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GENERALIZED GENERALIZED SPIN MODELS
EIICHI BANNAI AND ETSUKO BANNAI

Abstract: The concept of spin model was introduced by V. F. R. Jones. Munemasa and
Watatani generalized it by dropping the symmetric condition, and defined a generalized
spin model. In this paper, by further generalizing the concept using four functions , we de-
fine a generalized generalized spin model. Namely, (X, w1; w2, w3, wy) is a generalized gen-
eralized spin model, if X is a finite set and w; (i = 1,2, 3,4) are complex valued functions on
X x X satisfying the following conditions: (1) wi(e, Blws(B,a) =1, wa(e, Bws(B,a) =1
for any o, in X, (2) > .cx wi(e, 2)ws(z, B) = nba,p, D ,cx w2, 2)wa(z,B) = nbap
for any a and B in X, (3a) > _cx wi(e, T)wi(z, B)ws(v, z) = Dwi (e, B)wa(, )wa(y, B)
and (3b) > .ex wi(z, @)wi(B, z)wa(z,v) = Dwi(B, e)wa(e, v)wa(B,7) for any , B, and y
in X, where D? = n = | X|.

We call as generalized spin models, the special cases of generalized generalized spin
models, where there are only two functions wy and w_ from X x X to C with two
of wy,ws, ws,ws being in {wy,*wy} and the remaining two of wi,ws, ws, ws being in
{w_,fw_}. We see that we have three types of generalized spin models, namely Jones
type, pseudo-Jones type, and Hadamard type. We also see that Munemasa-Watatani’s
generalized spin model is one special case of Jones type, and Jones’ original spin model
is a further special case of it. Here we emphasize that there are actually interesting spin
models which are considerably different from the original concept of spin model defined by
Jones.

§ 1. Introduction

The concept of spin model was defined by Jones [6] (see Definition 7 below). Munemasa
and Watatani [7] generalized it by dropping the symmetric condition, and defined a general-
ized spin model (i.e., the generalized spin model of Jones type in Definition 8). In § 1 of the
present paper, we further generalize the concept by using four functions w; (1 = 1,2, 3,4),
and define generalized generalized spin models (see Definition 3). The purpose of § 1 is
to discuss the background of this new definition. In the subsequent sections, we study
the special cases where there are only two functions w, and w_ from X x X to C with
two of w, we, ws, ws being in {wy,!wy} and the remaining two of wi, we, w3, wy being in
{w-,*w_}. We call these models generalized spin models, and they are divided into three
types (though these types are not exclusive of each other): Jones type, pseudo-Jones type -
and Hadamard type. They are discussed in § 2, § 3, and § 4 respectively. We also see that
Munemasa-Watatani’s generalized spin model is the generalized spin model of Jones type
(in Definition 8) and that Jones’ original spin model is a further special case of it. Here we
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emphasize that there are actually intefesting spin models which are considerably different
from the original concept of spin model defined by Jones [6].

§ 1. For any diagram L of an oriented link, we color the regions in black and white so
that the unbounded region is white and adjacent regions have different colors as in a chess
board. Then we get exactly four kinds of crossings. We construct a numbered oriented
graph whose vertices are the black regions and edges are the crossings. For each edge
(crossing) assign a number and an orientation in the following manner.

) +1 %//H+z //////4—»+3 %sz;

Tin | N )

B g . B

For any edge a — f,n{a — ) denotes the number attached to the edge according to the
definition given above. , '

For a diagram L of a link, v(Z) denotes the number of the black regions (number of the
vertices of the corresponding graph).

Let X be a finite set with |X| = n and D? = n. Let w;,we, ws, and ws be complex
valued functions defined on X x X. — ‘ ‘

Now we define a partition function Z of L by

ZL = D_v(L) 7 Z H Wr(a—p) (0’(&), U(ﬁ)) )

a—g
states odges

where a state o is a map from the set of vertices of the graph of L to X.

It is easy to see that there exist the following eight kinds of Reidemeister move of type
II and sixteen kinds of type III. ' ~

wy o Nwy N g o Ny N
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type 1I; type Il  type II3 type 114
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/I ) . ) / /// J // //,
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type IIls ‘ type 1ITg . type 1117 type Ilg
oW N N\ LN NG R
I\, ——/ A 4——-/—— Ny BGS/% N &
_/JL%N é_é i~ A2 Z/ G~ X
N L R N ////, - SOTmN N
type IIIg : type IIl;p type III;; type 11132
N P 7 A 4, 7, % Yy 4, s
N —/7/ = N\ 7 N, N\ Ny < ,/_/1
TR N hmms BN mme AN <gmN b
 type I3 type 11114 type III;s type Il;6
The partition function is invariant under Reidemeister moves of type 11y, - - -, type IIg

and type III;, - - -, type IIl;¢ if the following conditions IIy, - - - ,IIg and I1I,,- - - ,III;6 hold
respectively.

