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1. Introduction

»In various theories of analysis, transcendental principles such as the strong
comprehension axioms and the axioms of choice are prevalent. There have been,
however,speculations on elementary methods of analysis, due to the foundational
concerns traditionally and due to the modern interests in computability. We list
some references which are along this line. [1] introduces constructive analysis,
vhich was founded by Bishop in the 60’s, from scratch to advanced:topics.[4] and
[6] are trials to develop analysis within the framework of "definable" logic.
[3] is a comprehensive record of reverse mathematics, whose objective is to see
how some mathematical theorems and logical principles imply one another.

Here we give a brief account of the theory of computability structures in
analysis, which was designed by M. Pour-El and has been thoroughly presented in
[2]. There the authors define computable reals and functions, computability
structures in Banach spaces, and investigate their relationship to classical
notions and objects in analysis. The characteristic feature of this approach is
to regard computable structures as substructures of classical mathematics. This
makes the theory more interesting than doing mathematics within a restricted
framevork. In [5], the idea is generalized to the computability stﬁructure in
Frechet spaces.

Ve wish to extend such an idea to the theories of measure and integration.
As a start, we are working on the computability structure in metric spaces, and

hence our. exposition is centered in the case of metric spaces.

2. Recursive functions

A number-theoretic function is recursive if there is an ideal program to
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compute it. (There is a strict definition of a function being recursive, but
we will not elaborate.) It can be generalized to functions of Several variables
as well as to relations among natural numbers. Since the rational numbers are
regarded as pairs of natural numbers, we can identify them with natural numbers.
The popular functions such as addition, subtraction, and multiplication are re-
cursive. Many basic relations among natural numbers (hence among rationals) such
as equality and inequality are recursive.

Recursive functions can be described using finitely many symbols, and hence
there are only countably many such.

The following is a fact crucial to counter-example making.
Fact. There is a recursive function whose range is not recursive. (That is,

it is not decidable whether a natural number belongs to the range or not.)

3. Computable sequences of reals

In the following, we write exp(x,y) to express "x to the y."

A sequence of rationals, sayvr, is said to be computable if there are recur-
sive functions a,b,c such that r(n)=exp(-1,a(n))b{(n)/c(n) for each n. A sequence
of rationals r effectively converges to a real number x if it converges to x and
the modulus of,convergence can be evaluated by a recursive function. That is,
there is a recursive a such that v

for each n, if k > a(n), then |r(n)-x| < 1/exp(2,n).

A real number is computable if there is a computable sequence of rationals
which converges effectively to it. A sequence of reals is computable if there
is a computable double sequence of rationals which converges effectively (in two
coordinates) to it.

Any popular reals, such as e and pi, are computable.

Some basic facts regarding the computability of reals are stated below.

"Fact. Let x be a computable real. If x>0 (as a fact), then there is an effec-

tive way which shows it. (There is a program of deciding "y > 0 ?" and the
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computation halts for x.) This is not the case with "x = 0 ?."

Fact. If a double sequence of reals converges to a sequence of reals effecti-
vely, then the limit sequence is computable.

Fact. If a monotone sequence converges to a computable real, then the conver-
gencé is effective.

Fact. Computable reals form a subfield with rational coefficients in the field

of real numbers.

Hereafter any method of deciding or computing will be said to be effective if it

involves only recursive functions.

4. Counterexample technique
Most of the counterexamples (to computability) is based on the following
construction. Let a be a one-to-one recursive function whose range is not re-
cursive, and put
s(k) = the sum of exp(2,-a(m)) for m = 0,1,2, - - k.
Then s is a computable sequence of rationals converging to a non-computable

real.

5. Computable functions
In order to make the discussion simple, we restrict our consideration to the
funtions defined on a compact interval I‘= [u,v], where u and v are computable.
A function f on I is said to be computable if it satisfies the following.
(1) f preserves computability. That is, for every computable sequence of reals
in I, the image sequence by f is also copmutable.
(2) f is effectively and uniformly continuous. That is, there is a recursive e
such that, for very natural number p

if |x-y|<1/exp(2,e(p)), then |£(x)-£(y)|<1/exp(2,p).

Fact. This definition is equivalent to the effective Weierstrass property. That



210

is, a function on I is computable iff it is the effective limit of rational-
coefficient polynomials.

The familiar function such as addition, sin, etc. are computable. A smooth
operator such as the integral preserves the computability of a function, while
the derivative does not. There is a computable twice differentiable function on
[0,1] whose derivative is not computable, while the derivative of a computable
C-2 function is computable.

Ve can define a computable sequence of (computable) functions similarly.

The classical theorems one sees in the calculus books, such as the maximum
and the minimum value theorems,the intermediate value theorem and the mean value
theorem, hold effectively.

Proving the effective versions of the classical theorems,we notice that with
an exception or two, the effective proofs are mere effectivizations of the
classical proofs. That is, a classical statement of the form

For every p, there is an n satisfying A(p,n)
be replaced by
There is a recursive a such that, for every p, A(p,a(p)) holds.
This fact suggests the logical structure in some part of classical analysis. It

is, however,a theme yet to be worked on.

