
177

The algorithms for deciding some properties of
finite convergent string rewriting systems

Guo Mingchao, Li Lian
Lanzhou University, Gansu, China

Abstract. The following problems are decidable in $O(mn^{2})$ time for con-
vergent system R on alphabet A , where $m=|A|,$ n is the length of $R,$ $i.e.$,
the sum of all length of words appeared in R .
(1) Is the monoid presented by R finite ?
(2) How many elements in the monoid presented by R if it is finite ?

and a sofyware is given to decide these properties and some other properties
for such monoid.

1. String rewriting systems

Let A be an alphabet, R a subset of $A^{*}\cross A^{*}$ which is called the set pf string rewriting
rules. Elements in R has the the form of (x, y) . Let $>be$ an order which satisfies that if
$x>y$, then for arbitrary strings $w,$ $z\in R,$ $wxz>wyz$. A string rewriting system RS is a
double (A, R) where A is an alphabet and R is a set of rewriting rules. An oriented RS

is triple $(A, R, >)$, for each rule (x, y) in R , we have $x>y$ and denote as $xarrow y$.
Some reduction relation on A^{*} is defined as follows:

(a) $w_{1}arrow w_{2}$ ffl there exists $z_{1},$ $z_{2},$ $(x, y)\in R$, such that $w_{1}=z_{1}xz_{2},$ $w_{2}=z_{1}yz_{2}$.

$(b)arrow^{*}$ is the reflexive $transiti\dot{v}e$ closure $ofarrow$.
$(c)rightarrow^{*}$ is the symmetric closure $ofarrow^{*}$.

A word w is called irreducible if there is no word z such that $warrow z$.
An ORS is Noetherian if there is no infinite chain $w_{1}arrow w_{2}arrow\cdotsarrow w_{n}arrow\cdots$.
An ORS is confluent iff for arbitrary words $w_{1},$ $w_{2},$ $w_{1}rightarrow*w_{2}$, there exists a ward z

such that $rv_{1}arrow^{*}z,$ $w_{2}arrow^{*}z$.
An ORS is convergent iff it is Noetherian and confluent.
G is a generating relation of a monoid on alphabet A . Let ρ be the minimum congru-

ence containing G , then
$M\cong A^{*}/\rho$.

$p=rightarrow^{*}$ when G is reviewed as a set of rules, so we call $A^{*}/rightarrow^{*}$ is the monoid defined by
ORS . When ORS is convergent, the following properties are decidable [2].

数理解析研究所講究録
第 848巻 1993年 177-187

178

(1) Is the monoid presented by R finite ?

(2) How many elements are there the monoid presented by R if it is finite ?

(3) How is the multiplication table of the monoid presented by R created ?

(4) Is it a trivial monoid ?

(5) Is it a group ?

(6) Is it commutative ?

(7) Is it a free monoid ?

Whether an ORS is convergent is decidable [2]. If the ORS is not convergent, we
can use the Knuth-Bendix convergent procedure to get an equivalent one in most case
(But there indeed exists some ORS that has no co.nvergent system). In the following
discussion, we always suppose that ORS is convergent. About the properties of (4), (5),
(6) and (7), F. Otto has given some algorithms in polynomial time $[2, 4]$. Now we turn
our attention to the properties of (1), (2) and (3).

2. The decision of Properties (1), (2) and (3).

The number of equivalent classes is the number of elements in monoid when the ORS is
convergent. And every class has exactly one irreducible element. The set of all irreducible
words $IRR(R)$ is a regular language which can be accepted by a finite state automaton.
The cardinal of $IRR(R)$ is equal to get the cardinal of monoid defined by the rewriting
system. So we can count the cardinal to get the cardinal of the monoid. Some details are
as follows.

Denote suffix$(x):=\{v|x=uv, u, v\in A^{*}\}$

$dom(R):=\{x|(x, y)\in R\}$

prefix$(R):=\{x|l=xy, y\in A^{+}, l\in dom(R)\}$.

We construct the automaton FSA recognizing $IRR(R)$. The states of FSA are those
words which are proper prefixs of the left-side of the rules inRwheree is the start state.
All the states are final states. We denote the state set as F . The transitive function δ is
constructed by following way.

$\delta(w, a)=\{\begin{array}{l}undefi nedsuffi x(wa)\cap dom(R)\neq\emptyset ss\in L=\{x|x\in suffi x(wa)\bigcap_{>}prefi x(R)\}andy\in L-\{s\},|s||y|\end{array}$

Lemma 1: $IRR(R)=L(FSA)[5]$.

179

Theorem 2: Let $FSA(Q, A, \delta, e, F)$ be the automaton on alphabet A constructed as
above, Then for the state $w\in F$ and $a\in A$, to determine the next state $\delta(w, a)$ needs
$O(n)$ time, where $n=|R|$.

Proof: The key to determine the next state $\delta(w, a)$ is to find the suffix of wa such
that wa is exactly a prefix of the left-side of a rule in R .

Suppose the word u is the left-side of a rule, $S(u)=$ {The longest word in prefix of
u and suffix of wa }; obviously, $S(u)\neq\emptyset$.