II;. wi (o, B)ws(B,a) =1 for any ,f € X,
1. we (8, @)ws(e, B) =1 for any o, f € X,

s.wa(e, Bws(B,a) =1 for any a,f € X,
114w (B, ¢)ws(a, 8) =1 for any o, € X,
IIs. 3, wa(a, z)wa(z, f) = nba,p for any o,f € X,
Is. >, w3(B,z)wi(z, ) = ndsp for any o, f € X,
7. >, wie, z)ws(z, B) = ndap forany o,f € X,
Ilg. ), wa(B, z)wa(z, ) = nbapg for any o, € X,
L. 3, wi(e, 2)wi (=, B)ws (7,2) = Dwi (@, Bwa(y, a)wa(v, B) for any o,B,7 € X,
Iy, )" w1z, e)wa (B, z)ws (v, ) = Dwe (B, e)ws (7, @)ws (v, B) for any ¢, 8,7 € X,
3. 3, wa(z, a)wa(z, Bwa(y, ) = Dwi (e, Bws(y, ®)ws(B,v) for any o, B,7 € X,
M. 3, wi(z, @)ws(z, B)ws (v, ) = Dwa(a, Blws (v, ¢)ws(B,v) for any a, 8,7 € X,
IIs. ), wi(e, 2)wa(z, B)ws(z, v) = Dwae, Blws(a, v)ws(B,v) for any o, B,7 € X,
ls. Y wi(z, @)wi(B, z)wa(z, v) = Dwi (B, @)wa(e, v)ws(B,v) for any ¢, 8,7 € X,
II7. Y~ wi(e, 2)wa (B, z)ws(z, v) = Dwa (B, e)ws(a, v)ws(y,B) for any a, 8,7 € X,
Ils. Y~ wa(a, z)we (B, z)wa(z,v) = Du, (8, 2)ws(a,y)ws(y,B) for any o, 8,7 € X,
. ), wi(e, z)ws(z, Bwaly, ) = Dwi (e, Blwse(a, v)wa(y, B) for any o, 8,7 € X,



. ), wo (o, T)ws(z, Blws(y, z) =
= Dw; (e, B)wi (v, @)ws(B,7)

I4;. Y, wa(z, @)ws(B, z)wa(y, z)

M. Y-, wi(z, )ws(B, z)wa(v,z) =
= Dwy(B, c)wa (7, @)ws (7, B)
= Dw (8, @)ws (v, 2)wa(B,7)
= Dwi (e, Blwa (v, &) wa(B, )
= Dwy (8, a)w;(a, 7)ws (7, B)

3. Y, wa(z, e)ws(z, Bws(y, z)
hg. Y, wi(z, @)ws (B, T)wa(z, )
Ilis. >, wi(e, z)ws(z, B)wa(z, )
6. Y, wo(e, T)ws(z, ﬁ)'l{)4 (z,7)

Dws (e, B)wa(a, v)ws (v, B)

D'U)] (ﬂ, a)wfl ((I, ’Y)’UJ4 (’77 ﬁ)
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for any o, f,v € X,
for any o, 8,7 € X,
for any o, 8,7 € X,
for any o, 8,7 € X,
for any o, 83,7 € X,

for any o, 8,7 € X,

for any o, 8,7 € X.

Let W; = (w,;(a, ﬁ))an,ﬁGX fori=1,2,3,4. Let I be the identify matrix and J be the
matrix whose entries are all 1. Let Y3 be an n-dimensional column vector whose z-entry
is given by Y 3(z) = wi(e, x)w;(z, B) for any 4,5 € {1,2,3,4} and o,8€ X.

The matrix expressions of II; and II4,IIs and 113,11 and 117,115 and Ig are Wi o W3 =

J, ‘W o Wy = J, W1W3 = nl and WoW, = nl respectively.
The following II1;’,III,’, - - - ,III;¢’ are the matrix expressions of III;, III,, - - -
spectively.

L' W1Y55 = Dwy(a, B)Y5 for any o,B € X,
IIly’. WoY3} = Dws(a, B)Y25 forany o,f € X,
II5'. *WoY 22 = Dws(B,)Y3 for any o,B € X,
L. *W1 Y23 = Dwy(B, @)Y} forany o,f € X,
15", tWoY 3 = Dws(a, B)Y25 for any o,f € X,
IIs'. *W1Y, 5 = Duwy(e, ﬁ)ng for any o,B € X,
L. W12 = Dwq(8,0)Y2 for any o,f € X,
IIIg'. WgYaﬁ = Dws(6, )Y 3 for any o, € X,
1Ty, W4Yaﬂ = Dws (e, ﬁ)Ygg for any o, € X,
Ilo'. WaY23 = Dws(a, ,B)Y2g for any a,f € X,

111, . W4_Y = Dw; (B,a)Y3 aﬁ for any ao,f € X,

III;2
III;3

11,4,

AT
JI0ETY

tW Y‘31
tw3yl4

WY2h =

" WsYih = Dwa(B,)Y55 forany o,f € X,
" tW3Y25 = Dwa(ey, ﬂ) aﬁ for any o,f8 € X,
Dwy (o, B)YE aﬁ for any «,f € X,
Duws (B, )Y)5 forany o, € X,

Dw; (B, a)Yaﬁ for any a,f € X.

