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On the representation of numbers

as the sum of a prime and a k-th power.

by Koichi KAWADA (University of Tsukuba).
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1. Introduction.
Let &322 be avfixed integer, and, for a natural number h,
let rkuo be the number of representations of n as the sum of a
prime and a &-th power.

In the case %ﬁ=l., Hardy and Littlewood [3] conjectured

(1) Jn S
Y, (n) ~ B ‘5\2 O- 5= )

that, unless N is a square,

n
where \o denotes prime numbers, and (’P‘) denotes the Legendre
symbol. In 1968, Miech [5] showed that the above asymptotic
formula (1) is wvalid for almost all M . More precisely, he

proved that

_® ® . Iy
rl(“)”‘f%”“(\ -1 ) {H-O( L n )})

for all but O(N(L&N)-P‘) natural numbers W<N with any A0 . It
seems impossible, for the present, to improve Miech's result
because of the possible existence of the Siegel zeros.

On the other hand, to show that n is representable as the
sum of a prime and a square, we néeed only a positive lower
bound for Yl(h) , and which was obtained with less exceptional

n's. A.I.Vinogradov [8] and Brinner, Perelli and Pintz [1]
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proved that there exist a positive constant § such that Y,(w)>0
for n<N with at most O(N\‘J) exceptions.

Proofs of these result for the case %=2 are based on the
circle method, and most part of the proofs in [5] and [1] still
work for the case &>Q . Essential difference between the cases
%=2 and §>2 occurs in the treatment of the sum called "singular
series". S0 we investigate +the "singular series™ for the
general case 22 .

We denote by ?n(o\) the number of solutions of the
congruence
X —n=0 (mad).
Then the singular series for our problem is the sum of the

form;

AL NS
®(“’M)=w\z<:M G (my P\m( nP) \) )

where/.l and Y denote the Mdbius function and Euler's totient
function, respectively. It is proved that, for almost all Y\[,

the sum G(n,M) is approximated by the finite product of the form

‘\T,(\—%‘_(\?__T_\—) , and then a good positive lower bound for @'(n,M) is
P -

obtained. This is essentially due to Plaksin[6]. This work with
the arguement in [1] yields the corresponding result for &>3
of (1] and [8], namely, there exist 'a positive constant &
depending only on & such that r&(nwo for all n<N with at most
O(N“s) exceptions.

Next, we consider the corresponding result for %23 of

Miech's result [5]. We define the set

E’k = ivle N ; the polynomial Xk-—V\, is irredusible in (DI.‘A]} .

Then, instead of (1), we can expect that, for nekg,
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\

/R
n -\
th(Y‘3 ~ Th&_;\- -\;} (\ P—1\ )

And our result 1is

THEOREM. For §>3 and for any A>Q, we have

Y\y& 5l fule-~\ %YL
= — - ). +
r&(\@ , P(.l P\) {i O( )})

for all n<N with at most ()(N(LQNSA) exceptions.

In order to prove this, we need more precise treatment for
the singular series G(w,M) than Plaksin's way [6]. The rest of
this article outlines the main features of our proof of the

result. As for the details, refer to [4].

2. Treatment of the singqular series.

Let N be a sufficiently large real number. By a standard

application of the circle method, it follows that

(2) 'k R fedhe . . My, TN
= +o(—(£%;)} + O(N* )

for all but O(N(%N?‘) natural numbers <N , where A and N are

INOESICHINNSR)

arbitrary positive constants, and B is a positive constant

depending on A, lﬂ and~&. On the proof of this fact, there is
no essential difference between the cases k=2 and %72.

Making use of the inequality (8) below, we see eaéily that
(3) G, Ua®) = G Ny + 0(UgNy Y)Y |
for all W<N with at most O(N(L&N)‘A> exceptions. And we

proceed to investigate G;(n . We start with applying Perron's
NN
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formula. As usual, let =0+ Lt be a complex variable. We

introduce the function

P -1
Zn(S)_ T\—(l‘_ PS‘(P ‘)> )

for 6>| . And we put btm and T= MP(@) . Then we have

routinely
+1
bel T Sl
\ i . _
'Zh(s)—-s———\- dS + (Admissible remainder),
b-LT
for n¥N . So we need some information about ‘Z“(.S) near the line

o=\ .

GIGW, W)= 3y

On the other hand, let Z,(S) and [,($) be the Riemann zeta
function and the Dedekind zeta function of the field @(h‘/") ,

respectively. The Euler product for [ (S) is written as

| |- £sN\~ 0n(§,P)
=T T G=FT) )

\
where a“(-{:,\)) is the number of prime ideals ﬁ in @(n/*) such
that the norm of 10 is pf . By a known fact about Qh(f,p)'s, we

see

An (L) = 5P

providing r\eE& and pikn . Then the Euler product for Z}(S)/@h(S)

becomes
-+ ?,,( Gy (S, e Bl =S
K““ P P asksh ™
_ _ ﬂ\(P) - T \ falp) 9““, -
e = TO-2EE TR (-

S an(,p) —FnlP)

m \- £s Qv\(f 2] Tr (\
* \>1<{<fq( P Plkn

= 'Zh(ﬂ iy\(g) E“(S> )
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where
s »\+?n(\>‘> Talpy-) -} (‘_P—ss anlf,p
g, ()= _W { ( | (1- P (p- D) b 1s f<k ) )
and
—s L On(1, D)~ SnlP
— =T (Q-y° '
En ()= Pl P .