If u itself is a suffix of wa , then $\delta(w, a)$ is undefined, otherwise for arbitrary u in the
left-side of the rule, the problem to find the longest word $S(u)$ is a substring recognizing
problem [1]. It takes $O(|u|)$ time. When u runs all the left of the rule in R , it needs $O(n)$

time.

Theorem 3: FSA as above can be constructed in $O(mn^{2})$ time, where $m=|A|$,
$n=|R|$.

Proof: The automaton has been constructed if we have the transitive function. For
every state w and $a\in A$, the next state $\delta(w, a)$ can be determined in $O(n)$ steps. The
number of states is less than n , so for all states and some $a\in A$, to determine the next
states needs $O(n^{2})$ time. When a runs through A , it takes $O(mn^{2})$.

Theorem 4: The monoid presented by R is infinite iff the automaton FSA recognizing
$IRR(R)$ has a circle.

Proof: If the monoid is infinite, then there is an element $w\in IRR(R),$ $w|>n$, where
n is the number of the states of FSA. For FSA has only n states, so w must pass some
state twice at least, $i.e.,$ FSA contains a circle. Conversely, if FSA has a circle, there
exist states $q,$ r and a word $w=xyz$, which satisfies

$\delta(e, x)=q$, $\delta(q, y)=q$, $\delta(q, z)=r$.

Then FSA accepts all the words like $xy^{k}z$. The monoid presented by R is infinite.

Algorithm 5:
INPUT: A finite automaton recognizing $IRR(R)$ on alphabet A .

begin s_{1} $:=\{e\}$;
for $i:=1$ to n do

begin S_{2} $:=\emptyset$;
S_{2}

$:= \bigcup_{p\in S_{1},a\in A}\delta(p, a)$
;

S_{1} $:=S_{2}$;
end;

If $S_{2}=\emptyset$ then OUTPUT: The monoid is finite
else OUTPUT : The monoid is infinite

end.

180

Theorem 6: The algorithm above needs $O(mn)$ time to determine the existence of
circle, where $m=|R|$ and n is the number of states in automaton FSA.

Proof: clearly.

If the monoid presented by R is finite, then FSA recognizing $IRR(R)$ has no circle,
denote the number of words accepted by state q as $N(q)$, obviously, $N(e)=1$.

$R(q)=\{p|\exists a\in A : \delta(p, a)=q\}$.
$T(q,p)=|\{a\in A|\delta(p, a)=q\}|$.
Theorem 7: Let $FSA(Q, A, \delta, e, F)$ be a automaton recognizing $IRR(R)$ which has no

circle. Then it satisfies

(a) For each q

$N(q)=\{\begin{array}{l}1\sum_{p\in R(q)}N(p)T(p,q)\end{array}$
$q=eq\neq e$

(b) $|IRR(R)|= \sum_{q\in F}N(q)$

Proof: (a). denote $L(q)$ as the path length from start state to the state q . Now let us
induce on $L(q)$.

$L(q)=0$, then q is start state. It is obviously that $N(q)=1$.
If $L(q)<t$, the result is true. Let $L(q)=t$, every path from e to q must pass uniquely

a state p in $R(q)$, by the induction, the number of word from e to p is $N(p)$. So the
number of words passing p from e to q is $N(p)T(p, q),$ $i.e.,$

$N(q)= \sum_{p\in R(q)}N(p)T(p, q)$

(b) is clear.

Now we give the algorithm for calculating the order of the monoid.

Algorithm 8:
INPUT: Automaton $FSA(Q, A, \delta, e, F)$ accepting $IRR(R)$.

begin U $:=\{e\}$;
$N\{e\}$ $:=1$;
S $:=$ { $q|\exists p\in U$, a E A : $\delta(p,$ $a)=q$};
While $S\neq\emptyset$ do

begin $T:=\emptyset$;
for each $q\in S$ do

if $R(q)\subseteq U$ then
begin U $:=U\cup\{q\}$;

$N(q)$
$:= \sum_{p\in R(q)}N(p)T(p, q)$

;

181

$T:=T\cup\{q\}$;
end;

S $:=T$;
end;

end.

OUTPUT : order: $= \sum_{q\in F}N(q)$
.

Theorem 9: The algorithm 8 takes $O(mn^{2})$ time where $m=|A|,$ n is the number of
states of the automaton.

For constructing the multiplication table from a monoid, we can calculate the irre-
ducible words of monoid at first. Denote $W(p)$ $:=\{x|\delta(e, x);=p\}$. The algorithm is
similar with algorithm 8 and given as follows:

Algorithm 10:
INPUT: A automaton $FSA(Q, A, \delta, e, F)$ recognizing $IRR(R)$,

where $IRR(R)$ is finite.

beginW(e): $=\{1\}$;
U $:=\{e\}$;
S $:=\{q|\exists p\in U, a\in A : \delta(p, a)=q\}$;
While $S\neq\emptyset$ do

begin $T:=\emptyset$;
for each $p\in S$ do

if $R(p)\subseteq U$ then
begin $U:=U\cup\{p\}$;

$W(p):=$ \cup $\{xa|xEW(q), \delta(q, a)=p\}$;
$p\in R(p),a\in A$

T $:=T\cup\{p\}$;
end;
S $:=T$;

end;
end.

