
34

The Transformation Calculus
and its Typing

Jacques Garrigue

The University of Tokyo, Faculty of Science,
Dept. of Information Science, Yonezawa Lab.

Hongo 7-3-1, Bunkyo-ku, TOKYO 113
garrigue@is. s . u-tokyo. ac. jp

July 19, 1993

Abstract

Many calculi supporting a notion of state have been proposed. However this
notion is nearly always based on the intuition of a store, that is a binding from
name to values. The exception, monads, recently focused on for I/Os , suffers from
its rigidity.

The transformation calculus, an extension of lambda calculus, shows another,
more general way to do that. It is different from others in that no orthogonal
reduction rule is added to β-reduction, but only structural ones.

We introduce here the transformation calculus, and give our approach to its
typing. Fundamental properties, like confluence, have been shown, and two type
systems, simple and polymorphic, are proposed.

1 Introduction

What we call state is a complex notion. It can be as well the external state of a device
(like for I/O), the internal value of a variable, which changes during the evaluation, or
even, why not, a local value. What makes it a state is fundamentally the way we look
at it, the meaning we give to it.

The answer to the two different demands of external and internal mutables, has been
recently given in two different ways. For externals, the use of an I/O monad has been
suggested [PW93]. It introduces an idea of composition, very relevant to our calculus
too. For internals, the concept of store is still largely predominant, with different for-
malizations. Lamping [Lam88] proposes a generic system, where abstractions can be
made on names, and stores can be manipulated freely, whose power is comparable to
lambda calculus. Johnson and Duggan [JD88] introduce the notion of partial continu-
ation to capture the modifications of a store by a piece of program. Odersky, Rabin,
Hudak [ORH93] define a calculus combining β-reduction with operations on references,
and prove that it can be executed by a store model. These are untyped systems, but
effects [TJ92] give an abstraction of accesses done to the store, and can be used jointly
with types.

These two approaches are not completely opposed, and we can use monads to rep-
resent internal states, or references for I/O . For this last remark, one may remember
that on many computers, access to ports is done by writing the memory, which is the
only medium for side-effects. Monads offer many other possibilities, as pointed out
in [Mog91, Wad90], like non-determinism. But combining different monads together

数理解析研究所講究録
第 851巻 1993年 34-45

35

presents some difficulties. Effects are easy to combine together, but present little ab-
straction from the operational model.

If we must compare transformation calculus to these, we can say that it integrates
the notion of semantic composition from monads, with the use of names (or labels) which
makes so intuitive stores. However it differs deeply from them by the the presence of a
unique reduction rule, an extension of β-reduction. This unified vision makes it quite
close to CCL [Cur86, Har89], but with quite a different goal –CCL is intended to
give a basis for compiling A-calculus without name bindings –and a more practical
representation of environments, since we reintroduce names.

What the transformation calculus manipulates as an environment is no longer a
store, but something we will call a stream. The particularity of streams is that labels
are composite, with a name and a numerical index. Two values with same name but
different indexes are completely independent semantically. In a typed framework, they
do not need to have the same type. They are similar to two values of a variable in
different scopes. The presence of this numerical index permits to define composition of
streams. When we compose two streams, label-value pairs in the first stream are left
unchanged, but pairs from the second one are added with modified indexes. This way,
we avoid overlapping of labels.

Using this structure, we can first define a selective A-calculus [AKG93, GAK93]:
functions are applied to such streams and select their arguments through labels. Unused
arguments are not discarded, but kept for the result to be applied to them. All this can
be translated into the addition of labels to applications and abstractions in the classical
lambda-calculus.

If we accept to have streams as result too, then we have transformation calculus. We
introduce a notion of composition, where output of a transformation (a function whose
result is a stream) is “connected” to input of another one, according to labels. This
is the central concept of transformation calculus, and it makes it similar to the use of
monads, in a more flexible form. If we abstract names of labels, transformation calculus
may be better understood as dataflow graphs: a transformation is a unit of calculation
which gets its input from some units, and sends its result to other ones, labels only
denoting these connections.

In the second section we define formally streams, and give their essential properties.
The third section is devoted to the presentation of untyped transformation calculus.
It is developed in a simply-typed version, where we explicit type inference, in section
4. Section 5 presents shortly how this system can be extended in a polymorphic one.
Finally section 6 concludes, and tries to analyze what is the real expressive power of
transformation calculus, and its type systems.

2 Stream monoid

Streams differ from records by the existence of an associative concatenation operation
which is invertible. We will note the concatenation on streams by a simple dot ‘ and
the monoid of streams is (S, \cdot) . It has a neutral element $\{\}$.

Definition 1 (stream) 1. The set of streams on a domain A is the set of finite
partial functions from $\mathcal{L}=\mathcal{L}_{s}\cross \mathcal{N}$, the set of labels, to A. \mathcal{L}_{s} is an ordered set of
symbols, \mathcal{N} natural integers without 0, and \mathcal{L} is lexicographically ordered.

