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PLANAR SINGER GROUPS AND GROUPS OF MULTIPLIERS

CHAT YIN HO

Department of Mathematics, University of Florida, Gainesville, Florida 32611

Our terminology in group theory is taken from [G], that of projective planes is taken
from [HP], and that of difference sets is taken from [B] or [L].

Semiregular collineation groups.
A permutation group is semi-regular if its non trivial elements act fixed-point-freely.

THEOREM 1. Let $G$ be a collin$ea$tion group acting semi-regularly on the points ofa projec-
tive $pl$ane, with $|G|>3$ . Let the point orbits be $O=O_{1},$

$\ldots,$
$O_{w}$ . Suppose $L$ is a line orbit

of G. Let $a_{i}$ be the number ofpoints in $O$: incident with a line in $L$ for $i=1,$ $\ldots,w$ . Then
the substructure $(O, L)$ is a subplane if and only if $a_{1}>1$ and $a_{i}=0$ or 1 for $i=2,$ $\ldots,w$ .

Remark. We could use the condition $a_{1}>2$ instead of $|G|>3$ . If the condition that
$|G|>3$ is not imposed, then $(O, L)$ could be a triangle.

Singer groups and multipliers.
A planar Singer group is a collineation group of a projective plane acting regularly on

the points of the plane. In 1938, Singer [S] proved that a finite Desarguesian plane is a
cyclic plane. On the other hand, in 1964, Karzel [K] proved that an infinite cyclic plane
is not Desarguesian.

Projective planes in this article are of finite cardinalities. We use the term Singer group
to mean planar Singer group in the rest of this article. It has been conjectured that
projective plane admitting a Singer group is Desarguesian. An automorphism of a Singer
group is a multiplier if it is also a collineation when we identify the points of the plane
with the elements of the group. The set of all multipliers is called the multiplier group of
the Singer group. The importance of a multiplier group can be seen from Ott’s result [O]
that a plane admitting a cyclic Singer group is Desarguesian or its full collineation group
is a semi-direct product of a cyclic Singer group with its multiplier group.

The planar order of a Singer group is defined to be the order of the projective plane in
which this Singer group acts on. Two Singer groups of the same planar order might not
be isomorphic to each other and their multiplier groups might have different orders. For
example, the multiplier group of a nonabeliarr Singer group of planar order 4 has order 3,
but the multiplier group of an abelian Singer group of planar order 4 has order 6.

For an abelian Singer group, Hall [L] proves that any divisor of its planar order yields a
multiplier. The lack of such existence theorem for multipliers for nonabelian Singer groups
presents the difficulty in studying the general case. Let $M(G)$ be the multiplier group of
a Singer group $G$ .
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THEOREM 2. An odd order abelian subgroup of the multiplier group of a Singer group of
$pl$anar order $nh$as at most $n+1$ elements.

The example of an abelian Singer group of planar order 4 shows that the condition being
odd order subgroup is necessary in the above theorem.

Sylow 2-subgroups of a multiplier group.
The group structure of a Singer group has not been determined except that its solvability

is guaranteed by the celebrated Feit-Thompson theorem [FT]. The next theorem combines
several results concerning a Sylow 2-subgroup of a multiplier group. Among other things,
it establishes the solvabiltity of a multiplier group.

THEOREM 3. Let $M=M(S)$ be a multiplier group of a Singer group $S$ of planar order $n$ .
Let $T$ be a Sylo$1v2$-subgroup of M. The following conclusions hold.