We note here that Eh(S) is written as the finite product, and
that ;,“LS) is treated easily near the line 0=\ . Hence, in view
of (6), we regard, essentially, Z,(S) as Z(S)/;h(s)'.

In our case, Zh(ﬂ/;(s) is an entire function, which was due
to Uchida [7] and van der Waall [9] (independetly). Therefore,
if zh"s)/;(s) has no zero near the line 0=\ , then Z(S)/LH(S) is
analytic near 6=! , and so is 'Z“(S) . Then, using Hadamard's
" three circle theorem, we have a good estimate for 'Z,h(S) near

o=1, and, by (5), we get, with a suitable constant >0,
=-UT -LT b*bT

@L“)m> Zn(‘) + 35 9_13_(, g “ S )Zn(gy dg +
T \—-V[—iT \—Vm‘\l

4 (Admissible remainder)
= Z,0) + (Admissible remainder).
In fact, we obtain the following Lemma 1.
LEMMA 1. Let A7(n;a,T) be the number of zeros of Zn(s)/C(S)
in the region o> and \t|¢T . Assume that n<N, neEg and

M(W}\'5,Q%P(m3):o with some positive constantS . Then we have

G(ndiy= T U= 2P s O (el 1))
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3. Zero density estimate.
We see plainly that the number of n's such that n<N and
Y\QE& is OQ(IN) . so, in view of (2), (3) and Lemma 1, in order to
prove our theorem, it suffices to show that there are positive

constants § and §’ such that

(7) z. N(nji-d, ap(IgN))  « N"V
:;E&

In other words, we need a zero density estimate for Gh(S)/Z,(s)'s.
We note that, for the case %=2 , the function Z;n(s‘)/ag) is the
Dirichlet L-function for a certain real primitive character, if
h is not a square. And, in [5], Miech used Bombieri's zero
density theorem for L-functions proved in 1965. We see here the
most important difference between &=2 and %72.

The inequality (7) follows at once from the following
Lemma 2. Therefore, our proof of the theorem is completed by
justifying Lemma 2.

LEMMA 2. For a natural number Y, we put G‘,:\"“ET\E__‘S. We

suppose G.sw, T2\ and

T bg(k) (e+1) (e-D(3-26)) r(x-v)
- (D <N
Then we have, for 'l§$0'<\r oG,
. \ - ——_—’B-U’Sl +¢

T Ao, T) & (NT)

n< .

neky ) !
with any €50 -

Remark. Iﬁ application of Lemma 2 to show (7), we take

T=op({ly ) 2nd L=+l -

It is well known that zero density estimates for Dirichlet
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L-functions 1is obtained from the large sieve 1inequality,

namely, N Mot Mot M
= b
230 |2 geam)ie (@MY T W)
F<Q L d ) | m=Myrl m=Mgt |
*
where E: indicates the summation over all primitive
& Lo §)

characters (mod %).

We shouid preparé the inequalities which work in\our Zero
density estimate instead of the large sieve inequality. Now we
put ﬁhgq pu@ TY(%&ﬂ—() . As we see in the preceding section,

we can regard, essentially, Z“(S)/L(S) as

o0
- =S
T (14 2BV = 5 Ba(m) w
b ( ps ) m=1 P

for o>l , because of (6). So we consider how to estimate the

sum of the form°

> |z amp,.(m\

.

n<N

For a square-free natural number m , we define the sets Cp
*
and (,, of Dirichlet characters (mod m) as follows;
Co = 1% (mod wy; M=%, and Ex%om}
C# = { LeCwm ; Kis primitive.}

m )

where Vyﬂnn denotes the principal character (mod ™). As is

mentioned in [6], we find easily the relation

(m) = DI A(H)
Brn () = ek

for any square-free m. Making use of this fact, we get

s\ S 0ub, S 2 Ol =, 2%.120\)
“Z;,\msn ‘“g M\ MM My <M ‘Aecm. ’MCC: n=N

and, by the Pdélya-Vinogradov inequality, we have
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(8) BnBa™|" & (N M g™ = W) 2,05 | an |

2| %

where T@Uﬂ is the number of the factorizations of m into &
positive numbers.

We see that the inequality (8) gives only a trivial bound
when M. >N . In this case, we need, instead of the Pdlya-

Vinogradov inequality, a non-trivial bound for the sum
s,z \ p3 fxcm\\
}*0«\) {
We estimate this sum by the method indicated in {2], and obtain
that the gquantity of the st is
<< N\-W+€ M
Yl r(x-1)
x <N

where ¢ is a natural number satisfying M £ . Applying

Y

this estimate, we have

- e
2 “Ta
(9) 2;“\1 amﬁn(w\ &NZ 'r,m\am\ +N T (M) v mm\)
" M‘<M Ml<h<9,M|
where ¥ is a natural number satisfying thHD Ntﬂkn

Then our Lemma 2 is derived by the standard method .in the
study of zero density for L-functions, using the inequalities

(8) and (9) instead of the large sieve inequality.
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