$S=$ { $s\in \mathcal{P}(\mathcal{L}\cross \mathcal{A})|s$ finite and $\forall(l,$ $a)\in s,$ $(_{r}Ba’\neq a)(1,$ $a’)\in s$ }

D. is the definition domain (first projection) of a stream s .

36

2. We note defining pairs as $(pn\Rightarrow a)$ with $p\in \mathcal{L}_{s},$ $n\in \mathcal{N},$ $a\in A$ and $\{\}$ is the
function defined nowhere $(D_{\{\}}=\emptyset)$.

l will always represent an element of $\mathcal{L},$ p and q elements of $\mathcal{L}_{6},$ m and n elements of \mathcal{N} .

Definition 2 (concatenation) 1. $d_{r}(pn)$ is the number of occupied positions in r

on symbol p and whose index less or equal to n . That is, $d_{r}(pn)=|(\{p\}\cross[1, n])\cap$

$D_{r}|$.

2. We define the n^{th} free position for p in r as

$\phi_{r,p}(n)=\min\{i\in \mathcal{N}|i-d_{r}(pi)=n\}$.
Its inverse is $\phi_{r,p}^{-1}(i)=i-d_{r}(pi)$. We extend these functions to streams by
$\phi_{r}(\{p_{1}n_{1}\Rightarrow a_{1}, \ldots, p_{k}n_{k}\Rightarrow a_{k}\})=\{p_{1}\phi_{r,p_{1}}(n_{1})\Rightarrow a_{1}, \ldots, p_{k}\phi_{r,p_{k}}(n_{k})\Rightarrow a_{k}\}$ and
similarly for $\phi_{r}^{-1}(s)$.

3. Stream concatenation \langle

) and its converse matching, can now be defined by the
following operations. b ” is union of functions on disjoint domains.

$r\cdot s$ $=$ $r\cup\phi_{r}(s)$

$r\cup s$ $=$ $r\cdot\phi_{r}^{-1}(s)$

One more definition may help understanding left insertion in a stream: we can shift
labels up or down by the following two functions $(\Downarrow pn0\Uparrow_{pn}=Id)$.

$(\Uparrow_{pn}r)(qm)=(\Downarrow^{pn}r)(qm)=\{\begin{array}{l}r(pm-l)r(qm)r(pm+l)r(qm)\end{array}$ $ifq=pand_{m}m>nifq\neq porifq=pandm^{<}\geq^{n}notherwise$

.

We have $\Uparrow pn(r)=\phi_{\{p_{7}\Leftrightarrow a\}}(r)$ and $\Downarrow pn(r)=\phi_{\{p_{7}\Leftrightarrow a\}}^{-1}(r)$.
Special cases of the definitions define commutation relations\cdot for concatenation of

singletons.
$\{pm\Rightarrow a\}\cdot\{qn\Rightarrow b\}$ $=$ $\{qn\Rightarrow b\}\cdot\{pm\Rightarrow a\}$ $p\neq q$

$\{pm\Rightarrow a\}\cdot\{pn\Rightarrow b\}$ $=$ $\{pn\Rightarrow b\}\cdot\{pm-1\Rightarrow a\}$ $m>n$

Proposition 1 Concatenation as in definition 2 is an associative application $S\cross Sarrow$

S , accepting $\{\}$ as neutral element. Its partial applications $Sarrow S$ ($s\cdot-$ and -. s) are
injective.

PROOF Associativity comes from the equality $\phi_{r}0\phi_{s}=\phi_{rU\phi_{r}(s)}$. For this we reason on
inverses: $\phi_{s,p}^{-1}(\phi_{r,p}^{-1}(i))=i-d_{r}(pi)-d_{s}(\phi_{r,p}^{-1}(i))=i-d_{r\mathfrak{t}9\phi_{r}(s)}(pi)=\phi_{rU\phi_{r}(s),p}^{-1}(i)$. We then
have $r\cdot(s\cdot t)=rb)\phi_{r}(s\cup\phi_{s}(t))=rbI\phi_{r}(s)\cup\phi_{r}(\phi_{s}(t))=r\cup\phi_{r}(s)U\phi_{rbI\phi_{r}(s)}(t)=(r\cdot s)\cdot t$.

r . $\{\}$ $=r=\{\}\cdot r$ is immediate $(\phi_{\{\}}=id)$. Injectiveness is a consequence of re-
versibility. \square

Since using always conjointly the symbolic and numerical part of a label would
be cumbersome, we choose a default symbol ϵ in \mathcal{L} , and we will admit the following
abbreviations:. no label at aU (a value of the domain alone): $a\sim\{\epsilon 1\Rightarrow a\}$. only a numerical label: $\{n\Rightarrow a\}\sim\{\epsilon n\Rightarrow a\}$. only a symbolic label: $\{p\Rightarrow a\}\sim\{p1\Rightarrow a\}$

For instance,
$\{2\Rightarrow a\}\cdot b\cdot c\cdot\{p\Rightarrow d\}\cdot\{q\Rightarrow e\}\cdot\{p\Rightarrow f\}$

$=\{\epsilon 1\Rightarrow b, \epsilon 2\Rightarrow a, \epsilon 3\Rightarrow c,p1\Rightarrow d,p2\Rightarrow f, q1\Rightarrow e\}$.

