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Determinant representation, Jacobi sum and
de Rham discriminant

TAKESHI SAITO

Department of Mathematical Sciences, University of Tokyo.
Tokyo 113 Japan

We give a description of the Galois action on the determinant of co-
homologies of Z-adic sheaves on varieties in terms of Jacobi sum Hecke
characters and of the de Rham discriminant for general base fields. Let
k be an arbitrary base field, U be a smooth scheme over k and F be
a smooth £¢-adic sheaf for £ # chk. We consider one-dimensional ¢-adic
representation

det RT(Uz, F) = (X) det Hi(Uz, F)®D"

of Gal(k*<?/k).

Results. 1. Constant coefficient.

First we consider the constant coefficient case. If we assume the res-
olution of singularity, the problem is reduced to the proper case. Let X
be a proper smooth variety over a field k of dimension n and x be the
Euler characteristic of X;. Then it follows immediately from Poincare
duality that

n odd,

n even.

1
det RT'(X3, Q) = Q((—%nx) ® { ’

for some character « of order at most 2 of Gal(k*P/k).

THEOREM 1. Assume chk # 2, X is projective and n = 2m = dim X is
even. Let §x € k*/(k*)? be the discriminant of the cup product on the
de Rham cohomology H}p(X/k) which is a non-degenerate symmetric
bilinear form and let b~ =Y, dim Hjp(X/k). Then the character &

corresponds to the quadratic extension k(/(—1)™x+b~§x)/k.

Remark. When k is finite and n = 2m even, Tate conjecture implies
that k., is trivial if and only if the rank of CH™(X s )n/CH™( Xy ) is
even. Here the suffix A denotes modulo the homological equivalence and
k' is the quadratic extension of k. In particular if « is not trivial, there
is an algebraic cycle of X3 not defined over k.

2. General coefficient.

We proceed to a general coefficient. Let k,U and F be as above.
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THEOREM 2. We assume

(1) There is a projective and smooth variety X over k containing U
such that the complement D = X — U is a divisor with simple
normal classings.

(2) The ramification of F along D is tame.

(3) The sheaf F is defined on a model of U defined over a ring of
finite type over Z.

Then we have
det RT(Ug, F) ® det RT (Ug, Q)® ™" 7 = ¢k y/i(det F) © I3 5

as one-dimensional £-adic representations of Gal(k®®/k).

The precise definition of the right hand side will be given later. A
rough idea is as follows. The first term is the pull-back of the deter-
minant character det F of m1(U)*>tame to Gal(k®®/k) by the pairing
with the relative canonical class cx y/x € CHo(X, D). The second term
Jp,r denotes a Jacobi sum Hecke character, which is determined by the
ramification datum of p along D.

COROLLARY. Ifk is an algebraic number field, the ¢-adic representation
Jp,F is defined by an algebraic Hecke character.

Theorem 1 solves the conjecture (3.11) of [O] affirmatively. By The-
orem 2 together with a formula for period integral (joint work with
T.Terasoma), we verify a part of a conjecture of Deligne [D2] Conjecture
8.1 (iii): A motive of rank 1 is defined by an algebraic Hecke character,
in certain cases.

Definitions. 1. Canonical cycle.

First, we define the relative Chow group CHy(X, D) of dimension
0 and the relative canonical cycle cx y/x € CHo(X,D). Let X be a
smooth scheme over a field k£ of dimension n and D = U;¢rD; be a divisor
with simple normal crossings. Let K,,(X) denotes the sheaf of Quillen’s
K-theory on Xz,,.. Namely the Zariski sheafification of the presheaf
U — Kp(U). Let K,(X,D) be the complex [Kn(X) — @:Kn(Dy)].
Here K,(X) is put on degree 0 and K,(D;) denotes their direct image
on X. We call the hypercohomology H™(X, K,.(X, D)) the relative Chow ¢

group of dimension 0 and write
CHy(X,D)= H"(X,K.(X, D)).
We define the relative canonical class

CX,U/k = (—1)"cn(9§</k(log D),res) € CHy(X, D).



Let V be the covariant vector bundle associated to the locally free Ox-
module Q% / x(log D) of rank n. For each irreducible component D;, let

A; = r—l(l) Here r; : V|p, — AL is induced by the Poincare residue
res; : X y(og D)|p;, — Op, and 1 C Al is the 1-section. Let Kn.(V,A)
be the complex [Kn(V) = @®:Kn(A;)] defined similarly as above and
{0} C V be the zero section. Then we have

Hipy (ViKa(V, A)) = Hioy(V,Ka(V)) = HO(X, Z)

l
HMV,Ka(V,A)) ~ HY(X,K(X, D)) = CHo(X, D)

by the purity and homotopy property of K-cohomology. The relative top
chern class cn(Q}/k(log D),res) € CHo(X, D) is defined as the image
of 1€ HY(X,Z).

