , we have

Vir({9(n) + e} % g(n)) = Vv (Clo,1-0)(9(n))) + Vv (Ca-eny(9(n)) (c — 1)
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= ¢~ Vy(Cr—e)(9(n))) = V(1 = Cp—c1y(9(n))) — (1 = ¢)
= Vw(Cloa-0(9(n))) = (1 —c) = Ay(1—¢)

Therefore it remains to show that .

Ay(l—c) = ——VN(g( ) =s,

say, for some ¢ € I . We consider only the case s > 0, the case s < 0 being similar.
1
Since / Ap(y)dy = s ,we have Ay(y) > s for some y € (0,1). But since Ay (1) =0
0

and Ay(y) is linear with positive jumps at y = {g(n)},n =1,2,---, N | the function Ay
must take the value s in the interval (y,1) . This completes the proof.

Theorem 4. If (g(n)) in [0,1] is (V,p) -u.d. , then we have

4’"1

DN S Z e lV ( 27rth(g(n)))|

where F(z) = u([0,z)) is continuous on 0 < & < 1 and F(z) is extended over R with
period 1. ‘ ‘

Proof. If (g(n)) is (V, u) -u.d. ,then we have the (V,1) -u.d. sequence F(g(n)) . Thus
we have the Theorem by Theorem 3.

Theorem 5. Let F be a continuous function. If (g(n)) is (V, 1) -u.d. ,then we have

4 =01 4 1 51n2(m + )7y
D < v - s V 2xihg(n) o —_ F _ d
al +7rhz1 m+1 JIVile ) m+ 1 ( () ) sin? Ty

Proof. Let y € [0,1] be the value which takes the discrepancy D}f in (V, u) -u.d. |
and y! € [0, 1] be the value which takes the discrepancy of D% in (V1) u.d. . We have

Dy = sup [V (Co,p(9(n))) — ([0, B))I-

Since g(n) € [0,1] , Prob.(F(g(n)) < z) =z for all z € [0,1] . So if we set
0< g(n) < B, F() = § , then 0 = F(0) < F(g(n)) < F(5) = § . Thus

Dy = sup [Vy(Cio 5y(9(n))) — B'| < D
ﬂ’

Conversely, D3 > D} . Therefore we obtain Dy = D3 . Hence we have F(y) = yr .
1
By the similar calculation (3) of Theorem 3, we have under / An(y)dy = 0,
0

— —2rtha S ! “ 5 —a
|30 (et 1= et = | [CAg(y) 3 (m+ 1 ]ty
h=—m : h=—m
. 1-a e i sin®(m + 1)7
= | Ax(y+a) Y (m+1—|h)e*Mdy| = [/l ~n(y+a) iinzw ) ydyl
a h=—m ? y
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1 & |:Sh]
< = — p)EL
where
. 1 .
Ax(®) = Va(Clon(g(m)) = F(),  Sh= V(e — ["e2mdp(y)).
We set

Ay(y) = An(y) + F(y) —y = Vn(Cloy(9(n))) — v.
Replacing Ay by A’y in Theorem 3 |, we have

' 51n2(m + 1)7y m+4 3_m+1 3
Aly( dy Dy —=> Dy — = 7
/ sin? Ty 2 ¥yo2= 2 N (7)
and
+ 1 +1 1 *(m+1
/ Al sm (m )Tryd _/' An sm (m+ 1)y dy+/ (F(y)—y)sm (m )7ryd
sin® 1y sin® Ty 0 sin® Ty

Therefore we have from (4),(6) and (7),

m+ 1 3 13 | S| 1 sm2(m + )7y
—Dy — =< — 1—h)— / F(y) — dy.
N 2_”;(m+ 5t ) P -
1
Thus we obtain , under / An(y)dy =0,
0
4 1 sin (m + 1)y
Dy < —— I Fly) — dy.
N +7rhz:1 +1 IS+ 22 m+ 1 0( W) —v) sin® Ty

We shall show that for any finite sequence g(1),---,g(/N) in I , there exists ac €
, 1
such that the shifted sequence {g(1) + ¢}, - {g(N) + ¢} satisfies / Apn(y)dy = 0.
0

Since

0=)a0 = [ An(w)dy = V([ Couplo(n)dy) ~ [ Fla)dy
= Va(1 = g(m) = 1+ [ 4dF(y) = ~Vu(g(n) - G),

1
where G = / ydF(y), we have to prove the existence of a ¢ € I for which
0
Vy({g(n) + c¢}) = G. For any c € I |, we have

V({9(n) + ¢} = 9(n)) = Vv(cCoa-o(9(n))) + Vi ((c — 1)Clu—c)(9(n)))

= ¢ = Vn(Cu—c1)(9(n))) = ¢ = 14+ Vn(Cppa-o(9(n))) = c =1+ F(1 - ¢) + Ay(1 —¢).