37

1 $::=$ pn $p\in \mathcal{L}_{s},$ $n\in \mathcal{N}$

M $::=$ x variable
$\{\}$ empty stream

$|$
$M\cdot\overline{\{l\Rightarrow x,\ldots\}}$ abstraction

$|$ $M\cdot\{l\Rightarrow M, \ldots\}$ application
$|$ MoM composition

Figure 1: Syntax of the transformation calculus

3 Syntax

In this section we define the untyped transformation calculus, and its simplified form
the selective λ-calculus, and give their fundamental properties.

The definition is done in five steps. First we give a syntactic definition of terms in
the transformation calculus, and add a structural equivalence on these terms. Then we
define substitutions on our terms, taking care of the constructs that did not appear in
λ-calculus. After that we need syntactical notions of open transformation and juxtaposi-
tion, to manipulate the structure of our terms, and finally we can define reduction rules
for the transformation calculus.

Definition 3 A term of the transformation calculus is any proposition written according
to the syntax in figure 1, and appropriate parentheses. The set of such terms is Λ_{T} .

(Since abstractions and applications are streams the same label may not appear more
than once in them; and the same variable may not be bound more than once in the same
abstraction.)

To avoid parentheses, 0
” is left-associative, and with same priority as ‘ “.

This identity of priority between 0
“ and ‘ means that, without parentheses, an

abstraction binds everything on its left. For application we will see that it doesn’t change
the meaning of a term.

The structural equivalence we define on these terms include the structural laws of
the stream monoid into transformation calculus’ abstractions and applications.

Definition 4 (structural equivalence) The stream monoid structure is used accord-
ing to the following two rules, defining $==$, together with α-conversion. We structurally
close $\equiv as$ usual to apply it on subterms.

$\forall R,$ $S\in S(\Lambda_{T})$, $M\cdot R\cdot S\equiv M\cdot(R\cdot S)$

$\forall R,$ $S\in S(\mathcal{V}),$ $V(R)\cap V(S)=\emptyset\Rightarrow$ $M\cdot\overline{R}\cdot\overline{S}\equiv M\cdot\overline{(S\cdot R)}$

For a stream of variables, V is its image (second projection).

This equivalence means that any term in this calculus can equivalently be written
using only unitary application or abstraction streams, by decomposing streams in the
monoid. Particularly, when $l_{i}<l_{i+1}$, we have

$M\cdot\{l_{1}\Rightarrow N_{1}, \ldots, l_{n}\Rightarrow N_{n}\}\equiv M\cdot\{l_{1}\Rightarrow N_{1}\}\cdot\ldots\cdot\{l_{n}-n+1\Rightarrow N_{n}\}$

and its symmetrical for abstractions.

Definition 5 Substitutions are done in the same way as for lambda calculus, but we
must pay attention to the new composition (cf. figure 2). For a term or a stream of
terms, FV is the set of its free variables (substitutable variables).

38

$x[x\backslash N]$ \equiv N

$y[x\backslash N]$ \equiv y $x\neq y$

$\{\}[x\backslash N]$ \equiv $\{\}$

(M. \overline{R}) $[x\backslash N]$ \equiv $(M\cdot\overline{R})$ $x\in V(R)$

(M. \overline{R}) $[x\backslash N]$ \equiv $(M[x\backslash N])\cdot\overline{R}$ $x\not\in V(R),$ $V(R)\cap FV(N)=\emptyset$

$(M\cdot R)[x\backslash N]$ \equiv $(M[x\backslash N])\cdot(R[x\backslash N])$

$(MoM’)[x\backslash N]$ \equiv $(M[x\backslash N])o(M’[x\backslash N])$

Figure 2: Definition of substitutions

Reduction
(β) $M\cdot\overline{\{l_{1}\Rightarrow x_{1},\ldots,l_{n}\Rightarrow x_{n}\}}\cdot\{l_{1}\Rightarrow N_{1}, \ldots, l_{n}\Rightarrow N_{n}\}arrow M[x_{1}\backslash N_{1}, \ldots, x_{n}\backslash N_{n}]$

(0) $Mo(\{\}P)$ $arrow$ MP $BV(P)\cap FV(M)=\emptyset$

Reordering
$($.. $)$ M. R. S $arrow$

$M\cdot\phi_{R}^{-1}(S)\cdot\overline{\phi_{S}^{1}(R)}$ $D_{R}\cap \mathcal{D}_{S}=\emptyset,$ $V(R)\cap FV(S)=\emptyset$

(\cdot) $(MoN)\cdot R$ $arrow$ $Mo(N\cdot R)$

$(^{-})$ $Mo(N\cdot\overline{R})$ $arrow$ $(MoN)\cdot\overline{R}$ $FV(M)\cap V(R)=\emptyset$

Figure 3: Reduction system for the transformation calculus.