(1) $T$ is a cydic direct factor of $M$ and $M$ is solvabl$e$ .
(2) Let $T=<\tau>$ . For any divisor $dof|T|$ , there is an integer $k$ such that $n=k^{d}$ and

$F=C_{S}(\tau^{|T|/d})$ is Singer $gro$up ofplanar order $k$ . $Also|M|$ is boun$ded$ by $d|M(F)|$ .
(3) Let $n=m^{2^{a}}$ , where $m$ is a nonsquare integer. Then $|T|\leq 2^{a}$ . If in addition $M$ is

abelian, then $|M|\leq 2^{a}(m+1)$ ,

Some remarks are in order. When $S$ is abelian, $|T|$ attains the naximal possible value
$2^{a}$ . The question, that $|M(S)|$ is maximum when $S$ is abelian, is still unsettled. The bound
for $|M|$ in (3) of the above theorem improves the result in [Ho4] and $n=4$ is no longer an
exceptional case. In [Ho5], we completely determine the case of an abelian Singer group
with $|T|$ being maximal in the sense that the index of $T$ in a Sylow 2-subgroup of $Aut(S)$

is 2. For a cyclic Singer group $S$ , we prove that $|S|$ is a prime when $|M(S)|$ attains the
value $n+1$ in [Ho4]. If one can prove that the only possible values of $n$ (for a multiplier
$groupofacyclicSingergrouptohaveordern+1)aretheknownones,$ $namely,$ $n=2and$
$n=8$ , then a finite projective plane admitting a collineation group acting primitively on
the points is Desarguesian by an important result of Kantor [K].

The next theorem shows how an involution in the multiplier group affects the Singer
group. For any number $r$ , let $v(r)=r^{2}+r+1$ . If a projective plane has order $n$ , then $v(n)$

is the number of points of the plane. A group subplane of a Singer group is a subplane
which is also a subgroup.

THEOREM 4. $(/ HO4], \int HO5])$ Suppose the multiplier group of a Singer group $S$ ofplanar
order $n$ has an involution $\alpha$ . Then $n$ is a square and th$e$ following holds.

(1) $S=AB$, where $A=[S, \alpha]=\{s\in S|s^{\alpha}=s^{-1}\}$ is an abelian normal Hall subgroup
of order $v(\sqrt{n}-1)$ , which is an arc; and $B=C_{S}(\alpha)$ is a Hall subgroup of order
$v(\sqrt{n})$ , which is a Baer subplane. Furhter, $S=A\cross B$ except possibly for $n=16$ .

(2) Each subgroup of $S$ is $\alpha$ -invariant except $p$ossibly $n=16$ and $S$ is non-abelian.
(3) A group $su$bplane not in $B$ must $have$ square $pl$anar order.

Abelian Singer groups.
The points and lines of a projective plane admitting a Singer group can be identified

with the elements of the group. The following theorem gives a characterization of abelian
Singer groups.
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THEOREM 5. A Singer group is abelian if and only if the lefi multiplication and the right
multiplication by any element of the group are collineations.

PROPOSITION 6. Let $S$ be an a\’oelian Singer group of $pl$anar order $n$ . Then the followin$g$

conclusions hold.
(1) Let $n=m^{3}$ . Then no group subplane of order $m$ exists.
(2) Suppose $S$ is cyclic and $n=m^{a}$ for some positive integer $a$ , then a group subplane

of order $m$ exists if and only if $(a, 3)=1$ .

Sylow 3-subgroup of a multiplier group.
In all know examples, the Sylow 3-subgroup of a multiplier group is always cyclic.

PROPOSITION 7. Let $S$ be an abelian Singer group of planar order $n$ . Let $r$ be the order
of $a$ $gro$up subplane whose multiplier group has a cydi$c$ Sylo$1V$ 3-subgroup. Then $n=r$ or
$n=r^{2}$ or $n>(r+1)^{2}$ . If in addition $r|n$ , then $n>(r+1)^{2}$ in the last statemen$t$ can $be$

replaced by $n\geq r^{3}+r^{2}+r+1$ .

A consequence of Hall’s multiplier result mentioned above is that the multiplier group of
an abelian Singer group of square planar order has an involution. The following theorem
concerns a Sylow 3-subgroup of $M(S)$ .
THEOREM 8. For an cydic Singer group $S$ of square planar order a Sylo$1v3$-subgroup of
$M(S)$ is cyclic.