Therefore, it remains to show that

Ay(l—c)=1-c—=F(1—-c)+ G- Vy(g9(n)) = s,
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say, for some ¢ € I . We consider only the case s > 0, the case s < 0 being completely
analoguous.

1
Since / Apn(y)dy = s ,we have Ay(y) > s for some y € (0, 1).
0
Since Ax(1) = 0 and Ay(y) is continuous except at (g(n))Y with positive jumps, the
function Ay must take the value s in the interval (y,1) . Thus it completes the proof.

The following is an analogue of LeVeque’s Inequality (cf. 2:Chap.2 Th.2.4 ).

Theorem 6. Under the F(y) = u([0,y)) =y , we have

1

6 o~ 1 mthg(n :
Dy < (&35 Hvatemap)

Corollary. If (g(n)),g(n) € [0,1] is a (V, ) -u.d. ,then

o =

6 < 1 L n
(__2_ Z_: _}.Z_ e2mh F(g( )))|2)
where F(y) = p([0,y)) 1s continuous on 0 <y <1.

Theorem 7. Under the condition such that F'(y) < oo exists for0 <y <1,
1

D < (P15 32 vt = [ cmnar(p)

where ||F'|| is a supremum norm of F'.

Remark. There exists a distribution function F(z) such that F'(a) = 0 , e.g.

a—1/\/logb/a—z) f 0<z<a

F(z) = if z=a
a+1/«/logb/m—a if a<z<1,

where a = 1/2,b = ¢*/2 | satisfies that F(0) =0, F(1) = 1, F'(z) < co except at a , and
F'(a) = oo . Thus [|F'|| = oo

Lemma 1. Let f(t) be continuous and of bounded variation on [0, 1].
1
If Bn(g) = Va(£(g(n) = [ f(2)dF(z) , then

Ey(g) = / Ry (1)df (2), (8)

where

Rav(t) = Viv(Clon(9(m) = [ CiodF(a).
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Proof.

/OlRN(t)df(t):/IVN(c[ot) (g(n))df () //COt)dF ) df (1)

=Vy (/ Clo,e)(g(n))df (¢ ) [/ Clo,oyduf( )] /1 f()dF()
= V(=g + [ F@AF(©) = ~Eulg).

Lemma 2. Under the same condition of Lemma 1,we have

|En(a)] < W(f)Dj,
where W(f) denotes the total bounded variation of f.

Proof. By (12),

Ex(o)l < [ 1ROl < [ Dildf(o)] = Dyw(f).

Lemma 3. Under the same condition of Lemma 1, we have
. 1

[Vie( o)) < 4D + [ |d(F(2) - 1),
0

where Dy = sup  |Vn(Cs(g(n)) ——/ Cidyl .
=[0,2) o

Proof. We set Sy = Vy(e?™*9(")) . There exists a 6 € [0, 1] such that Sy = |Sy|e?®
. Then

ISNl — SNe—QriH — VN(€21ri(g(n)—9))'

Since |Sy| is a real number, we have

S| = V(cos(2m(g(n) - 9))). (9)

Now we put f(t) = cos(27(t — 6)) on ¢ € [0, 1].
Since f(t) is absolutely continuous, we have,

W(f): /[f |dt-27r/ | sin 27(¢t — )|d6

1-6 1
= 27r/ | sin 27u|du = 27r/ | sin 27ru|du = 4.
-8 0
On the other hand,

/01 ft)dt = /01 cos 2(t — B)dt = 0.

By (13) and Lemma 2, we obtain

[Sul = Va(flatr)) = [ F0aF@ + [ 0are) ~ [ oy



D)+ [ FOAED 1) <1Bxlo)l +] [ FOAFE 1)
<4y +] [ F@dFEQ) - 0] < 4D} + [ 1dFER -0
This completes the proof.

By Lemma 3, Theorem 5 and due to the fact D} < Dy , we have the following:

Theorem 8. Let F(z) = p([0,z)) be a continuous function. If (g(n)) on [0,1] is
(V, ) — u.d. , then

V(o) - 2 [Mla(r) - 9] < Dy <

4 =1 1 1 51n2(m+1)7ry
< - = - 27rahg(n) F . d
< NG I+ g [ ) -

Next theorem is an application of Theorem 8.