Definition 6 An open transformation is a syntactic entity representing a list of streams
of terms, anti-streams of variables, and terms. It can be linked to $ter\cdot ms$ by the juxtapo-
sition meta-operator $($.

$M(e_{1}, \cdots, e_{n})^{d}=^{ef}$ $(. . . (M*e_{1})\ldots)*e_{n}$.

where $N*e=N\cdot e$ if e is a stream or an anti-stream, and $N*e=Noe$ if e is a term.
The set of variables bound by anti-streams in the body of an open transformation P

is $BV(P)$.

This definition introduces a distinction between functional terms (which can be written
$xP)$ and transformational terms (or closed transformations, since variable bound in
their body are local, written $\{\}$ P).

Now we are ready to define rewriting rules for the transformation calculus.

Definition 7 $arrow$ is defined on transformation calculus terms by the two reduction
rules in figure 3, in parallel with three reordering rules. $arrow^{*}$ ‘’ is the combination in any
order $ofarrow and\equiv$.

Purely functional terms (not containing 0 nor {}) and rules $(\beta, \cdot\cdot)$ define the selective
λ -calculus.

Rule β is the classical β-reduction extended to streams. 0 “connects“ a function
and a transformation. The condition, that all variables bound in P should be protected
in M , means that we “close” our transformation, hiding its variables from M , before
syntactically juxtaposing them.

Reordering rules (\cdot) and $(^{-})$ are easily understandable. They respectively send the
input of a composition to its first element (the right one), and externalize abstractions
on its first element. Only one of them would be enough, but we give the two for
symmetricity.

39

Rule $($.. $)$ is based on the equality $N\cdot\overline{(R\cup S_{\mathcal{V}})}\cdot(R_{\Lambda_{T}}US)\equiv N\cdot\overline{\phi_{R}^{-1}(S_{\mathcal{V}})}\cdot\overline{R}\cdot S\cdot\phi_{S}^{1}(R_{\Lambda_{T}})$

(with $D_{R_{\Lambda_{T}}}=D_{R},$ $D_{S_{\mathcal{V}}}=D_{S}$ and $V(S_{\mathcal{V}})\cap V(R)=\emptyset$). If we take $M=N\cdot\overline{\phi_{R}^{-1}(S_{\mathcal{V}})}$, and

apply M. $\overline{R}\cdot S$ to $\phi_{S}^{1}(R_{\Lambda_{T}})$, then rule $(\cdot\cdot)$ preserves confluence: it gives $N\cdot\overline{(R_{\mathcal{V}}biS_{\mathcal{V}})}$.
$(R_{\Lambda_{T}}US_{\Lambda_{T}})arrow N\cdot\overline{\phi_{R}^{-1}(S_{\mathcal{V}})}\cdot\phi_{R}^{-1}(S)\cdot\overline{\phi_{S}^{1}(R)}\cdot\phi_{S}^{1}(R_{\mathcal{V}})$.

Thanks to that we have the Church-Rosser property, which makes our calculus mean-
ingful.

Theorem 1 Transformation calculus is confluent.
$\forall M,$ $P,$ $Q(Marrow^{*}P\wedge Marrow^{*}Q)\Rightarrow(\exists TParrow^{*}T\wedge Qarrow^{*}T)$

PROOF We can adapt from [AKG93] that selective λ -calculus in the definition we give
here is confluent.

For proving the confluence of transformation calculus we use the following translation
suppressing transformational constructs by using a new symbolic label, cont.

$Tr(M_{Tr(x)}^{r_{\circ N)}}T(\{\})$ $===$
$Tr(N)\{contxx\cdot\overline{\{con.t\Rightarrow x\}}\Rightarrow Tr(M)\}$

$Tr(M\cdot\overline{R})$ $=$ $Tr(M)\cdot\overline{R}$

$Tr(M\cdot R)$ $=$ $Tr(M)\cdot Tr(R)$

Then, there is a direct correspondence between reductions in the two calculi, composition
being replaced by β-reduction.

Interestingly, this translation gives simultaneously partial continuation semantics (cf.
[JD88]) to the transformation calculus: to compose two transformations is to apply the
second one to the first, viewed as a continuation we will call last. \square

4 State handling

Since it includes the lambda-calculus, transformation calculus is already Turing-complete.
But the interesting point is to see how we can use labels to encode notions that are not
naturally encoded in the lambda-calculus.

