L-functions of holomorphic cusp forms on U(2, 1)

Atsushi Murase and Takashi Sugano

0. Introduction

In this note, we report several results on the standard L-functions of holomorphic cusp forms on the unitary group H of hermitian forms of signature (2, 1). The L-functions we investigate here are associated to the 6-dimensional representation of the L-group ^{L}H of H that is induced from the standard representation of $^{L}H^{o} = GL_{3}(C)$. Such L-functions has been studied by several mathematicians; for example, see Shintani [9], Gelbart and Piatetski-Shapiro[3], Kudla [5], Gelbart and Rogawski [4].

In §1 and §2, we recall basic facts about holomorphic cusp forms on the unitary groups. In §3, we recall the definition of the Hecke algebra of H and introduce the local Euler factor at each rational prime. After defining the global L-function L(F; s) for a Hecke eigenform F and its gamma factor in §4, we state one of the main results of the paper in §5: the holomorphy and functional equation of L(F; s) (here we have to impose a certain technical assumption on F). In the final section, we give a partial result on the critical values of L(F; s). The method of proof is based on a certain integral expression of the L-functions studied in our previous paper [6]. Details will appear elsewhere.

1. Unitary groups

Let $K = Q(\sqrt{d_K})$ be an imaginary quadratic field of discriminant $d_K < 0$ and O_K the ring of integers in K. Denote by σ the non-trivial automorphism of K.

Let $\{1,\theta\}$ be a **Z**-basis of O_K with $\text{Im }\theta>0$ and put $\kappa=\theta-\theta^\sigma$ (= $\sqrt{d_K}$). Let H=U(T) be the unitary group of a skew hermitian matrix $T=\begin{bmatrix} -1\\ -\kappa \end{bmatrix}$: $H_{\mathbf{Q}}=\{h\in \mathbb{Z}\}$

 $GL_3(K) \mid {}^th^{\sigma} T h = T$. Note that the signature of a hermitian matrix κT is (1, 2).

Let
$$N_{\mathbf{Q}} = \{n(w, v) = \begin{bmatrix} 1 & \kappa w^{\sigma} & v + \frac{\kappa}{2} & ww^{\sigma} \\ 1 & w \\ & 1 \end{bmatrix} | w \in K, v \in \mathbf{Q} \} \text{ and } M_{\mathbf{Q}} = \{ \begin{bmatrix} t \\ \mu \\ & (t^{\sigma})^{-1} \end{bmatrix} | w \in K, v \in \mathbf{Q} \}$$

 $t \in K^{\times}$, $\mu \in K^{1}$ }, where $K^{1} = \{\mu \in K^{\times} \mid \mu \mu^{\sigma} = 1\}$. Then P = NM is a maximal parabolic subgroup of H.

Let
$$D = \{Z = \begin{bmatrix} z \\ w \end{bmatrix} \in \mathbb{C}^2 \mid \frac{1}{\kappa}(z - \overline{z}) - |w|^2 > 0\}$$
 be a symmetric domain and

put
$$Z^{\sim} = \begin{bmatrix} z \\ w \\ 1 \end{bmatrix} \in \mathbb{C}^3$$
 for $Z = \begin{bmatrix} z \\ w \end{bmatrix} \in \mathbb{D}$. Then the action of $H_{\infty} = H(\mathbb{R})$ on \mathbb{D} : (h, Z)

 $\mapsto h < Z > \text{ is given by } h \cdot Z^{\sim} = (h < Z >)^{\sim} J_H(h, Z), \text{ where } J_H(h, Z) \in \textbf{C}^{\times}. \text{ Denote by } \\ U_{\infty} \text{ the isotropy subgroup of } Z_{\theta} = \begin{bmatrix} \theta \\ 0 \end{bmatrix} \in D \text{ in } H_{\infty}.$

For a rational prime p, we write $K_p = K \otimes_{\mathbb{Q}} \mathbb{Q}_p$ and $O_{K,p} = O_K \otimes_{\mathbb{Z}} \mathbb{Z}_p$. Put $H_p = H(\mathbb{Q}_p)$, $U_p = H_p \cap GL_3(O_{K,p})$ and $U_p^* = \{h \in U_p \mid (h-1)T^{-1} \in M_3(O_{K,p})\}$. Then U_p^* is a normal subgroup of U_p and $[U_p : U_p^*]$ is equal to 1 if $p \nmid d_K$ and 2 if $p \mid d_K$. Note that the Iwasawa decomposition $H_p = N_p M_p U_p^*$ holds. We normalize the Haar measure dh on H_p by

$$\int_{H_{p}} f(h) dh = \int_{N_{p}} dn \int_{M_{p}} dm \int_{U_{p}^{*}} du^{*} f(nmu^{*}) \delta(m)^{-1},$$

