0000000000
0 858 19930 78-87

A Predicative Pblymorphic Type System for a Calculus of Objects

Vasco Thudichum Vasconcelos
Department of Computer Science
Keio University
3-14-1 Hiyoshi Kohoku-ku Yokohama 223
Japan

July 20, 1993

Abstract

The present paper introduces an untyped calculus of
intended objects to capture intrinsic aspects of cou-
current objects communicating via asynchronous mes-
sage passing, together with a typing system assign-
ing typings to terms in the calculus. Types meant
to describe the kind of messages an objcct may re-
ceive are assigned to the free names in a program,
resulting in a scenario where a program is assigned
multiple name-type pairs. Then, a ML-like let decla-
ration is introduced together with an extension of the
monomorphic typing assignment system, which allows
to declare a term of a polymorphic type and usc it
multiple times with different types, instances of the
type of the declared term. The system enjoys desir-
able properties, such as subject-reduction which im-
plies that programs that comply to the typing disci-
pline do not suffer from runtime errors, as well as the
existence and computability of principal types. Fur-
thermore, we present an efficient algorithm to extract
the principal typing of a term.

Introduction

Most of the attempts to introduce some type discipline
into object-oriented languages start from lambda-
calculus, by extending this with some kind of records.
There are several limitations to this approach, mainly
deriving from the fact that objects are not extensions
of functions. In particular, objects do not necessar-
ily present an input-output behavior; objects usually
communicate by asynchronous message passing (in-
stead of function application); objects do maintain a
state (in contrast with the stateless nature of func-
tions), and objects may run concurrently.

Inspired by Milner’s polyadic n-calculus [6], Honda's
v-calculus [4] and Hewitt’s actor model [2}, we pre-
sented in {11] a basic object-calculus where the notions
of objects, asynchronous messages and concurrency

arce primitive, and introduced a type discipline along
the lines of Honda [3] and Vasconcelos and Honda [10]
for the (untyped) calculus, enjoying the properties that
programs that verify the discipline will never run into
crrors of the kind “message not understood”, and that
there is a computable notion of principal typings from
which all typings that make a term well-typed can be
derived.

The present work extends the basic system by in-
troducing in the calculus variables over terms and a
ML-like let declaration, together with a notion of pred-
icative polymorphism in the type system. Following
Mitchell [7]. the word predicative refers to the fact that
polymorplism is introduced only after having defined
all the base (monomorphic) types. The result is an
extended caleulus of object where we can have poly-
worphic term declarations, in the sense that a term
can be declared to have a polymorphic type, and used
in a program multiple times with different types, in-
stances of the type of the declared term.

All the basic syntactic properties of the monomor-
phic system extend to the polymorphic setting, in par-
ticular the subject reduction property and the exis-
tence of an algorithm to extract the principal typing
of a term. Like in ML, the polymorphic system is
strictly more general than its monomorphic counter-
part. in the sense that there arc let terms of the form
let X(z) = Pin Q that can be typed whereas the cor-
responding term where P is shared in @ via variable
X is not typable.

Following [3, 10], types are assigned to names, and
not to processes, the latter being assigned multiple
name-type pairs, constituting a typing for the process.
Types are built from variables by means of a single
constructor [I3:Gy,. .. Iy &), representing a name as-
sociated with an object capable of receiving messages
labeled with {; carrying sequences of names of types
Gy, for 1 < i < n. A typing assignment system assigns
a type to cach free name in a term, thus specifying
in some sense the interface of the process. To describe
objects about which we do not have complete informa-

tion (e.g. when we only know part of their methods)
we use constraints on the types type variables may be
substituted for, in the form of Ohori’s kinds [8].

The outline of the paper is as follows. The next scc-
tion introduces the basic calculus, and section 2 the
corresponding monomorphic type assignment system.
Then, section 3 introduces a form of let declaration in
the calculus, and section 4 the polymorphic type as-
signment system. Section 5 studies some of the prop-
erties of the typing systems, and based on the results
proposes a simplified system, which will be the basis of
the typing inference algorithm to be described in Sec-
tion 6. Section 7 discusses and compares the present
calculus and its typing system to related systems. Fi-
nally, the last section concludes the paper.

1 The Basic Calculus

This section introduces the basic calculus to the extent
needed for typing considerations. Since we are going
to need variables over terms any way, we try a variant
of [11] where explicit recursion is built from variables
over terms. Structural congruence on terms caters for
equivalence over concrete syntax and, together with
normal forms and message application, make the for-
mulation of the transition relation quite concisc.

Syntax. Simple terms P are built from an infinite
set of names N, an infinite set of term-variables X and
a set of labels L, by means of six constructors,

a<l(®)

abl(31).P & & ln(En).P)

(vz)P

P,Q

X(v)

rec X (9).a b[I1(£1).P &+ & 1,(2,).P)

where a,b,... and v,z,... are names in N; vo,z,...
are sequences of names in N7; X,Y,... are term-
variables in X; I,m,... are labels in L and P,Q,...
are arbitrary terms in P. In an object of the from
ab[li(21).P & & 1,(Zn). Py], we assume the names
in &; and the labels [; pairwise distinct, for n > 0 and
1<i<n

Intuitively, a term of the form a<i(v;---v,) de-
notes an asynchironous message directed to an ob-
ject located at name a, selecting a method labeled
with [, and carrying a sequence of names v - v,
as actual parameters. Objects are terms of the form
ab{li(&1).Py & & 1,(&,). P,] comprising an object
location or identifier a and an unordered collection of
methods l;(£;).P;. Object methods are identified by
a label | and parameterized by a sequence of names

79

z. Intuitively, a method of the form I(z).P matches
a comununication I(#) and behaves as P with occur-
rences of names in Z replaced by those in v.

