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SOME NON-ALIASING RELATIONSHIP FOR SECOND-ORDER MODEL

Masahide KUWADA (£ H IEF)

Faculty of Integrated Arts and Sciences
Hiroshima University

ABSTRACT : We consider the second-order model based on a design which is derived from a
balanced array of strength 4 and 3 symbols. In this model, when the information matrix of a
design is singular, we present some non-aliasing relationship among the factorial effects not to be

negligible.

1. Introduction

In a practical experimentation, the most interesting factorial effects are the main effects, the next
are the two-factor interactions, and so on. Thus the experimenter want to carry out the
experimentation such that the main effects are not confounded (or aliased) with each other, and
furthermore that if they are confounded with some effects, then these are pbssibly higher order
interactions which may be negligible. In a (fractional) factorial experiment, the aliasing (or
confounding) relationship among the factorial (and/or block) effects has been studied as the
defining relationship (e.g., Finney [2]). The extended concept of resolution for 2 factorials (c.g.,
Yamamoto and/or Hyodo [5,13]) and balanced fractional 2™ factorial (2°-BFF) designs of even
resolution (e.g., Shirakura [9,10]) can be regarded as the aliasing relationship in a certain sense.

The characteristic polynomial of the information matrix for the second-order model and the
economical second-order designs of 3 factorials were presented by Hoke [3,4]. The second-order

model based on 3™ factorials contains the general mean, the linear and the quadratic components of
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the main effects and the linear ny linear ones of the two-factor interactions. Under somé
conditions, a balanced array (B-array) yields a balanced design (e.g., Kuwada [7]). By using the
algebraic structure of the multidimensional relationship, Kuwada [8] obtained an explicit expression-
for the characteristic polynomial of the information matrix of 3"-BFF designs of resolution V
derived from B-arrays of strength 4. The inversion of the information matrix of 3"-BFF designs of
resolution V was presented by Srivastava and Ariyaratna [llj using the another technique. Optlmal
"-BFF designs of resolution V were independently obtained by Ariyaratna [11 and Kuwada [6].
An expression for the trace of the variance-covariance matrix of a balanced (2,0)-symmetric design
of resolution V for 3™ factorials was also obtained by Srivastavaand Chopra [12].

In this paper, attention is focused on finding some non-aliasing relationship for the second-
order model when the information matrix of a 3”-BFF design derived frbm a B-array of strength 4
is singular. In this situation, there are three cases: (A) the general mean and all main effects are
estimable and are not confounded with the two-factor interactions, (B) all main effects are estimable
and are not confounded with the general mean and the two-factor interactions, (C) the linear
components of the main effects are estimable and are not confounded with the general mean, the

quadratic ones of the main effects and the two-factor interactions.

2. Preliminaries

Let @oand 61 be an nox1 vector of the factorial effects to be estimated and an n1x1 one not of |
interest and not assumed to be known, respectively, in the absence of the remaining factorial
cffects. Further let y(T) be a vector of N observations based on a fraction Twith m(=4) factors.
Then the linear model may be written as

Ey(T)] = Eo®o+ E1@1 and Var[y(T)] =k, (2.1)
where E; (i=0,1) are Nxn ; submatrices of the design matrix [Eo; E1](= E 1, say). Here g[y] and
Var[y] denote the expected value and the variance-covariance matrix of a random vector y,
respectively, and I, is the identity matrix of order p. The normal equation for estimating (6¢'; € 1')
(= @/, say) is given by

MuOo+ M01é1=E(')'y(T) and M10é0+M11é1=E1'y(T), (2.2)
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where M=E{'E; (1,j=0,1). Throughout this paper, we assume that M is nonsingular because we
want at least to cstﬂnate 6o. Then it follows from (2.2) that |
6 0= Mw'Edy(T)~-Mw'Mnu 6
and ,
6 1= (Mu-MuMo™Ma) (EY-MwuMw Ed)y(T) if det(Mu-MwMow Ma) = 0,
(Mu-MwoMw Ma)}(EY-MoMow Ed)y(T)
+ {h-(Mu-MoMo Mo (Mu-MoMe'Ma)}z  if det(M1u-MioMw'Ma) =0,
where det(A) and A® denote the determiné.nt of a matrix A and a generalized inverse of a matrix A,
i.e., AA®A=A, respectively, and z is an arbitrary vector of size nix1. If det(M1—M1oMow Mo)=0,
then @ and @1 can be estimated separately . Thus in this paper, we consider the situation in
which det(M n-M 10Moo Mo;)=0. Then we get
6 0= Mw ' Edy(T)-Mw Mu(M1n-MoMewMa) (EY-MwoMw Ed)y(T)
- Mo Mo {EL~(Mu-MoMw ' Mo)*(Mu-MoMw'Ma)}z, (2.3a)
6 1= (Mu-MiMo'Mao)(EY-MunMw Ed)y(T)
+ { l-(M1~ MM Mo)* (Mu—-MoMe M)} z, (2.3b)
and hence
£[6 o] = @0+ Mw Mo{ bi-(Mu-MoMw Mo (Mu-MoMew Ma)}(61-2),
€16 1] = (Mu-MwMw'Ma)* (Mu-MuMoMa)6:
+ {h-(Mu-MuoMw’Ma)* (Mu-MoMe " Mao)}z.
Therefore under det(M w)=0 and (det(M n-MnMw” Ma)=0, a necessary and sufficient condition
for @0 to be estimable and not to be confounded with @1 is that
Mo Mo{L~(Mu-MuMw Ma)?(Mu-MoMe'Mo)} = Ogxo,
and hence
Mo {F,~(Mu-MuMo™ Mo)8(M1u-MwoMw'Ma)} = O« (2.4)
where G, denotes the pxq matrix with all zero. Note that under (2.4), we have
: Var[é o] = X{Mo™ + Mo Mo (Mu—MmMoo'le)ngMoo'l}.