We propose here a notion of scope-free variable, which is able to capture the various
definitions of state we gave in introduction. By scope-free we mean that the scope is not
limited to a syntactically determined part of the program. However we do not mean
global either: we may have states that are only locally meaningful, but this locality is not
necessarily restricted to a syntactic scope. For such a variable we have three operations:
creation, update, and destruction. They are all represented by transformations.

Creation is just putting a binding on the stream. The stream we are talking about
here is an execution notion: we can see a program in the transformation calculus as a
succession of transformations modifying a stream, and finally either returning the final
state of the stream or a value. To create a scope-free variable with label 1 and value v ,
we execute the transformation $\{\}\cdot\{l\Rightarrow v\}$.

To represent a state modification in transformation calculus we change the binding
of its label, like this

$\{\}\cdot\{l\Rightarrow M\}\cdot\overline{\{l\Rightarrow x\}}$.

It gets the value on l , and puts a new value in its place, possibly depending on x . If we
think of an applied calculus for $I/O,$ x may be a representation for an external state,
and M that of the resulting state.

40

Last we must delete a variable from the stream if we want to keep it local to a certain
part of the execution. We can of course purely suppress it by $\{\}\cdot\overline{\{l\Rightarrow x\}}$ which reads x

but do not use it, but more generally we apply a transformation which takes 1 in input
and do not put a new value for it.

Example We will just give here the basic example of how to define a point and move
it. . We define it by de fpoint $=\{\}\cdot\{mypoint\Rightarrow\{\}\cdot\{x\Rightarrow 0, u\Rightarrow 0\}\}$. Here we are using

the trivial encoding of records as transformations for $\{\}\cdot\{x\Rightarrow 0, y\Rightarrow 0\}$.. We can inspect its contents by lookpoint $=p\cdot\{mypoint\Rightarrow p\}\cdot\overline{\{mypoint\Rightarrow p\}}$. For
instance lookpoint 0 de fpoint $=\{\}\cdot\{mypoint\Rightarrow\{\}\cdot\{x\Rightarrow 0, y\Rightarrow 0\}, x\Rightarrow 0, y\Rightarrow 0\}$.. This last transformation moves the point according to the values passed on x

and $\underline{y:}move=\{\}\cdot\{mypoint\Rightarrow\{\}\cdot\{x\Rightarrow x+x’, y\Rightarrow y+y’\}\cdot\overline{\{x\Rightarrow x,y\Rightarrow y\}}\circ$

$p\}\cdot\{mypoint\Rightarrow p, x\Rightarrow xy\Rightarrow y’\}$. We can calculate move $\cdot\{x\Rightarrow 10, y\Rightarrow 15\}0$

de fpoint $=\{\}\cdot\{mypoint\Rightarrow\{\}\cdot\{x\Rightarrow 10, y\Rightarrow 15\}\}$.
This example shows that scope-free variables let us practice some sort of object-

based programming. In fact this encoding permits much stranger things. For instance,
even in a typed calculus, we can change the type of a variable when we modify it, since
the new definition is totally independent of the previous. Modification is a destruction
followed by a creation.

More interesting, the “scope” of the scope-free variable, that is from its creation to
its destruction, enjoys the same “masking” property as syntactical ones. If we create
successively two variables on the same label, the second one will be apparent and the
first masked until we destroy the second, and then the first one will reappear. This
possibility makes scope-free variables an alternative to scoped variables. We can even
compile this calculus without any notion of environment, putting all variables “on the
stream”.

5 Simple types

To obtain a simply typed form of transformation calculus, we annotate variables with
some type in abstractions, just the same way it is done in lambda calculus. But first we
must define what are these types.

The two most important novelties are that, first, stream types are introduced, which
look very much like record types, and second, that function type are not from any type
to any other, but only from stream types to stream or base types. This last particularity
“flattens” types, but still contains as a subset all simple types of lambda-calculus.

Definition 8 Simple types in the transformation calculus are generated by t in the fol-
lowing grammar.

u $::=$ u_{1} . . . base types
r $::=$ $\{l\Rightarrow t, \ldots\}$ stream types
w $::=$ $u|r$ return types
t $::=$ $rarrow w$ types

The same label may not appear more than once in the same stream type; stream types
are equal up to different orders, and $(\{\}arrow\tau)=\tau$, to shorten.

These last restrictions make a stream type a stream of types as defined in Section 2.
This means that we can use stream composition on these types, as we will do for typing
rules.