Scope restriction allows for local object creation
avoiding unwanted communications with the exterior.
If 2 is a name and P is a term, then (vz)P denotes the
restriction of z to the scope defined by P. Multiple
name restrictions on a term (vzy)---(vz,)P will be
written (v2)P. A term of the form P, Q denotes the
term composed of P and Q running concurrently.

Intuitively, term-variables stand for terms. If X
is a term-variable representing a term P with free
names ,...Zn, then X(v;---v,) denotes the term
P{vy -+ -vn/zy -+ zp}, that is, the term P with names
Z1,... 2, replaced by names vy,...v,. By allow-
ing X to occur frec in Py,...P,, the construc-
tor rec X(0).a [l (31).Py & & la(2,).Py) allows
for recursive object definition. For succinctness we
will often write rec X(9).P iustead of the more ver-
bose form rec X(9).a b[ly(E1).Py &+ & 1,(Zn).-Pal,
but one should keep in mind that we only allow re-
cursion over objects. Inaction is a convenient derived
constructor. Denoted by O, it represents the process
which does nothing. and is defined as (vz) z >{]. The
length of the sequence of names £ is denoted by len(z),
and the set of names occurring in ¢ by {z}.

Semantics. Methods in objects and scope restric-
tion arc the binding operators in the calculus. The set
of free names in term P, denoted FN(P), is induc-
tively defined by the following rules.’

}U{}

FN (a<al(v)) = {a
I & 'n.]

FN(a[li(21).P
{a} UFN (1) {il}u u]—'N)\ {En}
fN((I/z]P) = FN(P)\ {z}
FN(P,Q) = FN(P)UFN(Q)
N(X(9) = {9}
f/\/(lecX([:) P) = {s}JUFN(P

A notion of substitution of free occurrences of name
z by name v in P. denoted Plv/z}, is defined in the
usual way, aud so is «@-conversion. Also, whenever
len(t) = len(%) and the names in Z are all distinct,
P{u/i} denotes the result of the simultaneous replace-
ment of free occurrences of by @ in P (with change
of bound names where necessary, as usual.)

There is also a binding on term-variables, namely,

term-variable X occurs bound in rec X(9).P. The
set of free variables in term P, denoted FV(P), is in-

1" binds tighter than ‘U,

80

ductively defined by the following rules.

F(al®) = 0
FV(ab[l(31).Py & & ln(in).Pa)) =
FV(P)U -+ UFV(P,)

FV(vz)P) = FV(P)
FV(P,Q) = FV(P)LAV(Q)
FV(X(3)) = {X}
FV(rec X(9).P) = FV(P)\{X}

A term is said to be closed if it contains no free vari-
ables. Substitution of a term-varieble X by a term Q
with free names Z, in a term P, denoted by P[Q/X];
is the result of substituting Q{v/z} for every free oc-
currence of the form X(9) in P, and changing bound
variables to avoid capture of frec variables. The precise
definition is by induction on P and holds only when

P.

Structural congruence provides for syntactic equiv-
alence over terms, simplifying the treatment of reduc-
tion. It is the smallest congruence relation defined by
the following rules.

P = Q whenever P a-convertible to @
PQ=Q,Pand P,(Q,R)= (P,Q),R
ab[I(Z).P & m(9).Q) = ab[m{y).Q & I(£).P)
(vz)P,Q = (vz)(P, Q) whenever z € FN(Q)
rec X(9).P = P[rec X(?).P/X];

Normal forms further simplify the treatment of re-
duction. Every closed termn in P can be transformed
into an equivalent term of the form,

(V'&')(th‘ . st)

for some m > 0, where P;,... [, denote messages or
objects.

Message application constitutes the basic mecha-
nism of the calculus, and represents the reception of a
message by an object, followed by the selection of the
appropriate method, the substitution of the message
contents by the method’s formal parameters, and the
execution of the method body. The application of the
communication {(?) of some message to a collection of
methods [I)(£1).P &+ & I,(2,).Py] is defined by,

(h(1).Pr &+ & 1n(80).Pu] 0 1(0) = Pr{o/a4}
whenever I =}, € {l;,...1,} and the lengths of @ and

I match.

Reduction models the computing mechanism of the
calculus. By using structural congruence, normal
forms and message application, it can be concisely de-

len(z) = len(d), for all sub-terms of the form X () in

fined. One-step reduction, denoted by —, is the small-
est relation generated by the following rules.
P=P P-Q Q=¢qQ
PI — Ql
MeC — P
wz)(9,adC,abM,d) - (vi) (9, P,8')

where O and &' represent concurrent composition of
messages and objects, C is a communication of the
form I(9) and M is a collection of methods of the form
[1(21).Py & -+ & 1,,(2,,).P,). The reduction relation
—» is the reflexive and transitive closure of one-step
reduction.