Next we consider the canonical pairing
CHO(Xa D) X Gal(kab/k) — M (U)ab,tame'

For its definition require an adelic description of the group CHy(X, D),
we only give a definition of a quotient

CHo(X) x Gal(k*®/k) — m(X)?P.

It is characterized by the following property. For a closed point z € X,
the pairing with the class [z] coincides with the inseparable degree times
the Galois transfer followed by 7., for i, :z — X

Gal(k*/k) "M Gal(n(2)® () 22 ma (X,
The required reciprocity law follows from the fact that P! is simply
connected

Remark. If k is finite, the pairing CHo(X) x Z — 7¢%(X) coincides
with the reciprocity map of higher dimensional unramified class field
theory.

For a smooth ¢-adic sheaf F on U tamely ramified along D, the deter-
minant det F determines an £-adic character of m;(U )"‘b’tame. Therefore
by pulling it back by the pairing with cx y/x, we obtain the first term
% vk (det F).

2. Jacobi sum.

We call a Jacobi datum on k a triple (T, x,n) as follows

(1) T = (k:)ies is a finite family of finite separable extensions of k.

(2) x = (xi)ier is a family of characters x; : pa; (ki) of the group of
di-th roots of unity for some integer d; invertible in k such that
pa, ~2/d; on k;.

(3) n = (n;)ier is a family of integers.
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satisfying the condition

I Mee(xa)™ = 1.

el

Here the norm Ny, /x(xi) : ¢ € fra; (k) = xi(Nk,/x(¢)) is the product
of the conjugates. It is easy to see that each Ny, x(x:) factors some pg
such that d;|d; and pg; =~ Z/d; on S. The product is taken as a character
of pqx for some common multiple of d}’s which is invertible on k.

If k is finite of order ¢, we define the Jacobi sum j, = j7,4,» for each
Jacobi datum (7, x,n) on k by

Ix = H(Tk;(iiﬂﬁo o Trr, /x))™.

el

Here if k; is of order ¢;, ¥; is a multiplicative character of k; defined by
xi(a) = xi(al%~D/%) for a € kX, 1y is a non-trivial additive character
of k and 7 denotes the Gauss sum Tg(X,¥) = — Y .epx X (a)¥(a).
The Jacobi sum j, is independent of choice of ¥, by the condition
[Tier Niise(xi)™ = 1. In fact the product of the restrictions []; Xijlkx
coincides with Ny, /x(x:) regarded as a character of p,_;(k) = k*.

To each Jacobi datum (T, x,n) on a field k, we define an £-adic repre-
sentation J, of Gal(k**?/k) as follows. A Jacobi datum on k is defined on
a normal ring A of finite type over Z. The representation Jy, is the pull-
back of one of m;(Spec A)2P characterized by the following condition:
For each closed point s of Spec A, the action of the geometric Frobenius
Fry at s is given by the multiplication by the Jacobi sum Jy(s) defined
by the reduction of the Jacobi datum (T, x,n) at s. Uniqueness follows
from the Cebotarev density and the existence is essentially shown in
SGA 41.

Let U and F be as in Theorem 1 and we define a Jacobi datum on k as-
sociated to the ramification of F along D. Let k; jer be the constant field
of irreducible components D; of D. Let p be the £-adic representation
of m1(U, z)**™e corresponding to F. The kernel (U, z)**™¢ — n1(X, T)
is the normal subgroup topologically generated by the local monodromy ¢
groups 2'(1)p, along D;’s where Z'(1) = lim pg with d invertible in k.

Let p; be the restriction of p to 2'(1)p, ~ Z'(1)x,. By the assumption of
the existence of a model of finite type over Z and by the monodromy the-
orem of Grothendieck, the restrictions p;’s are quasi-unipotent. Namely
the action of Z'(1) on the semi-simplification p?* factors a finite quotient.
Hence we can decompose it in the form pJ® ~ €DjeI; Try,; /k:(Xij)- Here



k;; is the finite extension of k; obtained by adjoining the d;;-th roots
of unity, x;; is a character of ug,; (k;;) of order d;; and Tr denotes the

direct sum of the conjugates. For ¢ € I, let D} = D; — Uj# D; and ¢; '

be the Euler number of D ®y, k;. Thus we obtain a triple (T, x,n) by
putting the index set I = [[; I;, T = (ki;), x = (xij) and n = (n;;) with
ni; = ¢; for ¢ € I and j € I;. The second term Jp r is defined as the
¢-adic representation determind by the Jacobi datum (7, x,n).

Outline of proof.

For the detail of the proof, we refer to [S1] and [S2]. We give an
outline of the proof of theorems. By a standard argument using Ceb-
otarev density and specialization, we may assume k is finite. Then the
determinant of the Frobenius is the constant of the functional equation
of the L-function. We apply the product formula of Deligne-Laumon
[D1],{L] for the constant by taking a Lefshetz pencil [SGA7]. For theo-
rem 1, we show that the local terms are the Hessians at the singularities
of the pencil and relate them to the de Rham discriminant using the
Picard-Lefshetz formula (loc.cit).
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