where f is any integrable function on $H_{p'}$, $\delta(m) = d(mnm^{-1})/dn$ and the Haar measures dn, dm and du* on N_p , M_p and U_p^* are normalized so that $vol(N_p \cap U_p^*) = vol(M_p \cap U_p^*) = vol(U_p^*) = 1$. We normalize the Haar measure dh_{∞} on H_{∞} by

$$\int_{H_{\infty}} f(h_{\infty}) dh_{\infty} = \int_{D} f^{-}(Z) d\mu(Z),$$

$$\text{where } f^{\sim}(h_{\infty} < Z_{\theta} >) = \int\limits_{U_{\infty}} f(h_{\infty}u_{\infty}) \ du_{\infty} \ \text{ for } h_{\infty} \in H_{\infty} \ \text{ and } \ d\mu(Z) = (\frac{1}{\kappa}(z - \overline{z}) - \overline{z}) = (\frac{1}{\kappa}(z - \overline{z})) = (\frac{1}{\kappa}$$

 $|w|^2$)⁻³ dRe(z) dIm(z) dRe(w) dIm(w). The Haar measure dh on H_A is defined to be the product measures $\prod_{v \leq \infty} dh_v$. We set $U_{A_f}^* = \prod_{p < \infty} U_p^*$ and $U_A^* = U_\infty \cdot U_{A_f}^*$.

2. Automorphic forms

Let ℓ be a positive integer with $\ell \equiv 0 \pmod{|O_K^{\times}|}$. Let $S_{\ell}(U_A^*)$ be the space of holomorphic cusp forms on H of weight ℓ defined as follows:

$$S_{\ell}(U_{\mathbf{A}}^*) = \{ F : H_{\mathbf{Q}} \setminus H_{\mathbf{A}} / U_{\mathbf{A}_{\mathbf{f}}}^* \rightarrow \mathbf{C} \mid \mathbf{C} \in \mathcal{C} \}$$

- (i) $F(hu_{\infty}) = F(h) \cdot J_H(u_{\infty}, Z_{\theta})^{-\ell}$ for $u_{\infty} \in U_{\infty}$.
- (ii) The function $h_{\infty} \to F(h_{\infty}h_f) \cdot J_H(h_{\infty}, Z_{\theta})^{\ell}$ gives rise to a holomorphic function of $h_{\infty} < Z_{\theta} > \in D$ for any $h_f \in H_f$.
- (iii) F is bounded on H_A }.

It is known that $F \in S_{\ell}(U_{\mathbf{A}}^*)$ satisfies the cuspidal condition

$$\int_{\mathbf{N_Q} \setminus \mathbf{N_A}} \mathbf{F}(\mathbf{nh}) \, d\mathbf{n} = 0$$

for any $h \in H_A$. The Petersson inner product of $S_{\ell}(U_A^*)$ is defined by

$$\langle F, F' \rangle = \int_{H_{\mathbf{Q}} \backslash H_{\mathbf{A}}} F(h) \overline{F'(h)} dh$$
 $F, F' \in S_{\ell}(U_{\mathbf{A}}^*).$

3. Hecke algebra

For a rational prime p, let H_p be the algebra of compactly supported bi U_p^* invariant functions on H_p . The object of this section is to recall Satake's parametrization of $\operatorname{Hom}_{\mathbb{C}}(H_p,\mathbb{C})$ (cf. [7]).

First we consider the case where $\left(\frac{K/Q}{p}\right) \neq 1$ and hence K_p is a field. Put $K_p^1 = \{ \mu \in K_p^{\times} \mid \mu \mu^{\sigma} = 1 \}$ and $K_p^1(\kappa) = \{ \mu \in K_p^1 \mid \frac{\mu - 1}{\kappa} \in \mathcal{O}_{K,p} \}$. It is easy to see that

$$\phi_{\chi}(n \begin{bmatrix} t \\ \mu \\ (t^{\sigma})^{-1} \end{bmatrix} u^{*}) = \chi_{o}(\mu) \chi_{1}(t) |t| t^{\sigma}|_{p}$$

for $n \in N_p$, $t \in K_p^{\times}$, $\mu \in K_p^1$ and $u^* \in U_p^*$. Here $|\cdot|_p$ denotes the normalized valuation of \mathbb{Q}_p^{\times} .