One of the simplest stateful objects is a buffer cell.
Such an object has two methods, read and write, in-
tended to read and write a value in the cell. Together
with a read request comes a name intended to receive
the value the cell is holding. Here is a possible defini-
tion.

rec Cell(sv). s bread(r). rdvalue(v), Cell(sv) &
write(w). Cell(su))

2 Monomorphic
signment

Typing As-

This section introduces the notion of types for names,
a system to assigu typings (i.c. scts of name-type pairs)
to terms aud studies some of the properties of the typ-
ing system.

Types and Type Assignment. The set of
types T is built from an infinite set of type-variables
V, by means of a single constructor,

[hica, .. dn:c)

where ¢y,...d&, are sequences of types in T*, and
ly,... 1, are pairwise distinct labels in L. Informally,
an expression of the form [l) :dy,. .. ln:&y) is intended
to denote some collection of names identifying objects
containing n methods labeled with Iy, ... 1, and whose
arguments of method {; belong to types ;.

Type assignment to names are formulas z:a, for
a name in N and « a type in T, where « is called the
formula’s subject and « its predicate. Typings are sets
of formulas of the form {z1:qq,... 2y an}, where no
two formulas have the same name as subject. T', A, ...
will denote typings.

We say typings I' and A are compatible, denoted
' < A, if and only if,

z:a €T and z:3 € A implies o = 3

Type assignment to term-variables are formulas X :
&, for X a term-variable and & a sequence of types

in T". DBases are sets of formulas of the form {X; :
@i,...Xn:an} where no two formulas have the same
term-variable as subject. B, D’,... will range over
bases.

Kinds and Kind Assignment. Kinds de-
scribe constraints on the substitution of type variables.
The set of kinds K is given by all expressions of the
form, :

(ll Zdl, o ln :d")

where l1,...1, are pairwise distinct labels in L and
éq,... 0, are sequences of types in T, for n > 0.
k,k',... will range over K.

Intuitively, a kind of the form (l) : é&1,...0n : @)
denotes the subset of types containing (at least) the
components Iy 1&y, ... ln:6,.

Every type variable must be assigned a kind. Kind
assignments are expressions t: k, for t a type variable
and k a kind. Kindings are acyclic sets of kind assign-
ments? where no two assignments have the same type
variable as subject. K, K',... will range over kind-
ings. We say a type a has a kind k under a kinding
K, denoted by K F a:k, if and only if,

K F [li:ér,.. dqt@n,.] (i, Dy idn)

K t:(lytay, .. dntdn,...) F t:{liid,.. i)

When & is the sequence of types oy -+ -, and l. is
the sequence of kinds &y - - &,,, we write K Fa:k to
mean K Fay:ky,...K Fay,:k,.

Typing Assignment to Terms. The fol-
lowing notation simplifies the treatment of the typ-
ing assignment system. Let & = z;---z, be a se-
quence of names, & = o, -, a sequence of types
and T' a typing. Then, {Z : &} denotes the typing
{Z1:@1,...Tn 1@z} and T Z: & denotes the typing
T U {&:a}, provided names in & do not occur in I
Similarly, B - X :& denotes the basis B U {X:a}, pro-
vided the term-variable X does not occur in basis B.
Finally, I'/Z denotes the typing I' with formulas with
subjects in £ removed.

We will write K, B F P = T if the statement P =
T is provable from kinding K and basis B, using the
rules and axioms of TA in figure 1. Whenever K, B +
P = T for some kinding K and basis B and typing I,
we say P is typable in TA, and call the pair (K,T') a
well kinded-typing for P (under basis B).

Whenever a term P is typable, there cxists a TA
derivation starting form a basis containing only the
free variables of P and producing a typing containing
only assignments on the free names of P. If B is a

2A cyclein a set of kind assignments is a sequence of elements
ty:ky,. ..ty :ky such that ¢4 occurs in k; and t; occurs iu ky,
forn > 1.

81

basis, let BfP be the restriction of B to the free vari-
ables of P. We shall call bases of this form P-bases.
Similarly, if T is a typing, let I[P be the restriction of
T to the free names of P. Typings of this form shall
be called P-typings. '

Lemma 2.1 If K,B + P =T, then every free vari-
able of P appears in B, every free name of P appears
in T, and there is a derivation of K, B[P + P = I'[P.

The following Lemma cnsures that structural con-
gruent terms have the same typings.

Lemma 2.2 I[f K,B + P = I' and P = Q, then
K.BFQ=T.

The following fundamental property of the type as-
signment system TA cnsures that the typing of a term
does not change as it is reduced and is closely related
with the lack of runtime errors.

Theorem 2.3 (Subject Reduction)
IfFK,BFP=>TandP — Q, then K,B FQ=T.

Notice that the converse of subject-reduction does
not hold, since non typable terms can be reduced to
typable ones (e.g. a<tl(a),a >[l(z).0] — 0), and also
because free-names may be lost in the course of re-
duction (e.g. F 0 = { and a<l(v),ab[l(z).0) — 0
but f a<l{v),a>{l(z).0] = @). Also due to the loss
of free names during reduction, if K;,B F P = T,
P— Q,and K,B Q= A, then A[Q CTIP.

