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Analogy between Drinfeld modules and p-modules
I AE MO #—8 (Yuichiro Taguchi)

Introduction

The Trinity has long been an attractive motif in the creation of art, especially
in the Western world. One of the most marvelous constructions which employ
this principle extensively is perhaps “Messe in h-moll” by J. S. Bach [2]. More
generally, one has various kinds of trinities, such as E¥3E, KHIA, FiEE, F& -
R - ¢ ([0]), etc., which are well worth our contemplation. Recently, there has
emerged a new trinity consisting of three D’s: Drinfeld modules, D-modules, and
Dieudonné modules.

The formal analogy of Drinfeld modules to D-modules has already been realized
by Drinfeld since the very beginnig of the history of Drinfeld modules [5], and
‘was explained in [6] and [11]. The relation of Drinfeld modules and Dieudonné
modules has been formulated, for example, by Drinfeld ([7] etc.) as the relation of
Drinfeld modules and shtukas (or F'-sheaves), and by Anderson ([1]) as the relation
of abelian ?-modules and t-motives. Finally, Dieudonné modules are originally
the positive characteristic analogue of the Lie algebras of Lie groups — the Galois
groups of D-modules. Furthermore, over a more general base scheme than a perfect
field, Dieudonné modules themselves must be furnished with connections.

Number theory is the most interesting when differentials appear. How cannot
our Trinity be in Gloria? In this note, we concentrate on ¢-modules, which arise
naturally in the theory of Drinfeld modules and have a similar formalism to D-
modules — similarity summarized as follows:

Drinfeld modules D-modules
¢t =ao+aoc+---+a,o" P=ao+a;0+---+a,0"
a; € K = F(t) a; € K =C(t)
o:z+— z7 0= %
Klo] = Enqu_lineu(G,,/K) K[8] = Derc_jinear(K)
oz =2z (z € K) 0z =20+ % (z € K)
p-module structures ¢ : D9 — D | connections V:D — D® Q}(/C
Galois representations local systems of horizontal sections
Galois extensions by ¢-modules Picard-Vessiot extensions of differential fields
solvable extensions Liouville extensions
(Artin-Schreier, Kummer) ([ f, exp(f f))
tame ramification regular singularity
wild ramification irregular singularity
Y&/ G RPN
U Sato’s theory
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In §1, we give a generality on ¢-moduels. §2 is devoted to an exposition of
results on regular singularity of ¢-modules over a local field.

For a field K, let K®°P denote a fixed separable closure of K, and Gk the
absolute Galois group Gal(K*?/K).

1. p-modules and Galois representations

Let (S,0) be a couple of a commutative ring S and an endomorphism o of S;
A A%,

DEFINITION (1.1). A @-module (D, ) (or simply, D) over (S,o) (or simply, S)
is an S-module which is endowed with a o-semi-linear map ¢ : D — D (i.e. ¢ is
additive and ¢(Az) = A%¢(z) forall A € § and =z € D). A morphism of p-modules
over (S,0) is an S-module homomorphism which commutes with the ¢’s.

The o-semi-linear map ¢ can be viewed as an S-linear map ¢ : D{°) — D,
where D(9) is the base extension of D by ¢ : § — S.

A p-module D is said to be étale if D is of finite type over S and ¢ : D{°) = D
is an isomorphism.

@ -modules arise, for example, as follows. Let R be an F,-algebra endowed with
an F,-algebra homomorphism a : Fy[[r]] — R, where = is an indeterminate. Let S
be the formal power series ring R[[r]], with an endomorphism o : 3 riwt s Y rint.
Then the w-adic v-sheaf £g associated with a w-divisible group G over R ([12],
§6) can be regarded as a ¢-module over S, where the map ¢ is induced by the
Frobenius morphism of G. This kind of p-modules £; are free over S if R is
local, and ¢ acts on dets Eg by multiplication by (power of (7 — a(w))) X (unit).

In the following, we assume all ¢ -modules are étale over a field S = K containing
the finite field F; of ¢ elements, and o is the g-th power Frobenius. Thus D is
a finite dimensional K -vector space, whose dimension is called the rank of D, and
D) is written as D(9),

We define the tensor product (D,p) = (D1,¢1) ® (D2,92) of two p-modules
(D1,%¥1) and (D2,p2) by setting D := D; ®x D, and defining ¢ : D — D to be
the map ¢; ® p,. With this tensor product, Fx becomes a ®-category.

For any ¢-module (D, ) over K and any field extension L/K , we make Dy, :=
L ®kx D a p-module over L by defining ¢ : D — Dy to be the map

Za@zHZaqg)(p(:c).