Theorem 9. Let g(t) € C?(1,00) be a positive strictly monotone function satisfying
the following conditions: for some constant A, 0 < A < 1 such that

g(t) — oo, 0<g'(t) <1 for sufficiently large t,

g'(t) = A, monotonically decreasing ast — oo,
N
> g'(n) = 00 as N — oo, and/ (t)%dt < 400 as N — oo.
n=1

Let (g(n)) on [0,1] be (V,p) -u.d. with a continuous distribution function F(z) and let
Dy be the discrepancy of (g(n)) with weight g'(n) .Then for all sufficiently large N, we

have
1

s(N)’

on the other hand, we have the reversed inequality

Dy K

1
D -—
7w
for infinityly many N.

Proof. To prove the theorem we need the following two results :

Theorem A. [7: p.226] If ¢'(t) is monotone and |g'(¢)] < 1 — & for some
§ > 0 in (a,b) and p(t) is monotonically decreasing and differentiable, then

b
2mig(n) __ 2mig(t) <
| X p(m)er o — ["plt)etmoat] < 4, max p(t)

a<n<b
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Theorem B. [6:Theorem 2.] Let g(t) € C?[1,00) be a positive strictly in-
creasing function satisfying the following condition :

g(t) = 00 ast — o0, g¢'(t) = A, monotonically ast — oo,

18 monotone for t 2> 1,

then the discrepancy of (g(n)) with weight p(n) and distribution function F(z) =

- 1 v p(N)
DN < RJ—V—)-/; p(t)g (t)dt + S(N)g'(N)’

N

where s(N) =Y p(n) .

n=1

We set p(t) = ¢'(t) . By Euler summation formula(cf.[2:Chap.1, Example 2.4]), we
have

N

Z gl(n)e27rzhg(n) — /1 g’(t)ezmhg(t)dt + _2_(gl(1)621rzhg(1) + gI(N)627rzhg(N))+
n=1

+/ ({t} - = ( ((£)e>m90) dt.
Since ©N_, ¢'(n) — oo and [} ¢'(t)?dt < co , we obtain

1 & 1 N . 1
lim g'(n)e 2mihg(n) — lim _______/ g’(t)ez’”hg(t)dt =0 :/ lezhydy‘
N—o00 Zn 1 g (n) Z Nevoo E g’(n) A A

Thus we have the distribution function F(y) = y . Now we apply Theorem 8 and Theorem
B with F(y) = vy, and we obtain,

L S U
Dy < sy |90+ s < sy

Moreover we have from the left hand side of Theorem 8 by using Euler’s summation
formula,

45(N)D(N) 2| 3 ¢(m)e™] > (1)

Since ¢’ is monotonely decreasing and g(n) — oo , s(N) = ©N_, ¢'(n) ~ g(N) , which
proves Theorem 9.

Example. g¢(n) =logn satisfies the conditions of Theorem 9. Thus the order of
1

log N~

1
magnitude of Dy of the sequence (logn) with welght
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/ ‘
Lemma 4. Let 0 < K(t) = %g% be monotone and differentiable T or | K > 0,

9'(t) be monotonically decreasing, |g'(t)] < 1—6 and p(t) be monotonicallly decreasing to
zero and differentiable. Then

Proof. Since K(t) is monotone and not identically ¥ . p(n)e?™9(") = 0 for suffi-
ciently large N | we have for any ¢ > 0, there exists an Ny such that for any ¢ > Ny

No—-1

11 |
<e, Y p(n)e?™™ £ 0, p(No) <
n=1

'E(T)—}z

A27r

Applying Theorem A,
Z p(n)eQ’”g(”) = Z p(n 2’"9(") +/ t)ez’”g(t)dt + As max p(t)
n=1 n=1

Noticing
N . N '(t) .
t 21rzg(t)dt — / g 2mg(t)dt
/., p(0e L e

we obtain
/N g'(t) _g'(t) ez"ig(t)dtsz 11 p 2mig(t)
Ny \ K(2) K N \K(#) K 271
1 1Y\ e2mig(N) 1 1) e2rig(No)
= (I((N) - 'IZ') omi (K(No) B E) ami TAN
where N1
1 1 1 1 €
An| < / Zd || = — _ <
An] < No 2m (K(t))l 2r |K(t) K(No) S or
e ¥ (0 g0
g() g\ amigee) 3
— — =L ] ef™d < —
/No (K(t) K )e =27
and
1 / I(t) 27rzg(t)dt 11 (627rzg(N)_62mg(No))
K K 271
Therefore
o arigln) _ o arign) o L 1 amigv) _ 2migv0) 4
mig(n) _ mig(n Tig rig( No <
3 pln)e 3 pl)e™ )+ or(e )+ ldl < e
= Q(1).

We obtain the following theorem by Lemma 4 and Theorem B :
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Theorem 10. Let g(t) € C? ¢'(t) — Constant < 1, monotonically as t — oo,
g
p(?) .
monotonically decreasing and differentiable and/ p(t)g'(t)dt < oo.

Let (g(n)) on [0,1) be (V,u)— u.d. with a dis;ribution function F(z) = z and let Dy

be the discrepancy of (9(n)) with weight p(n). Then we have for all sufficiently large N,
we have

0<c< < oo monotone and differeitiable for t > 1 , some constant c , p(t) be

1
Dy <y

on the other hand, we have the reversed inequality

1
D —_—
W)

for infinityly many N .
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