6. Computability structure in Banach spaces

Consider any Banach space B=(X,|| ||). Let S be a family of sequences frém
X. S is a computability structure for B if S is closed under effective linear
forms with respect to rational coefficients and the effective limits, and if the
norms of any sequence belonging to S form a computable sequence of reals.

A sequence of S is called an effective generating set if its linear spans are
dense in X.

Any familiar Banach space has an intrinsic computability structure (unique up

to the isomorphism). The main theorem for the computability structure stands as

follows.
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The Main Theorem. Let X and Y be Banach spaces and let T be a closed, linear
operator from X to Y. Assume X and Y have computability structures, X has an
effective generating set s which is in the domain of T, and Ts is a computable
‘sequence of Y. Then

T preserves the computability iff T is bounded.

This theorem has many applications in analysis and physics.

Examples. 1. C[u,v] with the uniform norm. Put S=
{f/f is a sequence of functions on [u,v] uniformly computable in the sense of 5}
S is a computability structure. The sequence of monomials (1,x,Xx,xxx,...) is
an effective generating set. The solution of a wave propagation does not neces-
sarily preserve computability, while in the same function space with the energy
norm the computability is preserved.

2. A sequence f of L-p[u,v] is L-p-computable if there is a double sequence
g, which is computable in the sense of 5 above and such that ||g(n,k)-f(n)||
converges to zero as k tends to the infinity, effectively in n and k. The mono-
mials form an effective generating set.

3. There is a Hilbert space H with a computability structure S such that
(1) the space H is separable, (2) the computable elements of H are dense in H

and (3) <H,S> does not have an effective generating set.

7. Computability structure in metric spaces

Let M = (X,d) be a metric space. Ve propose a family of squences from X,say
S, be a computability structure for M if the following hold.
(1) Let x and y be sequences in S. Then {d(x(m),y(n))} is a computable, double
sequence of reals.
(2) Let z be a double sequence in S, and let x be a sequence from X. If

d(z(m,n),x(m)) tends to 0 as n tends to the infinity effectively in m and n,
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then x belongs to S.

(3) Let a be a one-to-one recursive function. If x belongs to S, then {x(a(n))}

also belongs to S.

If a sequence w in S is d-dense in X, then w is said to be an effective

separating set of X.

A double sequence x in S is said to be effectively Cauchy if there is a

recursive function a such that -

for every m and p, for every n,k>a(m,p),d(x(m,n),x(m,k))<1/exp(2,p).

Fact. If w is an effective separating set of X,then it is "effectively dense”

in X, and w determines a unique computability strucrue containing it.

8. Completion of computability structure
Define a partial function from SxS to reals, d*, as follows. Let x and y be

double sequences in S. For any fixed m;

d"({x(m,q)},{y(m,q)}) = limn d(x(m,q),y(m,q)) as q tends to the infinity,
where {x(m,q)} represents a sequence in q with m fixed. Define eq(d”; ,) as

eq(d”; {x(m,q)},{y(n,9)}) iff d"({x(m,q)},{y(m,q)}) = 0.
S" = {x in S| x is effectively d-Cauchy}
For x in S, [x] = {y in S| eq(d";x,y))

[x] = [y] if eq(d”;x,y)

Proposition. (1) S" is a subset of X", the completion of X.
(2) <S8",d",eq(d”; , )> is a metric space.

(3) $™ is "complete” with respect to d° (in the classical sense).

Proposition. S is complete in the following sense. Let x be a triple sequence
(of 1,n,q) in S, such that it is also a sequence of d"-Cauchy sequences from

S". That is, [x(1,n,q)] as a sequence of q belongs to §" and {[x(1,n,q)]} as a



213

sequence of q and n is a d"-Cauchy sequence. Then there is a sequence from S~,
say {[y(1,4)]1}, such that lim d"([x(1,n,q)],[y(1,9)]) = 0 as n tends to the in-

finity uniformly in 1.

Examples. 1. X = Q, d(x,y) = |x-y|
S = {fl f is a recursive function (from natural numbers to Q)}
X can be identified with the subset of S, {(x,x,x,...)|x in Q}.
f belongs to S" iff f is an effectively Cauchy sequence of rationals.
An effective enumeration of Q, say w,is an effective separability set.
S" = the set of computable reals
2. X =R or = [0,1], d(x,y) = I1x-yl
S = the set of computable sequences of reals
v as above is an effective separability set for X.
S" is isomorphic to S.
3. Let B=(X,|1] |]) be a Banach space,and let S be its computability structure.
Define a metric for X by d(x,y) = ||x-yl|.
S is a computability structure for (X,d).
Let e be an effective generating set of X as a Banach space. Then, an
effective enumeration of all the linear forms of e with respect to rational

coefficients is an effective separability set for (X,d).

There are many open problems with regards to the computability properties in
nmetric spaces.For example, which open sets and closed sets are computable? Do
the effective versions of Urysohn’s lemma, Baire catogory theorem etc. hold? Do
metrizations of a Frechet space have computability structures?

Ve have just started our project.
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