We have the following proposition.

, 1156 re-
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Proposition 1. Let W;, (s = 1,2,3,4), satisfy Wy o Ws = tWo o Wy = J and
W1W3 = W2W4 = nl. Then the conditions IIIlg,IIIu,II.[14, III]_3,IIIlG,III15,IIIlo,IIIQ
are equivalent to 111y, IIlp, II13, 111y, Il I1lg, 111, I1Ig respectively. '

Proof. This is obvious from III;’,--- , 1116 .

Theorem 2. Let W, (i = 1,2,3,4), satisfy *W; o W3 = Wy o Wy =:J and W1W3 =
WoWy4 = nl. Then the condztmns 1Ly, 1114, 1115, I1Ig are equivalent to each othe.r and
III,, I115, I1Ig, I1I; are equivalent to each other.

Proof. By III; we have

SO wien z)wi(z, Bwa(y, z) wa (y, V)ws (8, )

=3 (Dw1 (v, Bywa (v, @)wa(v, B))wa (y, 7)ws (B, )

for any o,B,y € X. Since WoWy = nl and *W; o W3 = J, we have IIljs. Simi-
larly from III;,1114,1IIg, by summing over 8,7, and B respectively, we have 1114, I1Ig,
and III; respectively. Therefore I11;,I11;¢, 1114, 1119 are equivalent to each other. Hence,
by Proposition 1, IIIy,IIIs, II14, IIIg are equivalent to each other. A similar method on
1115, 111;6, 1113, 11135, summing over ¢, ¢, 8, and « respectively, gives 1115, 1113, 11135, IT1,.
Therefore III,, III;0,1I15,111;5 are equivalent to each other. Hence, by Proposition 1,
I11,, I11,, 1113, 11 are equivalent to each other.

Theorem 2 tells us that the following definition of generalized generalized spin model is

meaningful.

Definition 3. Let X be a finite set, and let w; (i = 1,2,3,4) be functions on X x X to
C. Then (X, w;,ws,ws, ws) is a generalized generalized spin model of loop variable D if
the following conditions are satisfied:

(1) wi(e, Bws (B, @) =1, woa, Blws(f, @) =1 for any @ and § in X,
(2) Z wi (o, z)ws(z, B) = nba g, Z wa (e, T)wy(z, f) = nba,g for any o and ﬁ inX,

zeX ‘ z€X
(3a) ) wi(e, z)wi(z, Awa(v,7) = Dwi(er Bywaly, eywa(y, ) for any o, f and y in
X’ zeX
(3b) Y wi=, 0)ws (B, 7)wa(z,7) = Dwi (B, )wa(e, V)wa(B,7) for any o, 8 and v in
z€X
X.

Note. (3a) and (3b) are III; and IIls respectively.
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Note. If (X,w;, w2, w3, ws) is a generalized generalized spin model, then the partition
function Zj, of an oriented link diagram L is invariant under the Reidemeister moves of
type II and III.

We have the following matrix expressions of (1), (2), (3a) and (3b).
(1) *WyoWs=J, tWoo W, =J,

(2)/ W1W3 = TLI, W2W4 = nI,

(3a) WiY 5 = Dws(y,B)Y; 5 for any 7,0 € X,

(3b)’ tW1Y14 Dw4(ﬂ,'y)Yﬁ4 for any v, € X.

Proposition 4. Let (X, w;, ws, ws, wys) be a generalized generalized spin model. Then we
have

(4) Z wo(a, z) = Z wa(z, ) = Dws(a, @) = a™},

zeX xzeX

(5) Z wy(a, z) = Z wy(z, a) Dwi (e, @) =a

zeX ::EX
for any a € X with some a € C. We call this number a the modulus of (X, w1, w2, w3, wy).
Proof. In III,, 1113, I1Ig é,nd 1114, put @ =7, =7, = B, and & = B respectively. Then,
by (1) and (2), we have the proposition. v
The following Proposition 5 is the matrix expression of Proposition 4.

Proposition 5. Let (X, w;,ws, w3, ws) be a generalized generahzed spin model of mod-
ulus a. Then we have the following relations.

(4) Wod = WoJ =a™J, Waol =qa 1,
(5) Wy =*WyJ =aJ, Wiol =al.

Proposition 6. Let (X, w;,ws, ws,ws) be a generalized generalized spin model of loop
variable D. Then Dwy(e, f) and Dws (e, 8) are eigenvalues of Wy and W3 respectively.

Proof. Obvious from III;’ and 115"

(Note that Dws(a, B) is not necessarily an ewenvalue of W4, and that Dws(e, §) is not
necessarily an eigenvalue of W5.)