If the extension is Galois, then the Galois group acts on Dy, via the first factor.
For a p-module (D, ¢) over K, put

V(D) := (K**® @k D)%,

the set of fixed points of Dgser by . It is clear that V(D) is an IFq -vector space
which is stable under the action of Gx on Dgse». We have thus an F,-linear
representation V(D) of Gk.
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Conversely, if V is a finite dimensional F,-linear representation of Gk, put
D(V):= (K** g, V)°F,

the set of points of K*P @y, V which are fixed by the diagonal action of Gx.
Clearly D(V) is a K-vector space, which we make a ¢-module by defining ¢ :
D(V) — D(V) to be the map

Za@zHZaq@)z.

The following lemma holds in fact in much greater generality; both the base
scheme Spec K and the coefficient F, can be generalized (cf. [13], §0; [8], §A.1;
[7], Proposition 2.1; [12], Proposition (1.7)).

LEMMA (1.2). Let Fx (resp. Gx ) be the category of ¢ -modules over K (resp.
the category of finite dimensional Fy-linear representaions of Gk ). Then by the
construction ezplained above, we have a ® -equivalence of ®-categories V : Fx —
Gk, with a quasi-inverse D : G — Fi .

This correspondence is the most primitive version of the ¢-module analogue of
the correspondence of D-modules and local systems of horizontal sections.

In what follows, n denotes the rank of the ¢ -module under consideration.

A vector z of a p-module D is said to be cyclic if the n vectors z,p(z),--- ,p" (=)
form a K -base of D. As in Lemme 1.3, Chapitre II of [3], we have

LEMMA (1.3). Ifthe base field K is infinite, there ezists a cyclic vector for (D, ).

From now on, we assume the ¢-module (D,¢) has a cyclic vector z. With z
is associated a polynomial P,(X) € K[X] as follows: if

apz + arp(z) +--- + a.n__1<p"_1(z) +o™(z) =0 with a; € K,
then put
Po(X):i= aoX + a1 X9+ +an1 X9 + X7

Thus we have recovered a presentation of “classical” appearance. This polynomial
is determined by z uniquely. Multiplying z by a scalar a € K* yields:

Pio(X) = a¥ P(a7'X)
= aoaqn_lX + alaq“"qu +-o 4 an._laq"_q"_lX‘l"-1 + X9,
We a.lso define §
V(D) := {a € K*?; P,(a) = 0}.

This is clearly an Fg-vector space on which Gg acts.

Recall that we have a canonical inclusion D C Dgser (by definition) and a
canonical identification Dgser = K*P @, V(D) (by Lemma (1.2)).

p
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LEMMA (1.4). Suppose that z is ezpressed by a column vector *(zo, - ,Zn-1),
z; € K*P, with respect to an Fgy-base (e;)o<i<n—1 of V(D). Then the n elements
Zoy -+ yTnoy form an F,-base of Vo(D), so V,(D) is an n-dimensional F,-linear
representation of Gg. The two representations of G, V(D) and V.(D), are
contragredient to each other. . '

All this explained above reminds us of the theory of Picard-Vessiot on differen-
tial Galois extensions. A formulation & la Deligne ([4], §9) of our theory will be as
follows: The functor w : Fx — Vect(K) which associates with a ¢ -module over K
its underlying K -vector space is a fibre functor. So the category Fx is Tannakian.
For a ¢-module X, we set XV := Homg(X, K), which we make a ¢-module by
definig ¥ : XV(9) — XV to be the map f — fop~!. Note that XV(%) is canon-
ically isomorphic to Homg(X(?), K) and that ¢ : X(9 — X is an isomorphism
since we are assuming X is étale. Let (X)g denote the full subcategory of Fx
whose objects are subquotients of sums of X®'® XV®™ . This is again a Tannakian
category.

Suppose that w, : (X)g — Vect(F,) is a fibre functor (e.g. wo(D) = V(D) =
(K*P @k D)?). Put G := Aut®(w,) C GL,(wo(X)) (i-e. intuitively, the alge-
braic subgroup of automorphisms of the F,-vector space w,(X) which commute
with p-module endomorphisms of X), Gx := G ®r, K, and P the G -torsor
Isom¥(w, ®r, K, w|(x)g)- P is a K-subscheme of the GL,(wo(X))-torsor
Isomg (wo(X) @y, K, X). (It is the locus where “the @-module structure is pre-
served”.) The functor Rep(G) — (X)g; V — (V ®g, K)£ is an equivalence of
®-categories (cf. Lemma (1.2)). Here the ¢-module structure of (V ®p, K)E is
induced by the geometric (g-th power) Frobenius P — P9 over K.

Now we take wo(D) to be V(D) as our fibre functor. Then G(F,) is the bi-
commutant of the image of Gk in GL,(V(X)), and (V ®g, K)2 = D(V). If L
is a subfield of K*P such that G acts trivially on V(X)) (i.e. the p-module X
is trivialized over L) then for any object D of (X)g, one has an isomorphism of
p-modules over L:

(D ®k L)* ®r, L —=5D ®x L.
This gives an L-valued point of P:
Spec L — Isom%(w, ®y, K, w|(xye)-

As in [4], §9, we have

PROPOSITION (1.5). The K -scheme P is étale and connected. The subfield L of
K*P which corresponds to the kernel of the action of Gx on V(X)) is the function
field of P.