41

$\Gamma[xrightarrow\tau]\vdash x:\tau$ (I)

$\Gamma\vdash\{\}:\{\}$ (II)

$\ovalbox{\tt\small REJECT}^{arrow}r\vdash M\cdot\overline{\{\Rightarrow:\theta^{1_{1}},..,l_{n}^{1}\Rightarrow x_{n}:\theta_{n}\}}:(\{l\Rightarrow\theta_{1}^{:r}\ldots, l_{n}^{\tau}\Rightarrow\theta_{n}\}\cdot r)arrow\tau$ (III)

$\ovalbox{\tt\small REJECT}\Gamma\vdash M:(\{l_{1}\Rightarrow.\theta_{1},\ldots, l\Rightarrow.\theta_{n}\}_{n}\cdot s)arrow\tau\Gamma\vdash N_{i}:\theta_{i}\Gamma\vdash M\{l_{1}\Rightarrow N_{1}^{n},.., l\Rightarrow N_{n}\}:sarrow\tau$ (IV)

$\frac{\Gamma\vdash M:(r_{2}\cdot r)arrow\tau\Gamma\vdash N:r_{1}arrow r_{2}}{\Gamma\vdash MoN:(r_{1}\cdot r)arrow\tau}$ (V)

$\frac{\Gamma\vdash M:.r_{1}arrow r_{2}}{\Gamma\vdash M:(r_{1}r)arrow(r_{2}\cdot r)}$ (VI)

Figure 4: Typing rules for simply typed transformation calculus

Definition 9 A term in the simply typed transformation calculus is constructed accord-
ing to the following syntax.

M $::=x|$ $\{\}$ $|M\cdot\overline{\{l\Rightarrow x}$: $t,$
\ldots } $|M\cdot\{l\Rightarrow M, \ldots\}|MoM$

with the same constraints on labels and variables as before.

Finally the relation between terms and types is given in the following definition.

Definition 10 A type judgement, written $\Gamma\vdash M$: τ , expresses that the term M has
type τ in the context F. Induction rules for type judgements are given in figure 4.

Rules (I,III ,IV) are the traditional ones for typed lambda calculus, simply extended
to streams. We can go back to it by limiting labels in streams to sequences of integers
starting from 1 (that is, in the above rules, having only $l_{n}=\epsilon n$).

Rule (II) types the constant $\{\}$. However it will most often need the cooperation of
rule (VI), transformation subtyping, which expresses that any transformation may be
applied to labels it is not concerned with: they will simply be rejected to the result. For
instance, it gives to $\{\}$ any symmetrical type $(rarrow r)$. Rule (V) types composition: M

is applied to the result stream of N , and re-abstracted by its abstraction part.
Traditional results about simply typed lambda-calculus stand.

Theorem 2 (object reduction) If $\Gamma\vdash M$: τ and $Marrow*N$ in the transformation
calculus, then $\Gamma\vdash N$: τ .

Theorem 3 (strong normalization) If for some Γ and some $\tau,$
$\Gamma\vdash M$: τ , then

there is no infinite reduction starting from M in the transformation calculus.

PROOF by constructing a directed acyclic graph calculating an upper bound of the
longest reduction. \square

Such a type system is not polymorphic, but it is more generic than what we would
have obtained by the translation towards selective λ -calculus. In this translation, com-
position MoT is interpreted as the passing of a continuation to the transformation,
$T\cdot\{cont\Rightarrow M\}$, which means that when typing T we fix the type of the eventual con-
tinuation. Thanks to the rule (VI), this is not the case here: the continuation M must
only be able to accept all the output of T , but its result has no link with $T’ s$ type.

42

For instance, suppose we have alanguage modelling the transformation calculus, with
basic arithmetic operation. We define a transformation on a pair of values add-sub:

$\{x+y, x-y\}\cdot$ { x : int, y : int} : $\{1\Rightarrow int, 2\Rightarrow int\}arrow\{1\Rightarrow int, 2\Rightarrow int\}$

where we abbreviate $\{\}\cdot\{P\}$ in $\{P\}$.
Now we can compose it with $mult=(x*y)\cdot\overline{\{x:}$int, y :int} and obtain

$((x+y)*(x-y))\cdot\overline{\{x:}$int, y :int} : $\{1\Rightarrow int, 2\Rightarrow int\}arrow int$

or with itself for

$\{x+x, y+y\}\cdot$ { x : int, y : int}: $\{1\Rightarrow int, 2\Rightarrow int\}arrow\{1\Rightarrow int, 2\Rightarrow int\}$

Application can be done on related labels (with the good type), or unrelated ones, the
type being free then:

$add_{-}sub\cdot\{2\Rightarrow 5, ok\Rightarrow true\}=\{1\Rightarrow x+5,2\Rightarrow x-5, ok\Rightarrow true\}\cdot\overline{\{1\Rightarrow x:}$int}
$:\{1\Rightarrow int\}arrow\{1\Rightarrow int, 2\Rightarrow int, ok1\Rightarrow bool\}$

6 A glimpse of polymorphic types

This polymorphism which is not becomes a problem when we try to polymorphically
type transformation calculus expressions. Suppose for instance that we want to define
composition as a function comp $\cdot\{f\Rightarrow f, g\Rightarrow g\}=fog$. If we have only generic type
variables, we cannot express the relation which is between the output stream of g and
the input stream of f .