§ 2. Generalized spin models of Jones type

In this section we consider the special case of generalized generalized spin models, where
there are only two functions w; and w_ on X x X to C with w;, ws € {we,* we} and
w3, wy € {we,* we }, where {¢,¢'} = {+,-}.
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Definiton 7. (The original spin model due to Jones [6].) (X, w4, w-) is a symmetric spin
model of Jones type if the following conditions are satisfied.
(0) wi (e, f) = wi (B, ), w—(a,B) =w-(B,a) for any o and § in X,

(1J) wy (e, B)w—(B,c) = 1 for any a and B in X,

(2J) Z wy (@, T)w_(z,B) = b, p for any @ and f in X,
zeX

(37) Y wy(a, z)u(z, B)w-(z,7) = Dw+(a B)w— (e, v)w-(B,7) for any ., and v
zeX
in X,

where | X| =n and D? = n.

Definition 8. (X,w;,w-) is a generalized spin model of Jones type if the following

conditions are satisfied.
(1J) wy (e, Hlw—(B,a) =1 for any o, f in X,

(2J) Z wy (o, T)w—(z,B) = nbqa,p for any @ and f in X,
zeX

(3’]) Z 1U+<C¥,.'E)'LU+($,,6)'(U_(.'L',’)’) =Dw+(a,ﬁ)w_(a,7)w_(ﬁ,'y) for any a)ﬂ and Y
zeX
in X, Whire lXI—nandD2~n

Definition 9. (X,w4,w-) is a generalized spin model of transposed Jones type if the
following conditions are satisfied.

(1JT) wy (e, Nw_(a,B8) =1 for any o and B in X,

(2JT) Z wi(a,z)w—(f,z) = nbapg for any o and § in X,
z€X

(3‘]) Z w+(a,a:)w+(a:,ﬁ)w_(:r,'y) = Dw+(a) ﬁ)w"’(a: ’Y)w—(ﬁJ’Y) for any azﬁka‘nd Y
zeX
in X, whi;e |X|=n and D? = n.

Note. The spin models of symmetric Jones type are special cases of Definitions 8 and 9.

Theorem 10. Let wi'(e, ) = wy (,B, @) and w-'(q, ﬁ) = w_(0,a). Then the following
assertions hold.

(1) (X,w4,w-) is a generalized spin model of Jones type if and only if (X, wy,w.’) is
that of transposed Jones type.

(i) (X,w4,w_) is a generalized spin model of Jones type if and only if (X, wy',w_)
is that of transposed Jones type.

Proof. First assume that (X, w,,w_) satisfies the conditions (1J) and (2J). Consider
(X, w1, w2, ws,wys) defined by wy = wy, w2 = wy',w3 = w_ and wgy = w_’'. Then
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(X, w1, we, w3, ws) satisfies the conditions (1) and (2) of Definition 3. Therefore Proposi-
tion 1 and Theorem 2 show that III; and IIl4 are equivalent. In our case III; is exactly
(3J) and Iy is exactly

(3JT) > wi(e, z)wi(z, B)w-(v,3) = Dwy (o, Aw- (v, d)w— (7, 8
zeX

for any ¢, 8, and «y in X. This shows that under (1J) and (27), (3J) and (3JT) are equiv-
alent. Since the condition (3JT) for (X, w4, w_) is the condition (3J) for (X,wy,w-"),
and conditions (1J) and (2J) for (X,w;,w-) are the conditions (1JT) and (2JT) for
(X, w4, w_’), we have (i).

(i) Since > . ex wi'(aD)wi'(z, Blw-(z,7) = 2iex w+(B 2w (z,fw—(z,7) and
Duwy/(a, Byw—(e, Y)w-(8,7) = Dwi (B, )w—_(B,7)w—(e,7), the condition (3J) for
(X, w4, w-) is exactly the condition (3J) for (X, wy,w-). Therefore we have (ii).

Theorem 11. Let wy’ = w_ and w_' = wy. Then (X,wy,w-) is a generalized spjﬁ
model of Jones type (transposed Jones type) if and only if (X, w4’,w_") is that of Jones
type (transposed Jones type respectively).

Proof. First assume that (X, wy,w_) satisfies the conditions (1J) and (2J). Consider
(X1 w17w21w33w4) with wl(aaﬁ) = 'U)+(C¥, ﬁ);wi’(a)ﬁ) = 'LU+(ﬂ, a),wg(a,ﬁ) = w—(a7ﬁ):
and w4(e, f) = w—(6,a). Then (X, w:,ws,ws, ws) satisfies the conditions (1) and (2)
of Definition 3. Therefore Proposition 1 and Theorem 2 show that III; and III;o are
equivalent. In our case, IIlI; is exactly (3J) and IIl;p is exactly the following condition

(3J+).