We next consider the case $\left(\frac{K/Q}{p}\right) = 1$. Once and for all we fix an isomorphism of K_p onto $\mathbf{Q}_p \oplus \mathbf{Q}_p$. Then $H_p = \{h = (h_1, h_2) \in GL_3(\mathbf{Q}_p) \times GL_3(\mathbf{Q}_p) \mid h_2 \mid T_1 \mid h_1 = T_1 \}$, where T_1 is the first component of $T \in GL_3(K_p) = GL_3(\mathbf{Q}_p) \times GL_3(\mathbf{Q}_p)$. In what follows we identify H_p with $GL_3(\mathbf{Q}_p)$ via $h \to h_1$ and identify H_p with $H_p(GL_3(\mathbf{Q}_p), GL_3(\mathbf{Z}_p))$. For a triplet $\chi = (\chi_1, \chi_2, \chi_3)$ of unramified characters of \mathbf{Q}_p^{\times} , put

$$\phi_{\chi}(\begin{bmatrix} t_1 & * & * \\ & t_2 & * \\ & & t_3 \end{bmatrix} u) = \prod_{j=1}^{3} |t_j|_p^{2-j} \chi_j(t_j)$$

for $t_i \in \mathbf{Q}_p^{\times}$ (1\leq j\leq 3) and $u \in GL_3(\mathbf{Z}_p)$.

In both cases, we put

$$\chi^{\wedge}(\phi) = \int_{H_p} \phi_{\chi}(h) \ \phi(h^{-1}) \ dh \qquad \qquad \phi \in H_p.$$

Then $\phi \to \chi^{\wedge}(\phi)$ defines an algebra homomorphism of H_p to C. Moreover every algebra homomorphism of H_p to C is of the form χ^{\wedge} for some χ .

Let $\Lambda \in \text{Hom}_{\mathbb{C}}(H_p, \mathbb{C})$ and ω be an unramified character of K_p^{\times} . Choose χ so that $\Lambda = \chi^{\wedge}$. Denote by ω' the first component of ω under the identification

 $K_p^{\times} = Q_p^{\times} \times Q_p^{\times}$ if $\left(\frac{K/Q}{p}\right) = 1$. We define a local L-factor $L_p(\Lambda \otimes \omega; s)$ attached to Λ and ω to be

$$L_p(\Lambda \otimes \omega; s)^{-1}$$

$$= \begin{cases} (1-(\chi_1\omega')(p)p^{-s}) \; (1-(\chi_1\omega')^{-1}(p)p^{-s}) \; (1-(\chi_2\omega')(p)p^{-s}) \\ \times (1-(\chi_2\omega')^{-1}(p)p^{-s}) \; (1-(\chi_3\omega')(p)p^{-s}) \; (1-(\chi_3\omega')^{-1}(p)p^{-s}) & \text{if } \left(\frac{K/Q}{p}\right) = 1 \\ (1-(\chi_1\omega)(p)p^{-2s}) \; (1-(\chi_1\omega)^{-1}(p)p^{-2s}) \; (1-\omega(p)p^{-2s}) & \text{if } \left(\frac{K/Q}{p}\right) = -1 \\ (1-(\chi_1\omega)(\pi)p^{-s}) \; (1-(\chi_1\omega)^{-1}(\pi)p^{-s}) \; (1-\omega(\pi)\chi_0(\pi/\pi^\sigma)p^{-s}) & \text{if } \left(\frac{K/Q}{p}\right) = 0 \; . \end{cases}$$

4. Automorphic L-functions

Fix a Hecke character ω of $K^{\times} \setminus K_{\mathbf{A}}^{\times}$ that is unramified everywhere (namely ω is trivial on $\prod_{p < \infty} O_{K,p}^{\times}$) and satisfies $\omega(x_{\infty}) = \left(\frac{x_{\infty}}{|x_{\infty}|}\right)^{\ell}$ for $x_{\infty} \in K_{\infty}^{\times} = \mathbf{C}^{\times}$. Let $F \in S_{\ell}(U_{\mathbf{A}}^{*})$ be a Hecke eigenform corresponding to $\Lambda_{p} \in \operatorname{Hom}_{\mathbf{C}}(H_{p}, \mathbf{C})$ for each p. That is to say, we have $(F*\phi_{p})(h) := \int_{H_{p}} F(hx) \, \phi_{p}(x^{-1}) \, dx = \Lambda_{p}(\phi_{p}) \, F$ for every p and every $\phi_{p} \in H_{p}$ (cf. 3). The global L-function attached to F and ω is defined by $L(F\otimes\omega;s) = \prod_{p < \infty} L_{p}(\Lambda_{p}\otimes\omega_{p};s)$, where ω_{p} is the local component of ω at p. The gamma factor for $L(F\otimes\omega;s)$ is given by

$$L_{\infty}(F \otimes \omega; s) = (2\pi)^{-3s} |d_{K}|^{\frac{3}{2}s} \Gamma(s + \frac{\ell}{2}) \Gamma(s + \frac{\ell}{2} - 1)^{2}.$$

We put $\xi(F \otimes \omega; s) = L_{\infty}(F \otimes \omega; s) L(F \otimes \omega; s)$.