Type II divisors of a cyclic Singer group.
For any two coprime integers $a$ and $b$ , let $ord_{a}(b)$ denote the multiplicative order of $b$

modulo $a$ . Let $v=v(n)$ . For a cyclic Singer group $S$ of order $v$ , a multiplier $\sigma$ is always of
the form $sarrow s^{t}$ for some positive integer $t<v$ . Note that $|<\sigma>|=ord_{v}(t)$ . A prime
divisor $w$ of $v$ is a type II divisor of $n$ if $|<\sigma>|=ord_{w}(t)$ for any multipier $\sigma$ . Type
II divisors have been studied by Ostrom. (See, for example, [B].) Note that if a type II
divisor exists, then the multiplier group is cyclic.

PROPOSITION 9. Suppose $S$ is a cydic Singer group of planar order $n$ . Let $p$ be a prime
factor of $v(n)$ of the form $1+3^{a}k$ with $a\geq 1$ and $(3, k)=1$ . (Any prime factor different
from 3 of $v(n)$ is in this form.) ff $n=m^{3^{b}}$ , then $b\leq(a-1)$ . If the Sylow 3-subgroup $W$

of $M$ is cyclic, then $|W|$ divides $3^{a}$ .

We remark that for a cyclic Singer group of square planar order $n=m^{2}$ , a divisor of
type II must be a divisor of $v(m-1)$ . This Singer group may not have any Type II divisors
as examples show.

THEOREM 10. Let $S$ be a cycli $c$ Singer group ofplanar order $n=m^{2}$ . Suppose $v(m-1)=$
$p^{a}q^{b}$ for some primes $p,$ $q$ , and nonnegative integers $a,$

$b$ . Then $M=M(S)$ is cyclic. If
$n\neq 4$ , then there is is a divisor of type $\Pi$ of $v=v(n)$ .

Remark. From the fact that a prime divisor, different from 3, of $v(n)$ is congruent to 1
modulo 3, we see that a prime divisor different from 3 of $v(n)$ cannot be of the form $1+2^{k}$

(or $1+5\cdot 2^{k}$ ). A similar argument show that the primes $p,$ $q$ that appear in 8.2 cannot be
twin primes.
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COROLLARY 10.1. Let $S$ be a cyclic Singer group of square $pl$anar order $n$ . If $v=v(n)$ is
divisible by at most four different primes, then $M(S)$ is cyclic. If in addition $n\neq 4$ , then
there is a type $\Pi$ divisor of $v$ .

Singer group of order $pq$ .
We now generalize the concept of type II divisor. Given a Singer group of planar order

$n$ , a prime divisor $w$ of $v(n)$ is a type II divisor of $S$ if $S$ has a subgroup $W$ of order $w$ ,
which is invariant under the multiplier $M(S)$ such that the kernel of the action of $M(S)$

on $W$ is trivial. Thus $M(S)$ is cyclic if $S$ has a type II divisor. A Singer group of prime
order certaily has a II divisor. We will prove the following theorem.

THEOREM 11. Let $S$ be a Singer group ofplanar order $n$ an$d$ group order $pq$ , where $p$ and
$q$ are two primes. Then $p\neq q$ . Suppose $p<q$ . Then the following holds.

(1) Suppose $S$ is abelain. Then $S$ has a type II divisor if and only if $n\neq 4$ .
(2) Suppose $S$ is nonabelian. Then $M(S)$ has odd order and $q$ is a type $\Pi$ divisor of $S$ .
(3) The $m$ultiplier group $M(S)$ of $S$ is always cydic.

COROLLARY 11.1. Let $S$ be a non abelian Singer $gro$up of order $pq$ as in Theorem 11. If
$p$ divides $|M(S)|$ , then the plane admits a cyclic Singer group of order $pq$ .

The author would like to thank Professor Feit for his interest in the subject and encour-
aging conversations. The author also would like to express his gratitude to the Deaprtment
of Mathematics, Yale University, where a major part of the material of this article has been
proven.
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