(3J+) > wo(a2)w-(z, Bjws(z,7) = Du_(a, Blws (o, Mws (B, 7).
s _

This shows that under the conditions (1J) and (2J), (3J) and (3J4) are equivalent. Next
assume (X, w4, w_) satisfies the condition (1JT) and (3JT). Consider (X, w1, wo, w3, wy)
with wl(aaﬂ) = 'lU-}-(CX,ﬂ),'UJQ(O!,ﬂ) = 'U)+(,B,C¥),'UJ3(C¥, .B) = w—(ﬂa Ot) and ‘UJ4(O£, :6) =
w—(a,B). Then (X,w;,ws,ws, ws) satisfies the conditions (1) and (2) of Definition 3.
Therefore by Proposition 1 and Theorem 2, 1114 and III;; are equivalent. In our case 1114
is exactly (3J) and IIly, is exactly (3J4). This shows that under the conditions (1JT) and
(2JT), (3J) and (3J4) are equivalent. Since the condition (3J;) for wy and w_ is the
condition (3J) for w4’ and w_’, we have the proof for Theorem 11.

Theorem 12. Let (X, w;,ws,ws,ws) be a generalized generalized spin model. If
Wi, Wo € (W)W} and W3, Wy € {Wo W} where {¢,¢’} = {+,~}, then the con-
ditions (3a) and (3b) in Definition 3 are equivalent and (X, w4, w_) is either a generalized
spin model of Jones type or that of transposed Jones type.

Proof. case (i). W1 =W, Wo =W, Wy =W_ Wy =W_.
The conditions (1) and (2) in Definition 3 show that conditions (1J) and (2J) are
satisfied. Both conditions III; and III; in § 1 give (3JT). Since III; and III, are equivalent
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to (3a) and (3b) respectively, the conditions (3a) and (3b) are equivalent. Since (3JT) is
equivalent to (3J) under the conditions (1J) and (2J), (X, w4+, w_) is a generalized spin
model of Jones type.

case (11) W1 = W+,W2 = W+,W3 = W_,W4 =tW_.

By (2) of Definition 3, we have WoW_ = W, *W_ = nl. Therefore W_ is symmetric.
By (1) of Definition 3, W5 is also symmetric. Hence the conditions (3a) and (3b) both give
condition (3) in Definition 7, and (X, w;,w_) is a symmetric spin model of Jones type.

case (111) Wi = W+,W2 = tW+,W3 = W_, W4 =W_.

A similar argument as in (ii) proves that (X,w;,w_) is a symmetric spin model of
Jones type.

case (iv). Wy = Wy, Wy =W, , W3 =W_, Wy ='W_.

The conditions III; and III7 in § 1 both give (3J). Since III; and III; are equivalent
to (3a) and (3b) respectively, (3a) and (3b) are equivalent. Therefore (X, w4+, w_) is a
generalized spin model of Jones type. ‘

case (v). Wy =W, , W3 =*W_.

Let W' = *W_. Then cases (i) and (iv) for W4 and W_’ prove that (X, w4+, w_’)
is a generalized spin model of Jones type and cases (ii) and (iii) for W, W_' show that
(X, w4, w_") is a symmetric spin model of Jones type. Therefore (X, w4, w_) is a gener-
alized spin model of transposed Jones type or a symmetric spin model of Jones type.

case(vi). Wy =*W,. |

Let W,/ = tW,. Then cases (i), (i ) (iii), (iv), and (v) for W,.’, W_ and Theorem 10
show that (X, w4, w-) is a generalized spin model of Jones type, transposed Jones type,
or a symmetric spin model of Jones type.

case (vil). Wq € {W_,*W_}.

Let W' = W_ and W_' = W,. Then cases (i), (ii), - - -, (vi) show that (X, W, , W_")
is a generalized spin model of Jones type, transposed Jones type or a symmetric spin model
of Jones type. Therefore by Theorem 11, the proof is completed.

" Remark. Combining Theorem 11 and Theorem 10, we can conclude that in order to
study generalized spin models of transposed Jones type, we essentially have to consider
the generalized spin models of Jones type.

Note. For a given generalized spin model of Jones type, the proof of Theorem 12 shows
which signed oriented graph should be taken to construct partition functions of oriented
link diagrams which are invariant under the Reidemeister moves of type II and III. Each
type of generalized spin model of Jones type has several chomes of signed oriented graph
which give possibly dlﬁerent partition functions.

§ 3. Generalized spin models of pseudo-Jones type.

In this section we ‘consider the generalized generalized spin model with Wy, W, €
{W,! W} and Wy, W3 € {Wer,! Wer} where {e,€'} = {+,-}.
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Definition 13. (X, w4,w-) is a generalized spin model of pseudo-Jones type if the fol-
lowing conditions are satisfied for any o, 3, and v in X.

(0) w+(a: ﬁ) = w+(16, a): w—(aa ﬁ) = w—(ﬁra)l:

(IJ) w+(a,ﬁ)w_(a, ﬂ) = 11 )

(2) 3 wi(ez)w-(z,0) = nbass,
zeX -

(3P) Z ’UJ+(O,IE)HJ+($, ﬁ)w+($17) = Dw+(a1 ﬁ)w-i-(a’ 7)w+(ﬁa ’Y)
zeX

We have the following theorem.