The intuitive solution to this problem is the introduction of stream variables, for
stream types. It is indeed quite expressive. Suppose comp defined above to be typed
$\{f\Rightarrow(\rhoarrow\alpha), g\Rightarrow(\rho’arrow\rho)\}\cdot\rho’arrow\alpha$. It correctly expresses the constraint, even
permitting to receive arguments on labels other than $f1$ and $g1$, linking their types with
types in $g’ s$ input.

However it will appear not to be enough. The second problem comes from rule (VI)
of typing, which expresses than any transformation has an infinity of types. But, when
we write $\rho’arrow\rho$ we are interested in only one of these types, whose ρ is the same as
in $\rhoarrow\alpha$, which may be a simple function. In this case the maximal possible ρ is the
total input of f . If we let α be any type, it may contain part of the input and reduce
the genericness of g . This is why we need a last sort of type variables, we will call them
return variables, and they are restricted to represent return types.

sv $:;=::=$ $\alpha|_{1}0_{\beta}$

. . .
return/stream sort
variables

r $::=$ $\{l\Rightarrow t, \ldots\}|\{l\Rightarrow t, \ldots\}\cdot v^{o}$ stream types
w $::=$ $u|v|r$ return types
t $::=$ $\{l\Rightarrow t, \ldots\}arrow v|rarrow w$ monotypes
σ $::=$ $t|\forall\alpha.\sigma$ polytypes

During type instantiation an unsorted variable may be substituted with any type,
but a return (\cdot) variable is restricted to return types, and a stream (o) one to stream
types.

We do not give here a type inference algorithm. Such inference is possible, but com-
plex. Done in a direct way it is incomplete, peculiarities of transformations introducing
non-monotonicity. Here, we can suppose that types are declared, like in the simply
typed calculus, and that type checking is a problem of matching, and not unification,
which becomes easily decidable.

43

In this system composition will be typed:

comp: $\{f\Rightarrow(\alpha^{o}arrow\beta\cdot), g\Rightarrow(\gamma^{o}arrow\alpha^{o})\}\cdot\gamma^{o}arrow\beta\cdot$.

Most functions can be typed in this formalism. There are still exceptions. The
simplest one is auto-composition: $(xox)\cdot\overline{\{x\}}$. The only polymorphic type we can give
it is $\{1\Rightarrow(\alpha^{o}arrow\alpha^{})\}\cdot\alpha^{o}arrow\alpha^{o}$. If our intention was to use it as stream duplication
$(\{p\Rightarrow a, q\Rightarrow b\}-\succ\{p1\Rightarrow a,p2\Rightarrow a, q1\Rightarrow b, q2\Rightarrow b\})$, this will not work.

Example We go on with our point example, and give types for our different transfor-
mations.. de fpoint : $\{mypoint\Rightarrow\{x\Rightarrow int, y\Rightarrow int\}\}$.. lookpoint : $\{mypoint\Rightarrow\{x\Rightarrow int, y\Rightarrow int\}\cdot\alpha^{o}\}arrow\{mypoint\Rightarrow\{x\Rightarrow int,$ $y\Rightarrow$

int} $\cdot\alpha^{o},$ $x\Rightarrow int,$ $y\Rightarrow int$ }.. move : $\{mypoint\Rightarrow\{x\Rightarrow int, y\Rightarrow int\}\cdot\alpha^{Q}, x\Rightarrow int, y\Rightarrow int\}arrow\{mypoint\Rightarrow\{x\Rightarrow$

int, $y\Rightarrow int$ } $\cdot\alpha^{o}$ }.

We see here that polymorphism gives us “inheritance” for streams. For instance, if we
apply move on a mypoint with more fields than x and y , it will work and leave other
fields unchanged.

7 A polymorphic record calculus

An extension suggested by this polymorphism on streams is the use of an extended
pattern matching on them. Extracting a field from a stream can then be done polymor-
phically, without extending the typing system. This is all we need to get a complete
polymorphic record calculus, since we already had modification. Here is the example of
a field selector for label 1. $\{l\Rightarrow x\}\cdot y$ is an extended pattern, matching the value on l

with x and the rest of the stream with y .

$\# l=x\cdot\overline{\{1\Rightarrow\{l\Rightarrow x\}\cdot y\}}$: $\{1\Rightarrow\{l\Rightarrow\alpha\}\cdot\beta^{\langle\rangle}\}arrow\alpha$

However such types are fragile, in that the same polymorphic stream should not be
used as a transformation, since constraints would interfere. This is not surprising:
transformation composition gives us record concatenation, and such an operation has no
most generic type (see [Wan91] in a slightly different system: generally label repetition
is handled by retaining only one of the two occurrences, and we keep the two by our
label-shifting). If this rule against mixing is respected, we can enjoy record operations
as an “extra“.