A consequence of the subject-reduction property
is that typable programs will not run into type
errors during execution. We say P contains a
possible runtime error, and write P € ERR, if
there exists a term @ such that P — @Q =
wa)(0.a<l(d),a bl (21).P & - & 1,(2,).Pn), 8')
and [l3(@1)Py &+ & ly(d,).Pn] © 1() is not defined;
that is, cither { € {l3,... I} orelsel =l € {ly,...1n}
but len(v) # len(iy).

Corollary 2.4 (Lack of runtime errors)
If P is typable, then P ¢ ERR.

Consider the buffer cell at the end of the previous
section. Since method write expects a name of any type
t (the type of the value the cell holds), and method read
expects a name capable of receiving at least a message
of type value : t, a well kinded-typing for the cell is
given Dby,

({t: () u:(value:t)}, {s:[read:u, write:t], v:t})

Then, substituting w for the type [value:t, print:q]
we have that,

{s:[read: [value:t, print:ce], write:t], v:t}

82

K,BFp:{:a&)

MsG

° KD radlo)> [
K.BFP=>T,; &;:d&

(0):}

)

({a:8} x {v:a})

({a:[li:dq,.. . lnién)} < Ty,

K,B+-P=T

Scor K,B F(vz)P=>T/z

VAR K,B X:& F X(0) = {0:a}

K,B -~ db(ll(.’iil).Pl & & ln(.’ilu).P"] = {(ll l1:1ay,..

Cone K.BFP=>T KDBFQ=A

Anian]}U; T

Iy=<Tl;1<4,5<n)

KD FPOSTUA (= 4)
K,B-X:&a FP=T -9:a
v:

REC B FrecX(5) P T.

(42

K.BrP=T

WEAK

K.BFP=>T z:«

Figure 1: Monomorphic typing assignment system

is also a well-typing for the cell. However, the typing,
{s:[read:|value:t}, write:t, think:u), v:t}

is not acceptable since it would allow us to compose
Cell(sv) with s<think(z), which would surely run into
a type error.

3 Term Declaration

This section introduces a form of term declaration in
the basic calculus. In particular, we obtain a form of
object class declaration from which particular objects
can be instantiated.

Syntax. The set Py is built by adding to the
syntax of P in section 1 the following constructor.

let X(&)=PinQ

where X does not occur free in P and the names in &
are distinct and constitute exactly the free names of
P. A declaration of this form allows to define a term
P once and use it several times in @Q, each one with
different instance names,

Semantics. We now have one more binding on
names, namely, let X(Z) = Pin Q binds names {2}
in P, which justifies extending the definition of free
names with the following rule.

FN(let X(2) = PinQ) = FN(Q)

Notions of free and bound names, substitution and
simultaneous substitution, as well as a-conversion ex-
tend easily. We also have one more binding on term-
variables, namely, the term-variable X occurs bound
in let X(Z) = Pin @, from which we extend the def-
inition of free variables in a term with the following
rule.

FV(let X() = Pin Q) = FV(P) U A(Q)\ {X)}

The semantics of the new constructor is accounted
for by an additional rule in the definition of structural
congruence.

let X(i)=PinQ = Q[P/X):

Normal forms can be proved to exist for closed terms
in Pyy, and so the reduction relation defined in sec-
tion 1 applies to terms in P as well.

We now may declare the ¢lass of buffer cell objects,®

letrec Cell(sv) = s >read(r). r<gvalue(v), Cell(sv) &
write(w). Cell(su)]- -

and instantiate two cells: one holding an integer, the
other holding a boolean value,

- in (wt)(True(t), Cell(bt)), (v f)(5(f), Celi(nf))

for some term-variables True and 5. But we can do
more than this: we can have objects with different
methods waiting for replies from read requests (as long
as the methods include one labeled with value), as in,

baread(r),r >[value(z). P & print(y). Q],
n<read(r'), ' >[value(z). P' & status(z). R]

4 Polymorphic Type Assign-
ment

This section introduces an extension of the monomor-
phic typing assignment system by allowing kinded ab-
straction and kinded application over sequences of
types.

Jletrec X(#) = PinQ is short for let X(3) =
rec X(&).PinQ

Types for Terms. Types for terms fall into two
classes, corresponding to (monomorphic) sequences of
types for names and polymorphic types constructed
using V. Following Mitchell [7] and the terminology of
Martin-Léf’s type theory [9), we will call these classes
universes.

The first universe U; is the set of all (finite) sc-
quences of simple types. Greek letters 7,7’ will range
over Uj;. The second universe U, contains all types in
the first universe, as well as polymorphic types built
from kinded abstraction on type-variables Vt : k.o,
where o,0’,... range over Us,.

As a consequence of the definition, universal quan-
tifiers may only occur at the top level of types. A
polymorphic type of the form Vey:ky. - Vi, thy o7 will
often be written Vt; 1 ky -+ ¢, : ky.m or simply, Yi:k.T.
We say a U, type Vi: k.7 is closed if {f} contains all
type variables in 7.

Typings for terms may now be extended to the sec-
ond universe. We have seen that a typing of the form
{z1: @1,... T : @y} may be written as & : & (we
drop the braces here), by making & = z;---z, and
a = aj - a,. This allows to abstract the typing on
some type-variable ¢t constrained by some kind &, to
obtain a typing Z:Vt:k.& of the second universe.