Theorem 14. Let (X,w;,ws,ws,ws) be a generalized generalized spin model. If
Wi, Wy € {W4,tWy} (or W, Wy € {W_*W_}) and Wo, W3 € {W_}W_} (or
Wa, W3 € {W,,*W,}, resp.) for some matrices Wy =" (wy(a, ﬁ))aex,ﬁex and W_ =
(w-(a,B)),, ex,pex then the conditions (3a) and (3b) in the Definition 3 coincide and
(X,w+,w-) is a generalized spin model of pseudo-Jones type.

Proof. First we will show that W, and W_ are symmetric.

case (1) Wl = W+,W4 == W+,W2 = W_,W3 =W_.

By the assumptions we have ‘W, oW_ = J and Wy W_ = nl. Also we have Y3} = Y2}
and Y3 = Y23. Then by ITI3" and IIls’ we have w— (8, @) = w-(c, 8). Therefore W, and .
W_ are symmetric. ,

case (n) W1 = W+,W4 = W+,W2 == W...,W3 = tW._..

By the assumptions we have W, .'W_ = W_W,. = nI. Therefore W_ is symmetric and
so is W.

case (iii). Wi, Wy € {W_,*W_} and Wy, W3 € {W,,*W,}.

Let Wy’ = W_ and W_' = W,. Then case (i) and case (ii) show that W,' and W_’
are symmetric. Therefore W and W_ are symmetric.

Thus we see that W, and W_ are symmetric. Therefore Wi, Wy, W3, and Wy are
symmetric and the conditions (3a) and (3b) in Definition 3 are equivalent. For the case
Wi = Wy = W, the condition (3a) gives (3P) of Definition 13. For the case W7, = Wy =
W_, we have that W = W3 = W, and that III o gives the condition (3P). Therefore, in
both cases, (X, W4, W_) is a generalized spin model of pseudo-Jones type.

Note. For a given generalized spin model of psudo-Jones type, the proof of Theorem
14 tells which signed oriented graph should be taken to construct a partition function of
oriented link diagram which is invariant under the Reidemeister moves of type II and III.

§ 4. Generalized spin models of Hadamard type.

In this section we consider the cases where Wi, Ws € TWtT$W,.)} and Wa, Wy €
{We ! W}, where {¢,¢'} = {+,-}. In these cases, W, or W_ is an Hadamard matrix.
We call these spin models Hadamard type. '
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Definition 15. (X,wy,w-) is a generalized spin model of type (H,) if the following
conditions are satisfied.

(0H,) we(c, B) = we(B, @) for any o and B in X,

(lH) w-*'(a’ﬁ)w'f-(ﬂa a) =1, w'—(a)ﬂ)w“‘(ﬂ7 a) =1 for any & a‘ndﬂ in X:

(2H) Z w (o, T)wy (z, B) = nba,g, Z w-(a,z)w_(z, ) = nbs,p for any o and f in

xeX zeX
X,
(33'6) Z We! (aa :r)wg (.'L', ﬂ)wé (.'L', 'Y) = Dws (CZ, ﬁ)we (a1 'Y)we (ﬁ) 'Y)- for any «, ﬁ: and v in
z€X
X,

where | X| = n = D2

Definition 16. (X, w,,w_) is a genera]i'zed spin model of type (HA) if the following
conditions are satisfied.

(1H,) we(e, Bwe(e, B) = 1, we (o, B)we (B, @) =1 for any a and B in X,

(2H,) Z we(a, z)we (B, z) = nba g, Z we (@, T)we (2, 8) = nbo,p for any a and B in

zeX zeX
X, : _ ,
(3ac) Y we (e, )we (z, B)we(z,7) = Dwe (o, B)we(c, Y)we(B,7) for any a,B, and v
inX , =X l
(3be) > we(e, z)we (z, B)we (v, ) = Dwe (@, Bywe(y, @)we(, B) for any B, and y
xeX ’
in X,

where | X| =n = D2
Definition 17. (X,wy,w_) is a generalized spin mode! of type (HB,) if the following
conditions are satisfied.

(1He) we(a, B)we(e, B) =1, we (o, flwe (B, @) =1 for any o and B in X,

(2H,) Z we(a, z)we(B,z) = nda g, Z Wer (¢, T)Wer (T, B) = nba,p for any o and B in

zeX z€X
X,
(3ae) > we(e, B)we(z, B)we (z,7) = Dwe (e, Bwer (, ¥)we (B,7) for any o, B, and -y
zeX
in X,
(3be) Z We(, T)we (T, B)we (7, %) = Dwe(a, B)we (7, )we (v, B) for any o, B, and v
zeX
in X,

where | X| =n = D2.
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Definition 18. (X,w;,w_) is a generalized spin model of type (HC,) if the following
conditions are satisfied.