5. Functional equation

Let G = U(S) be the unitary group of $S = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ and embed G into H via $\iota_o(\begin{bmatrix} a & b \\ c & d \end{bmatrix}) = \begin{bmatrix} a & b \\ 1 \\ c & d \end{bmatrix}$. Then, for $F \in S_\ell(U_A^*)$, the pullback $\iota_o^*F(g) = F(\iota_o(g))$ by ι_o is

Theorem 1 Let $F \in S_{\ell}(U_A^*)$ be a Hecke eigenform. Assume that $\ell > 4$ and that $\iota_o^* F$ is not identically equal to zero. Then $\xi(F \otimes \omega; s)$ can be continued to an entire function of s on C and satisfies the functional equation

an automorphic form on G. Our first main result is as follows:

$$\xi(F\otimes\omega; s) = \xi(F\otimes\omega; 1-s).$$

6. Special values of automorphic L-functions

In this section, we assume that the class number of K is one. Note that the Hecke character ω is uniquely determined in this case. Let \overline{Q} be the algebraic closure of K in C. For $F \in S_{\ell}(U_A^*)$, we put $F^{dm}(Z) = F(h_Z) J_H(h_Z, Z_{\theta})^{\ell}$ where h_Z is any element of H_{∞} such that $h_Z < Z_{\theta} > = Z \in D$. Then F^{dm} is a holomorphic function on D that satisfies $F^{dm}(\gamma < Z >) = J_H(\gamma, Z)^{\ell} F^{dm}(Z)$ for $\gamma \in \Gamma^* = \{\gamma \in H_Z \mid (\gamma - 1)T^{-1} \in M_3(O_K)\}$. It follows that F^{dm} admits the Fourier-Jacobi expansion $F^{dm}(\begin{bmatrix} z \\ w \end{bmatrix}) = \sum_{r=1}^{\infty} g_r(w) e[rz]$, where we put $e[x] = \exp(2\pi i x)$ for $x \in C$. We say that $F^{dm}(Z) = \exp(2\pi i x)$ for $x \in C$ for $x \in C$

Theorem 2 Assume that the class number of K is one and that $\ell > 4$. Let $F \in S_{\ell}(U_A^*)$ be a \overline{Q} -rational Hecke eigenform with $\iota_0^* F \not\equiv 0$. Then there exists a \overline{Q} -rational Hecke eigenform $F' \in S_{\ell}(U_A^*)$ with the same eigenvalues as F such that

$$\xi(F\otimes\omega;\frac{\ell}{2}-1)=c\cdot\pi^{\frac{3}{2}\ell}\,L(\omega;\frac{\ell}{2}\,)< F',\,F'>$$

with a non-zero constant $c \in \overline{\mathbb{Q}}^{\times}$.

Remark. The set of the critical points (in the sense of [1]) of $\xi(F\otimes\omega;s)$ is $\{k\mid 2-\frac{\ell}{2}\leq k\leq \frac{\ell}{2}-1\}.$

In view of Garrett's results on Petersson inner products of arithmetic Siegel modular forms ([2]), the following conjecture seems to be plausible.

Conjecture Let $F, F' \in S_{\ell}(U_A^*)$ be \overline{Q} -rational Hecke eigenforms with the same Hecke eigenvalues. Then we have $\frac{\langle F, F \rangle}{\langle F', F' \rangle} \in \overline{Q}$.

References

- [1] P. Deligne: Valeurs de fonctions L et périodes d'intégrales. In: Proc. Symp. Pure Math., **33**, Part II 313-346. A.M.S. 1979
- [2] P. B. Garrett: On the arithmetic of Siegel-Hilbert cusp forms: Petersson inner products and Fourier coefficients. Invent. Math. **107**, 453-481 (1992)
- [3] S. Gelbart and I. Piatetski-Shapiro: Automorphic forms and L-functions for the unitary groups. In: Lie Group Representations II, Lecture Notes in Math. **1041**, 141-184. Springer-Verlag 1984
- [4] S. Gelbart and J. D. Rogawski: L-functions and Fourier-Jacobi coefficients for the unitary group U(3). Invent. Math. 105, 445-472 (1991)
- [5] S. Kudla: On certain Euler products for SU(2,1). Compositio Math. **42**, 321-344 (1981)
- [6] A. Murase and T. Sugano: Shintani functions and its application to automorphic L-functions on classical groups. I. The case of orthogonal groups. MPI preprint series (1991)
- [7] I. Satake: Theory of spherical functions on reductive algebraic groups over padic fields. I.H.E.S. Publ. Math. 18, 5-69 (1963)
- [8] G. Shimura: The arithmetic of automorphic forms with respect to a unitary group. Ann. of Math. 107, 569-605 (1978)
- [9] T. Shintani: On automorphic forms on unitary groups of order 3. preprint (1979)