Polymorphic Type Assignment. We will
write K, B Fy P = T if statement 2 = I is provable
from typing K and basis B using the axioms and the
rules of the system TAy below.

The polymorphic type assignment systern TAy is de-
fined by the rules in figure 1, together with the follow-
ing ones,

K,BrFrP=i0c KD -X:icbQ=T

LeT -
K.,B FletX(i)=PinQ=T
K-t:k,BFP=zi:0
v-1 . t not free in B
N P o diviihg U Ot frocin B)
,B T:Vt:k. K bFa:k
V-ELIM K,B+FP=i o «@

K,B + P = z:0{aft]

where o[a/t] denotes the U, type obtained by replac-
ing each variable ¢t in ¢ by type a. Furthermore, in
rule VAR, & should be replaced by o.

All the properties of TA discussed in section 2 eas-
ily extend to TAv,* in particular the subject-reduction
property, which implies that all terms in Py that may
be assigned a polymorphic types will not run into er-
rors at execution time.

4Particular care must be taken with let-processes. In fact,
let X(2) = PinQ and Q[P/X]; only have the same typings
when P occurs in Q, for else, if P is not typable, the expanded
process may be typable but the let-process not.

83

Consider the buffer cell at the end of Section 2. By
applying rule V-INTRO twice we obtain the typing,

sv s Vi), u:(value:t). [read: u, write:t] ¢

and then, from basis B = {True : Bool, 5 : Nat}, for
some types Bool and Nat, we have that the letrec
term at the end of the previous section has a typing
containing,

{b:[read: [value: Bool , print: a], write: Bool],
n:[read:[value: Nat,status: 8}, write: Nat]}

for some types a and g.

5 A Simpler System

In this scction we study some properties of calculi P
and Pje; and their typing assignment systems TA and
TAv, which will eventually lcad to the formulation of a
simpler polymorphic typing assignment system, suit-
able to derive a simple algorithm to extract the prin-
cipal typing of a process.

System TAy versus System TA. Asit hap-
pens in ML, closed terms (possibly containing let-
declarations) have polymorphic typings if and only if
they have monomorphic typings.

Lemma 5.1 Let P be o closed term in Pyoy. There is
a Ug typing for P if and only if P has a Uy typing.

Proof: (=) We prove by induction on the length of
derivations that if K. B +y P = &:Vt: k.7 then
K.B ty P = &:7. Rules Msg, OBJ, CoNC and
REC arc only defined for U; typings. When the last
rule is V-INTRO or V-ELIM, usc V-ELIM as many times
as needed to obtain a Uy typing. Since X(@) is not a
closed term, the remaining interesting case is LET. So
assume K, B kv P> t:cand K,B-X:0 Fvy Q =T,

for T' a Uy typing. The induction hypothesis is that

K.B ¢y P i:tand K,B - X:0 Fy Q= A, for
A a U, typing. The result follows by rule V-INTRO
followed by LET.

(<) A U, basis is already a Us basis. a

There are however terms in Py (and in P) which
have typings in U, but not in U;. Examples are terms
where a free variable X occurs twice with different

“types, instances of some type o, with X :0 in the U,

basis.

Also similarly to what happens in ML, let-terms
can be expanded thus completely eliminating the need
for let-declarations. In our case, let-term are ex-
panded according to the structural congruence rule
let X(2) = PinQ = Q[P/X];:, yielding terms with

84

the same typings, provided P occurs in Q. The follow-
ing Lemma follows directly from the fact that struc-
tural congruent processes have the same typings (but
see footnote 4.)

Lemma 5.2 Let P be a term in Pyoy and let P! be its
let-ezpanded counterpart. Then,

K.,BFryP=>T < KB+, P =T

Recursion versus Replication. It is well
known that explicit recursion can be eliminated in fa-
vor of replication (cf. {5].) A replicated object of the
form !P is meant to denote an unbounded number of
copies of P, captured by the structural congruence rule
P = P,\P. A recursive object rec X(0).P can be
transformed into a replicated object of the form,

(ve)(cdrecur(d), e recur(d). P'))

where ¢ ¢ FN(P) and P’ is obtained from P by re-
placing free occurrences of X (i) by g recur(a).®

In this way we can replace terms of the form
rec X(9).P by their replicated forms. The corre-
sponding typing assignment system TAyw is obtained
by replacing in TAy, rule REC by rule REPL below.

KBFP=T
REPL, —2i—— T
K.B+HIP=T
On the other hand, replication may be eliminated
in favor of recursion. For example, a replicated term
!P can be transformed into,®

(ve)(cdrepl, rec X(c). ¢ >[repl. P, c<repl, X))

It is then easy to see that systems TAy and TA\ are
equivalent in the following scuse.

Lemma 5.3 Let P be o term in Py, and let P! be its
replicated counterpart. Then,

K,B FvP=2T K,B I'WPI=>F

Proof: (=) Replace in the deduction of rec X(0).P
occurrences of K,B- X : & + X(i) = {w: &} by
K,B F cdrecur(d) = {@:d,c:[recur:@}. Since c is
not free in P we have a deduction of K, B by P =
I 9:é&-c:frecur:@). The result follows by rules Opy,
REPL, CoNc and Scop, in this order.