(0H,) we(c, ) = w.(B,c) for any o and § in X,
(1He) we (e, Bwe (e, B) =1, we(a, Bwe (B, d) =1 for any o and 8 in X,

(2He) Z We (e, T)we(z, B) = nba,p, z we (@, T)we (B, T) = nba,p for any o and B in

zeX zeX
X,
(3ac) > we(a, 2)we(z, Awe (z,7) = Dwe (e, B)we (@, Y)we (B,7) for any o, B, and v
in X, =<
(3b€') Z We (aa :z:)we(:z:, ﬁ)wf' ('77 .’1:) = Dwe (a7 ﬁ)wc’ (7) a)we’ (71 ﬂ) fOI' any a, ﬁ: a‘nd v
zeX
in X,

where | X| =n = D%

Note. Let wi/(e, ) = wi+ (8, @), w-'(8,a) = w-(B,c). If (X, ws,w_) is a generalized
spin model of type (H¢), (HA:), (HB.) and (HC,), then (X, wy',w-), (X,wy,w-"),
(X,w4’,w_") are also generalized spin models of type (H.), (HA.), (HB.), and (HC,)
respectively.

Note. Let wi/(a,8) = w-(a,8) and w_"(a, f) = wy (e, B). If (X, ws,w_) is a general-
ized spin model of type (H,), (HA.), (HB,), and (HC,), then (X, w; ,w__’ ) is a generalized
spin model of type (He), (HA¢), (HB), and (HC,).

Definition 19. (X,w4,w-) is a symmetric Hadamard type spin model if the following
conditions are satisfied. We denote it by type (SH,)

(0) w+<a7 ﬂ) = w—*—(ﬁ) Q), w—-(CY)ﬁ) = w—(ﬁ: Of),

(1IH) WyoWy=J W_oW_ =J,

(2H) W2 =nl, W_% =nlI,

(3ac) Y we (e, 2)we (2, Hwe(z, ) = Dwe (o, B)we (o, 7)we (B, 7).

zeX

Theorem 20. Let (X, w;, w2, ws,ws) be a generalized generalized spin model. As-
sume that W1, W3 € {W.!W.} and W,, Wy € {W.,!W.} for some matrices W, =
(we(@, B)) pex pex 88d We = (wer (e, 8)) e x pex- Then (X, w4, w-) is one of the gener-
alized spin models of type (H.), (HA.), (HB.), and (HC,), where € € {+,—}.

Proof. case (i) Wy =Wy, Wo=W_, W3 =W, , Wy =W_.

By (1) and (2) of Definition 3, we have (1H) and (2H). By III;’ of § 2, Dwy(e, 8) =
Dw_(c, B) is an eigenvalue of Wy = W, for any o, 8 € X. By (2H) we have W, 2 = W_? =
nl. Therefore w—(c, f)w—(a,F) = 1. Therefore by (1H_) we have w_(a, ) = w-(0, )
for any o and 8 in X. Hence (0H_) is satisfied. Since Wy = W_ is symmetric, (3a) and
(3b) of Definition 3 are both equivalent to (3a_). Therefore (X, w4, w-) is a generalized
spin model of type (H-).
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case (ii). Wi = Wy, Wo = W_, Ws = Wy, Wy = tW_.

By (1) and (2) of Definition 3, we have (1H_-) and (2H_). (32) and (3b) of Definition
3 give (3a_) and (3b-) respectively. Therefore (X,w,,w_) is a generalized spin model of
type (HA_).

case (lil) W1 W+,W2 = W_, W3 = W+,W4 =W_.

By (1) and (2) of Definition 3, we have (1H,) and (2H,). (3a) and (3b) of Definiton
3 give (3a—) and (3b-) respectlvely Therefore (X, w4, w—) is a generalized spin model of
type (HB). ,

case (IV) Wl = W+, W2 = W_,Wg = tW+,W4 =t W_..

By (1) and (2) of Definition 3, we have Wy o Wy = J, W_o W_ = J, W W, =nl
and W_'W_ = nl. By Iy’ of § 2, W, *Y%} = D?w_(B,0)*Y 2} = nY} for any o and
in X. Since {¥2 }o, Bex is a spanning set, W.2 = nl. Hence W, is symmetric. Therefore
we have (0H;), (lH ), (2H_) of Definition 18. (3a) and (3b) of Deﬁmtzon 3 give (3a-)
and (3b_) respectively. Therefore (X, w+,w_) is of type (HCy).

case (v). Wy = W4, Wy =*W_. ‘

Let W' = *W_. Then Wi = Wy and Wy = W_/, and (X, Wy, W_’) satisfies the
conditions of case (i), (ii), (iii), or (iv). Therefore (X, W, ,W_’) is of type (H-), type
(HA.), type (HB4), and type (HC, ) respectively.

case (v1) Wi =W,

Let Wy’ =t W,. Then cases (i), (ii), (iii), (iv), (v) show that (X,w,’,w_) is a general-
ized spin model of type (H-), (HA-), (HB4), and (HC,). Therefore (X, w+,w_) is also
of those type.

caes (vil). Wy € {W_!W_}.