OUTPUT: $IRR(R):= \bigcup_{p\in F}W(p)$.

Theorem 11: If monoid presented by R is finite, we can calculating $IRR(R)$ in poly-
nomial $O(mn^{2}t)$ time, where $m=|a|,$ n is the number of states of $FSA,$ $t=|IRR(R)|$.

If the order of elements is t and the length of longest element is n , to calculate the
irreducible words for all production of pairwise elements needs $O(n)$ time. For there is a
linear time algorithm to get the irreducible word from a given word with length $2n[2]$.
So we can create the multiplication table in $O(nt^{2})$ time.

182

If the order of the monoid to large, or it is infinite, to construct yhe whole multiplica-
tion table is impossible. But we can create a finite block of the table when the concrete
elements is given. The following algorithm give finite elenents which lengths are less than
K in a monoid.

Algorithm 12:
INPUT: $FSA(Q, A, \delta, e, F)$ recognizing $IRR(R)$, an integer $k>0$.

beginS: $=\{e\}$;
W $:=\{1\}$;
While $(S\neq\emptyset)$ and (loop $<k$) do
begin $T:=\emptyset$;

loop:$=Ioop+1$;
For each $(x, q)\in S$ do
begin $M_{(x,q)}$ $:=\{(xa,p)|\delta(q, a)=p, a\in A\}$

If $M_{(x,q)}\neq\emptyset$ then
begin $W:=W\cup\{y|(y,p)\in M_{(x,q)}\}$;

T $:=T\cup M_{(x,q)}$;
end;

S $:=T$;
end;

OUTPUT: If $S=\emptyset$ then $IRR(R):=W$
else W is a irreducible words set whose element’s length is less than k .

When $|R|=1$, then algorithm 12 takes $O(k)$ time. When $|A|>1$, then it takes
$O(\frac{m^{k+1}-1}{m-1})$ time.

3. Some examples about monoid presented by rewriting systems

Based on the discussion above and $[2, 4]$. A software is designed and works well. It
can get a convergent system from a generated relation and decide the properties of 1 to
7. The following are examples running on the software.

183

1.
GeIierated relation :

$R=$ {aaaab $=ba$ $bbb=1$ $babb=aaaa$ aaaba $=b$ $baa=ab$ aaaaaa $=babab$

$bbab=aa$ ababa $=bb$ $aabb=bba$ aabab $=baba$ }
Lexicographical order
Convergent system:

$R=$ {aabab $=baba$ $aabb=bba$ ababa $=bb$ $bbab=aa$ aaaaaa $=babab$

$baa=ab$ aaaba $=b$ $babb=aaaa$ $bbb=1$ aaaab $=ba$ }
Properties :

trivial: NO
finite: YES
order: 21
commutative: NO
free monoid: NO
group: YES

184

2.
Generated relation :

$R=$ {$abb=aa$ abababababab $=b$ $ab=ba$}
Lexicographical order
Convergent system:

$R=$ { $ba=ab$ aaaaaaaa $=b$ $abb=aa$ $bbb=ab$}
Properties:

trivial: NO
finite: YES
order: 19
commutative: YES
free monoid: NO
group: NO

185

3.
Generated relation:

$R=$ {baba $=abab$ cbacbab $=bcbacba$ $cbcb=bcbc$ $ca=ac$ $aa=1$ $bb=1$ $cc=1$ }
Lexicographical order
Convergent system:

R is convergent.
Properties:

trivial: NO
finite: NO
commutative: NO
free monoid: NO
group: YES

A finite multiplication table as following:
$=======Semigro$up Multiplication Table$========$

186

4.
Generated relation:

$R=\{cc=1$ $bb=1$ $aa=1$ $ca=ac$ $bab=aba$ cbacbacbcb $=$ bcbacbacbc cbcbc $=$

bcbcb cbcbac $=bcbcba$ cbacbacbacba $=bcabacbacbacb$}
Lexicographical order
Convergent system:

R is convergent.
Properties:

trivial: NO
finite: YES
order: 120
commutative: NO
free monoid: NO
group: YES

A finite multiplication table as following:
$=======Semigroup$ Multiplication Table$========$

187

References

[1] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. The design and analysis of computer algorithms.
Addison Wesley, 1974.

[2] B. Benninghofen, S. Kemmerich, and M. Richter. Systems of Reductions. Spring-Verlag,
1987.

[3] J. E. Hopcroft, and J. D. Ullman. Introduction to automate theory, language and computa-
tion. Addison Wesley, 1979.

[4] Paliath Narendran, and Friedrich Otto. Elements of finite order for finite weight-reducing
and confluent thue systems. Acta Informatica, 25:573-591, 1988.

[5] Wang Shuiting. Construction of the multiplication table of the semigroup and its complex
degree. J. of Lanzhou University, 28:38-42, 1992.