(<) Suppose K,B F!P' = I. Then we have a
deduction of K, B F P = T and hence one of K,DB-
X :[repl:e] + P = T, where ¢ denotes the empty
sequence of types. The result follows from the fact
that K, B '+ c<drepl = {c:[repl: €]} and K,B F

®Label recur is, of course, arbitrary.
STerm rec X.(X, P) is not a valid term of the calculus.

X(c) = {c:repl: €]}, by rules CoNc, Conc, OBiy,
REc, CoNc and Scop, in this order. [m]

A Simpler Polymorphic System. Al
though equivalent to TAy for closed terms, system TA
cannot deal with terms were free variables occur with
different types, instances of some polymorphic type.
For we often want to be able to type open terms, we
define a simpler calculus together with a simpler poly-
morphic typing assignment system equivalent to TAy,
based on the above results.

Terms of the simplified calculus Py are obtained
from P by replacing the constructor rec X(4).P by
'P. Explicit recursive processes will be compiled into
replication through the method described above. Let-
declarations will be expanded according to the rule in
the structural congruence. The corresponding poly-
morphic typing assignment system TAy is obtained
from TA by replacing rule REC by rule REPL and by
replacing rule VAR by rule VARy below.

K rFa:k
K. B-X:Vt:ht F X(3) = 0:7{a/t}

VARy

Since we don’t have rule V-INTRO anymore we
should start deductions in TAy: with closed bases, that
is, bases with closed predicates. Then we have the
following cquivalence result between the polymorphic
system TAv and its simplified form TAy.

Theorem 5.4 Let P be a term in Py term and let P!
in Py be its replicated, let-ezpanded counterpart. Let
B be a closed basis and T « U, typing. Then,

KBrFryP=>T < KB Fry P =T

Proof: (=) (Outline) When the last rule is V-ELIM
we follow the derivation backwards until we find a rule
other thau V-INTRO or V-ELIM. If this rule is VAR, the
result follows by rule VARy with an adequate choice of
&. Otherwise the result follows by a simple induction
on the structure of deductions. with help from Lem-
mas 5.3 and 5.2.

(<) A simple induction on the structure of deductions
by using Lemimas 5.3 and 5.2. 8]

6 Principal Typings and Typ-
ing Inference

This scction introduces a notion of principal typings,
from which all typings that make a process well-typed
can be derived. Then we present an algorithm to ex-
tract the principal typing of a process, together with
a proof of its correctness with respect to the typing
assignment system TAy. Although there is an algo-
rithm which incrementally builds a typing for a process

in Pet, in the style of Damas and Milner [1], the one
presented here is much simpler and so is the proof of
its correctness.

The algorithm is a simple extension of that in [11],
which in turn is based on that of Vasconcelos and
Honda [10] for the polyadic m-calculus, and on that
of Wand [12] for the A-calculus.

Principal Kinded Typings. A substitution
on types is a mapping s: V — T from type variables
to types. Such a substitution can be easily extended
to types, typings and kinds. Following (8], a kinded
substitution is a pair (K, s) composed of a kinding K
and a substitution s. We say a kinded substitution
(K', s) respects a kinding K if and only if K’ + st:sk
whenever t:k € K. -

A kinded substitution (X s) is more general than
(K',7) if there is a substitution u such that r = us
and (K',u) respects K.

A kinded set of equations is a pair (K, F) composed
of a kinding K and a set of equations of the form
a = (3, for @ and § types in T. We say a kinded
substitution (K, s) is a unifier of (K', E) if and only if
(K, s) respects K' and sa = sp3, for all « = 3 € E.

Theorem 6.1 (Kinded unification [8]) There

18 an algorithm which, given any kinded set of equa-
tions, computes a most general unifier if it ewists, and
reports fatlure otherwise.

We say that a kinded typing (K',A) is an instance
of (K, T) (or alternatively that (K,T') is more general
than (K',A)) if there is a substitution s such that
(K',s) respects K and sI' C A. One important fact
about instances is that every instance of a well-typing
is also a well-typing.

Lemma 6.2 If K,B +y P = T and (K',A) is an
instance of (K,T), then K'.B Fy P = A.

All well-typings for a given process.are instances of
its principal kinded typing. We say a kinded typing
(K,T) is principal for a process P under basis B if
and only if,

i. K,B Fty P=>T, and

il. if K',B Fy P = A, then (K',A) is an instance
of (K,T).

It should be obvious that the principal typing of a
process, when it exists, is unique up to renaming of
type variables, and that it contains exactly the free
names in the process.

Theorem 6.3 (Existence of principal typings)
If P is typable then there ezists a principal kinded typ-
ing for P. It can be effectively computed.

85

The Algorithm. The algorithm builds from a
basis By and a process Py with recursive terms com-
piled into replication and let declarations expanded,
and with all bound names renamed to be distinct, a
typing and a kinded set of cquations to be submitted
to the kinded unification procedure.

Suppose the algorithm to be described produces a
typing Ty and a kinded set of equations (K, F'), and use
kinded unification on the set of equations. If (K',s)
is a unifier of (K, F), then sy is a well-typing for P
under kinding K’ and basis By. Conversely, if Py is
typable, then all its P-typings under kinding K’ and
basis By are of the form sy Py, for (K',s) a unifier
of (K, E).