Let W' = W_ and W = W,. Then W);,Ws € {W,. *W,'} and Wo, W, €
{W_'*W_'}. Therefore (X,W,,W’) is a generalized spin model of type (H-), (HA_),
(EB4), (HC). Therefore (X, w4, w-) is those of type (Hy), (HA4), (HB-) and (HC_).

Note. As for the partition function Z1, of an oriented link diagram L attached to the
generalized spin models of Hadamard type, the proof of Theorem 20 shows what kinds of
signed oriented graphs are suitable for each type of generalized spin model of Hadamard
type. The choice is not unique.

§ 5. Concluding Remarks.

Generalized generalized spin models (X, w;, w9, ws, ws) seem to exist considerably in
abundance when compared with the original (symmetric) spin models due to Jones. The
generalized spin models considered in § 2, § 3, § 4 are special cases of generalized generalized
spin models, but they exist also considerably in abundance.

As we have discussed in § 2, § 3, and § 4, we have three types of generalized spin models:
Jones type, pseudo-Jones type and Hadamard type.

1) In order to consider (non-symmetric) Jones type, essentially we only have to consider
Definition 8 (because of Theorem 10). Such generalized spin models were first considered
by Munemasa and Watatani [7]. They gave two explicit examples withn =3 andn=5. A
family of such examples were constructed on the group association schemes of finite cyclic
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groups by Bannai and Bannai [1]. For symmetric Jones type, there are many examples
attached to symmetric association schemes, in particular to strongly regular graphs (cf.
[4], [5]). Nomura (8] systematically gives examples of symmetric spin models (in the
original sense of Jones) attached to an Hadamard graph (i.e., the distanceregular graph
of intersection array '

~ ok 1 m - 2m -1 2m

{ 0o 0 0 ' 0 0 }
2m 2m—-1 m 1 * J

which is canonically constructed from each Hadamard matrix (see [3, p.19]).

2) In pseudo-Jones type, the matrices W, and W_ are always symmetric. The following
is an explicit example of pseudo-Jones type which is not of Jones type nor of Hadamard

type. '

1 i 1 —i 1 —i 1 4

1 - 1 I R S |

=l o1 g T 1 =
- 1 1 1 —i 1

with ¢ = 4/—1. (We can check all the conditions in Definition 13 easily.) It is expected
that there are many other generalized spin models of pseudo-Jones type.

3) In Hadamard type, we only have to consider the following ones: symmetric Hadamard -
type (Hy), (HA+), (HB4), and (HC,) (because of Notes in § 4).

a) The following is an example of symmetric Hadamard type, which is not of Jones type,
nor of pseudo-Jones type.

/1 -1 1 1 1 1 -1 1

-1 1 1 1 1 1 1 =1

W, = k 1 1 1 =1} W = -1 1 1 a
1 1 1 1

-1 1 1 -1

(We can easily check the conditions in Definition 19.)

b) The following is an example of non-symmetric Hadamard type (H_), which is not of
Jones type, nor of pseudo-Jones type.

1 =i =1 —3 1 1 -1 1
i 1 i =11 1 1 1 -1
W, = -1 —i 1 —i , Wo = -1 1 1 1
i -1 i 1 1 -1 1 1

(We can easily check the conditions in Definition 15.) It is expected that there exist many
other generalized spin models of Hadamard type.

Remark. Let (X3, wgl) , wgl), wgl) , wgl) ) and (X2, w?’, w§2) , w§2) , w‘(f)) be generalized gen-

eralized spin models. Let usset X = Xy x X5, w; = w§l)®w§2) (i1=1,2,3,4), namely, W; =
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Wi(l) ® Wi(z), where Wi(j ) is the matrix représenta,tion of wi(j ). Then (X, w1, w2, w3, wy) is
a generalized generalized spin model. (We can immediately prove this claim by checking
Definition 3.) Also, we can easily see that if (X, w_(;), Sf)) (i = 1,2) are two generalized
spin models of a same type, i.e., symmetric Jones type, Jones type, transposed Jones type,
pseudo-Jones type, symmetric Hadamard type, or Hadamard type (H.), (HA.), (HB.),
(HC,), then (X,wy,w_) with X = X; x X2, wy = w_(:) ®w_(,?), wo = wP @uw? is a
generalized spin model of the same type. Therefore, by this tensor product construction,
we get many more examples of various spin models. Note that if we take two generalized
spin models of different types, then their tensor product is generally not a generalized spin
model, but a generalized generalized spin model.

Anyway, it seems interesting to notice that in many instances, the existence of spin
models is closely connected with the existence of interesting combinatorial objects such as
Hadamard matrices, association schemes, etc,. (See [2] and (3] for general information on
such combinatorial objects.)

We want to discuss further examples of (various kinds of) spin models and the link
invariants attached to them in subsequent papers by looking at more combinatorial objects,
and by considering (generalized) generalized spin models, we hope to be able to find missing
mechanisms of systematlca.lly constructing spin models which Jones [6, p.325] wanted to
discover.
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