8 Conclusion

The transformation calculus proposed here is a practical way of representing state mod-
ifications, while staying in a λ-calculus structure. If the name part of labels keeps the
intuition of identity like it can be in stores, the numerical part permits to have a com-
pletely relative representation of applications and abstractions, which is necessary to
express properly commutation. A calculation can then be written in an entangled way:
$(\{p\Rightarrow x+1\}\cdot\overline{\{p\Rightarrow x\}})o(\{q\Rightarrow x\}\cdot\overline{\{p\Rightarrow q\}})$ is equivalent to $(\{q\Rightarrow x\}\cdot\overline{\{p\Rightarrow x\}})o(\{p2\Rightarrow$

$x+1\}\cdot\{p2\Rightarrow x\})$ since the two $p’ s$ here expect independent values.
These properties makes it a good formalism to analyze order dependency in com-

putations using states. Moreover, the type systems we proposed express directly these

44

dependencies in the type itself. One criticism could be that we do not explicitly handle
the case in which we only read a value, and give it back without modification on the same
label, which is an important one for commutation. But this can be done by a simple
program transformation, like $\{p\Rightarrow x, q\Rightarrow M\}\cdot\overline{\{p\Rightarrow x\}}\Rightarrow(\{q\Rightarrow M\}\cdot\overline{\{dup\Rightarrow x\}})o(\{p\Rightarrow$

$x,$ $dup\Rightarrow x$ } $\cdot\overline{\{p\Rightarrow x\}}$), which desynchronizes reading and use of the value, and makes pos-
sible commutation with the operational part of another transformation using p without
modifying it.

This gives a possible use of such a calculus. We can extract order dependencies in
sequentially written programs, to be able to compile them in a concurrent way, and do it
only with typing information. A way to obtain such a result is analyzing each operation
into a sequence of fine-grain transformation, whose type express these dependencies. In
this perspective transformation calculus is a quite applied one.

However, the possibility suggested last of introducing record field selection by an
extended pattern matching, and this without modifying the type system, shows the
generality of transformation calculus. We are using here the similarity between records
and environments to apply methods working on one to the other. This is for us a
confirmation that the notion of state should not be limited to internal or external values
changing with time, but can well be applied to unchanging things, like the quality of
something as expressed in a record; or to data transmitted between different parts of a
program, with only a transient existence.

To conclude, the essence of transformation calculus is certainly this possibility of
communicating data outside of a syntactical scope in a structured way. The tradition of
structured programming is to limit the scope of each variable to its block, blocks being
structured in a hierarchy. Same may be said for lambda-calculus, without the possibility
of changing bindings. Transformation calculus suppresses this limit, by making data
flow between transformations. This is dangerous, since this identity of syntactical and
execution scopes was a protection against errors, but we hope to overcome this danger
by the strength of a more expressive typing.

References

[AKG93] Hassan Ait-Kaci and Jacques Garrigue. Label-selective λ -calculus. Research
report 31, DEC Paris Research Laboratory, May 1993.

[Cur86] Pierre-Louis Curien. Categorical Combinators, Sequential Algorithms and
Functional Programming. Research Notes in Theoretical Computer Science.
Pitman, 1986.

[GAK93] Jacques Garrigue and Hassan Ait-Kaci. Typing of selective λ -calculus. Tech-
nical Report 93-1, University of Tokyo, Department of Information Science,
1993.

[Har89] Th\’er\‘ese Hardin. Confluence results for the pure strong categorical logic CCL.
λ -calculi as subsystems of CCL. Theoretical Computer Science, 65:291-342,
1989.

[JD88] Gregory F. Johnson and Dominic Duggan. Stores and partial continuations as
first-class objects in alanguage and its environment. In Proc. ACM Symposium
on Principles of Programming Languages, pages 158-168, 1988.

[Lam88] John Lamping. A unified system of parameterization for programming lan-
guages. In Proc. ACM Conference on LISP and Functional Programming,
pages 316-326, 1988.

45

[Mog91] Eugenio Moggi. Notions of computation and monads. Information and Com-
putation, 93:55-92, 1991.

[ORH93] Martin Odersky, Dan Rabin, and Paul Hudak. Call by name, assignment, and
the lambda calculus. In Proc. ACM Symposium on Principles of Programming
Languages, pages 43-56, 1993.

[PW93] Simon L. Peyton Jones and Philip Wadler. Imperative functional program-
ming. In Proc. ACM Symposium on Principles of Programming Languages,
pages 71-84, 1993.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot. Polymorphic type, region and effect
inference. Journal of Functional Programming, $2(3):245-271$, July 1992.

[Wad90] Philip Wadler. Comprehending monads. In Proc. ACM Conference on LISP
and Functional Programming, pages 61-78, 1990.

[Wan91] Mitchell Wand. Type inference for record concatenation and multiple inheri-
tance. Information and Computation, 93:1-15, 1991.