If T is a typing, we will write T'a for the type as-
sociated with name a in I’y and T'a for the sequence
of types associated with the sequence of names a in T,
Similarly, we will write BX for the U, type associated
with term variable X in basis B.

Input: A basis By and a term Py in Py with all
bound names renamed to be distinct.

Initialization: Set E = §, G = {R}, Ty to a
typing assigning to all names in Py distinct type-
variables, and K to a kinding assigning to all vari-
ables in Ty an empty kind ().

Loop: If G = @, then halt and return (K, E). Oth-
crwise choose a goal P from G, delete it from G
and add to G, E and K, new goals, equations and
kind assignments as specified below.

Case P is adl{v): Generate the equation
Pya = t and the kind assignment t: {(I:T3),
for t a fresh variable.

Case P is a b{ll(i,l)Pl &"'&ln(j”).Pn]:
Generate the cquation Tga = [
Lody,... by :Todn] and the goals Py, ... Py,

Case P is Q,R: Generate the goals @ and R.

Case P is (vz2)Q or !Q: Generate the goal Q.

Case P is X(d): Generate the equations
Lot = 7{a/t} and the kind assignments %:k,
for BgX = Vi:k.7 and @ fresh variables.

To build the principal kinded typing of a term Py,
we use the above algorithm on P, and then the kinded
unification algorithm on the resulting kinded set of
equations (K, E). If (K, E) has no solutions, then Py
is not typable under basis Bq. Otherwise let (K', s) be
the most general unifier of (K, E). Then, (K', sT'¢[Py)
is the principal typing of Py. If follows by Lemma 6.2
that every instance of (K',sTo[Py) is a well kinded
typing for F,.

Correctness of the Algorithm. Follow-
ing [10, 12], we prove that the algorithm preserves

86

a certain invariant and terminates. To simplify the
statement of the invariant, we introduce some nota-
tion. Let (K’, s) be a kinded substitution and (X, E) a
kinded set of equations. We say (K', s) solves (K, F),
denoted (K',s) E (K, E), if and only if (K',s) is a
unifier of (K, E). Given a typing I'y and a basis By,
we write (K,s) E P to mean K,By Fy P = sTg,
for some process P. If G is a set of goals, we write
(K, s) E Gifand only if (K, s) = P for each process P
in G. Finally, we say (K', s) solves (K, E, G), denoted
(K',s) E (K,E,G), if and only if (K',s) | (K, E)
and (K',s) = G. The invariant of the algorithm is as
follows.

(Soundness) V(K',s).(K',s) E(K,E,G) =
I(,, B(_) I-VI Po = SFQ

(Completness) K,By by Py =T =
AK',s).(K',s) E(K,E,G)AT[Py = sDo| Py

At termination, when G = @, we have,
V(K',s)(K',s)E(K,E) = K' B Fy Py = sy

K,Btryw P=>T =
(K",).(K',s) = (K, E) AT Py = sTo| Py

so that the algorithm only produces well kinded typ-
ings for the input process, and if the input process is
typable, then its P-well-typings under kinding X' and
basis By are given by sI'g[Py, for some unifier (X', s)
of the kinded set of equations produced.

Theorem 6.4 (Termination) The algorithm always
terminates.

Proof: Each action generates subgoals involving
terms strictly smaller than the original. 0

Theorem 6.5 (Correctness) The invariants are es-
tablished by the initialization step and preserved by
each case in the loop.

Proof: (Soundness) The first part is trivial; the sec-
ond follows by a simple induction on the structure of
deductions.

(Completeness) For the first part take s to be the sub-
stitution that assigns « to t whenever ©:t € Ty Py
and ¢ : a € TPy, and take K’ to be K. Then
(K,s) unifies (K,0); and Ky Py = sTy implies
K bt Py » I[Py by lemma 2.1, which in turn im-
plies K t) Py > I’ by consecutive applications of rule
WEaK; and TPy = sT[P.

The proof of the second part follows by induction on
the structure of terms. Cases other than X(v) are
proved in [11].

Case X (7). Assume K, DBy by X(2) = I, We need
to show that 3(K',s) : (K',s) E (KU {@:k},{Tev =
a{a/t}}) AT Py = sTyJPs. By the typing rules we
know that K+ 8 : k and TIRy = {3 : a{B/f}}.
Make s = {i — B,T% — «{3/t}}. Then we have
that K kv si: sk = k since neither @ nor I'v oc-
cur in ki and that sTyo = sa{B/t}; and also that
{o:6{p/t}} = s{v:T9}. o

7 Related Work and Further
Issues

There is a remarkable parallel between the typing as-
signment system prescnted in this paper and that of
ML. Two of such similaritics were discussed at the be-
ginning of Section 5. Another one concerns let-terms
and function application in ML.

There are ML-terms of the form let = Min N
that can be typed whercas the corresponding function
application (Az.N)M cannot. Now, we have no form
of application and abstraction over processes, but we
have a device by which we can simulate the sharing of a
process (c.f. [5]). For example the idea of sharing term
P in term Q via the variable X, can be materialized
into, '

(vey(le {>[§hare(i¢).1’], Q")

where ¢ is a fresh name and Q' is obtained from Q by
replacing occurrences of the form X (a) by cdshare(a).
Notice the usage of replication, needed for effective
sharing of process P when X occurs more than once
in Q. Similarly to ML, let X (&) = P in Q may be ty-
pable, whereas (ve)(lc > [share(Z).P], Q') may no be so,
for X may occur in Q with different types (instances
of a polymorphic type for P), whereas occurrences of
c in @ must all have the same type. This is a direct
consequence of the decision of not having polymorphic
types for names.