194

2. Regular singularity of ¢-modules

In this section, we present some results on regular singularity of ¢-modules, in
-analogy with the classical theory of ordinary differential equations (see e.g. [10],
[3], [9])- Let K be a complete discrete valuation field containing Fg, with valuation

-v ‘and residue field k. Let p be the characteristic of K.

DEFINITION (2.1). A polynomial f(X) = ae¢X + a1 X? +--- + an X?" € K[X] is
said to be regular (at v) if ap # 0, ap, # 0, and

" —p'
(2.1.1) v(a;) —v(a,) > o1 (v(ao) — v(an))

forallz =1, ---, n—1.

A regular polynomial f(X) is separable because f'(X) = ag # 0. The con-
dition (2.1.1) is saying that the Newton polygon of f(X) is a straight line. This
is equivalent to that all non-zero roots of f(X) have the same valuation (v(ao) —
o(an) /(o — 1),

Regularity of f(X) is invariant by multiplying f(X) by an element of K*. If
an is a unit (i.e. v(a,) = 0), then (2.1.1) is simply
p"—p'
pr—1

n

(2.1.2) v(a;) >

v(ag)-

Regularity of f(X) is invariant also under the change of variable X — aX with
a € K*. ‘

For any separable polynomial f(X) € K|[X], we denote by K; the minimal
splitting field of f contained in K*°P.

PROPOSITION (2.2). Let f be a regular polynomial over K. Then the extension
K¢/K is tamely ramified at v.

We shall interpret the regularity (in the sense of (2.1)) of the polynomial P, of
§1 in terms of lattices, Galois actions, and connections. For any algebraic extension
L/K , the valuation v of K extend uniquely to L, which are again denoted v. We
denote by Op the valuation ring of L.

Let (D,¢) be a p-module over K. An Og-lattice D° of D is said to be -
stable if p(D°®) C D° and Ok - ¢(D°) = D° (i.e. if (D, ¢) is an étale p-module
over Og). The existence of a ¢p-stable Ok -lattice means that V(D) is “finite
étale” over Ok ;

LEMMA (2.3). Let (D,¢) be a p-module over K.

(i) The following conditions are equivalent:
(1) There ezists a p-stable Ok -lattice D° in D.
(2) The representation of Gk on V(D) is unramified.
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(ii) If Gx acts on V(D) trivially, then the @ -stable Ok -lattice is the Ok -submodule
of D spanned by V(D).

(iii) There ezists a finite separable extension L/K such that Dy has a ¢-stable
Oy -lattice.

DEFINITION (2.4). A ¢-module (D, ) over K is said to have regular singularity
(at v) if it is the direct sum of yp-submodules (D;, ;) each of which has a cyclic
vector z; such that the associated polynomial P,; is regular in the sense of (2.1).

When the residue field k of K is separably closed, the D; in the above definition
can be taken to be irreducible if once (D,¢) has regular singularity.

THEOREM (2.5). Assume the residue field k of K is separably closed. Let (D, )
be a ¢ -module over K. Then the following conditions are equivalent:

(1) The ¢ -module (D,y) is regular.
(2) There ezists a finite tamely ramified eztension L/K such that Dy has a
@ -stable O -lattice DY .

(3) The Galois representation V(D) is tamely ramified.

Now we turn our attention to the connection associated with a ¢-module D.
Recall (e.g. [8], A.2.2) that there exists on D a unique connection V : D —
DRk Q}{/k for which ¢ : D — D is horizontal; Vop = (¢ ®id) o V. If the Galois
representation V(D) is trivial, then MV (:= Ker(V)) = kQr, V(D). Soif z € D is
expressed by a column vector ¥(zg, -+ ,Z,—1), z; € K, with respect to an F,-base

of V(D), then we have
V(z) = Y(dzo, * ,dTn-1).
The connection may also be regarded as a K -linear map
V : Derg(K) — End(D)

such that, for all 9 € Dérk(K) o~ HomK(Q}{/k,K), one has V(8) = (1@ d)o V.

Let || - || be the norm on Dgsep for which the unit ball is the ¢-stable Ogsep -
lattice -Dg(sep = OKsep . V(D).

THEOREM (2.6). Assume the residue field k of K is éeparably closed. Let t be a
uniformizer of K. Then the following conditions are equivalent:

(1) The w-module D has regular singularity;
(2) For any = € D, we have ||V(t5£)(z)|| < ||=||

The condition (2) may be rephrased that the norm of V,
VI = sup,ep_o IV(tL)(z)||/]lz||, equals 1 (We have always ||V| > 1). Also,
it may be rephrased that there exists in D a V(ta‘% -stable Og -lattice whichis a
“proper ball” with respect to the norm || - ||.
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