In general, typing constraints have a drawback in
that there are many meaningful and useful programs
that cannot be typed. The present system is no ex-
ception. In particular, encodings of recursive data
structures such as natural numbers and lists cannot
be typed in the present system.

A possible extension to the type assignment system
here proposced encompasses adding a type constructor
denoting a recursive type and a mapping from types
into (possibly infinite) labeled trees. Then, by identi-
fying type cquivalence with cquality of the associated
trees, we could introduce a rule allowing to replace a
type in a typing by an equivalent type. Such was the
approach taken by Honda and the author [10] for the
polyadic 7-calculus. The system obtained enjoys all
the desirable properties, including the subject reduc-

tion and the existence and computability of principal
typings.

Conclusion

We presented a basic calculus aiming to capture some
essential notions present in systems of coucurrent ob-
jects communicating via asynchronous message pass-
ing, together with a polymorphic typing assignment
system for the calculus. Types are assigned to names
and are intended to describe the kind of messages an
object associated with the name is able to reccive.
Terms are assigned a collection of name-type pairs
called typings, making it possible to abstract the typ-
ing on some particular type-variable, thus obtaining a
polymorphic typing. A form of let declaration allows
to define an object of a polymorphic typing and to use
it several times with different types, instances of the
declared object.

The typing system assigns a type to each free name
in a program, thus specifying in some sense the inter-
face of the program. Programs that conform to the
typing discipline were shown not to run into errors.
Furthermore, there is an algorithm to derive the prin-
cipal typing of a program, from which all typings that
make the program well-typed can be extracted.

The polymorphic system proposed shows rcmark-
able similarities to ML. In particular, like in ML, the
fact that accounts for the extra flexibility of the poly-
morphic system is not so much let-terms themselves
but else the existence of variables of a polymorphic
type. Furthermore, we saw that there are let-terms
of the form let X(Z) = Pin Q@ that can be typed
whereas the corresponding term where P is shared in
Q@ via variable X cannot.

The approach seems an interesting basis from which
explore further aspects present in objects, namely the
notion of inheritance (by introducing new or redefin-
ing existing methods in objects) and that of subtyping
(by introducing new components in a record type) as
well the relationship between these. Also, an exten-
sion of the typing system to include recursive types,
indispensable to type objects denoting basic data such
as natural numbers and lists, can be easily done along
the lines of [10].

On the pragmatic side, one should study the applica-
bility of the calculus as a means to describe semantics
and types of object-oriented concurrent programming
languages such as Actor based languages, Concurrent
Smalltalk, ABCL and POOL, as well as a clean in-
corporation of functions as a particular discipline of
object definition and usage.

87

References

(1]

(2]

3

(4

(5]

(6

(7

8

[9]

- [10]

(11]

[12]

Luis Damas and Robin Milner. Principal type-
schemes for functional programs. In 9th ACM
Sympgsium on Principles of Programming Lan-
guages, pages 207-212, 1982.

Carl Hewitt. Viewing control structures as pat-
terns of passing messages. Artificial Inteligence,
8(3):323-364, 1977.

Kohei Honda. Types for Dyadic Interaction.
In Proceedings of CONCUR’93, Springer-Verlag,
LNCS, August 1993.

Kolei Honda and Mario Tokoro. An Object Cal-
culus for Asynchronous Communication. In 1991
European. Conference on Object-Oriented Com-
puting, pages 141-162, Springer-Verlag, 1991.
LNCS 512.

Robin Miluer. Functions as Processes. Au-
tomata, Language and Programming, Springer-
Verlag. LNCS 443, 1990. Also as Rapport
de Recherche No 1154, INRIA-Sophia Antipolis,
February 1990.

Robin Milner. The Polyadic n-Calculus: a Tuto-
rial. ECS-LFCS 91-180, University of Edinburgh,
October 1991.

John C. Mitchell. Handbook of Theoretical Com-
puter Science, chapter Type Systems for Pro-
gramming Languages, pages 366-358. Elsevier
Science Publishers B.V., 1990.

Atsushi Ohori. A compilation method for ML-
style polymorphic record calculi. In 19th ACM
Symposium. on Principles of Programming Lan-
guages, pages 154-165, 1992.

P. Martin-Lof. Intuitionistic Type Theory. Bib-
liopolis, Naples, 1974,

Vasco T. Vasconcelos and Kohei Honda. Principal
typing-schemes in a polyadic w-calculus. In Pro-
ceedings of CONCUR’93, Springer- Verlag, LNCS,
August 1993.

Vasco T. Vasconcelos and Mario Tokoro. A typing
system for a calculus of objects. In Int. Symp. on
Object Technologies for Advanced Software, 1SO-
TAS'93. Springer-Verlag. LNCS, November 1993.
(To appear.).

Mitchell Wand. A simple algorithm and proof for
type inference. Fundamenta Informaticae, X:115-
122, 1987. North-Holland.