The following lemmas can easily be proved.

Lemma2.1. Let (ﬁ b) (= A, say) be a positive semi-definite matrix with ac=b’. Then we have
Cc
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(0 0) ifa=c=0.

Lemma2.2. Let (ﬁ g C) (= A, say) be a positive semi-definite matrix with a>0 and det(A)
€
c e f

—adf+2bce—ac’-b¥_c*d=0. Then we have

A = {1(ad-b)}( _% -: (0)) if ad-b%= 0,

\0 0 O

{1/(af—cz)}({) 0 g) if ad-b*= 0, af-c? = 0,
\-c 0 a

(1(/)a (0) 8) if ad-b* = af-c?= 0.

0 00

-3. TMDPB association scheme and its algebra

Let S(aiag)={(u"u2%) | 1<ui<uz<m}, where a:2=00,10,01,11. Then | S(a) | = (alTaz)
(=n(aiaz), say), where | S | denotes the cardinality of a set S. Suppose a relation of association is
defined among the sets S(aia) in such a way that (u"u,*)eS(aiaz) and (vi"v2*)eS(biby) are the a-th
associates if | |

| {u’®,u} 0 (v} | = min(o(anaz),0(byb2)) - o,

where if a:=0 (or bj=0), then u;*® vanishes (or v;*® vanishes), and if a=0 (or b;=0), then u;**=u; (or
vi®=v;). Especially, when 2:2:=00 (or bib;=00), {u®,u®}={4} (or {v:’®,v2*}={¢}). Here
min(a,b) and w(ai,az) denote the minimum value 6f integers a and b, and the number of non-zero
elements in the vector (aja), respectively. The scheme thus defined is called the triangular
multidimensional pértially balanced (TMDPB) association scheme (see Yamamoto, Shirakura and
Kuwada [14,15]). l

Let A %% and D &% be the n(alaz)xn(blbz) local association matrices and the t(ni)x t(m)

ordered association matrices of the TMDPB association scheme , respectively, where t(m)=1+2m
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+(I§l ). Further let Ag*®>" and Dg***"" be the matrices such that
AR (= {AFOPIY) = 30 %0 4a, b0 )AL for artaz<bitby,
Dp#(alabblb)) (___ {Dﬂ#(blbzalﬂz)}’) =3 ,Zﬁa(81+a2bl+b2)Du(al%blb2) ( for al+a2§b1+b20

where

o +ayby ar+a:z m-a-a
Z (ag+ayby+by) = %Zﬁ“(al bM/{(a:Taz)( aa, )b, + bz-ax-az+ a)ks

@tapbyth) _ arta:-fy ata-r\m-a-a:-B+rym-ai-az-f y bi+b:-f 2
Zﬁa Zr ( r )(a1+az-a)( r ){(bl+bl'al'az)(bl+b2'al'a?-)}

/{(bl+ bl'?l'az+ r)}’

d=Cg)-(gD-
Some properties of Ao, D% A He22%) and Dg*®P®) gre cited in the following:
A2 - In(ala?), A o) { Au(%blba)}r’ Aﬂ(alazqé) Ay(clcablbz) = Yo p(aiag,bibs, ascic, BaY)
x AL % alazpo(alazaaa;) = Ivm), O — { Da(ala”blbl)}’, D= P (G%00) - dc,d,dc.d,
xZa p(aiasbibz, 036102, B, y) D™, g Ag*t% = [n(a0)), Ap"(a“‘”c"")A @) = &g
x A gHCribP), rank(A ﬁ*(alazblb;)) =¢p ZapSs Dﬁ#(al%ala» = L), Dgt@R2ced p Hoid0b)
= By Bed Sesdy D", rank(Dg"eo) = ¢ 3.1)
where &gy is the Kronecker's delta,
p(asabiba, ;i B,y) = =i (3 b%(* @ ?: ’zc-)(*a’_z)_*; a)
><(bn+ bz '(f’b) * +a)( m-ai-az-bi-b.+(a,b) *-a ).
(b,c)*-y -k citc:-(a,c)*+B8-(b,0)*+7 +k
Here (a,b)* = min(ar+az, br+b,), (a,0)* = min(artas, crtcz) and (b,c)* = min(bitb,, crtcy).
Let Q = [D "™ |aua, bibz = 00,10,01,11, 0= B < min(art+as br+bs)] which is the TMDPB
association algebra generated by the linear closure of twenty six matrices D g*****, and further let

Q, = [Dg"®>* | B<min(a+asbr+bs)] for B=0,1,2. Then (3.1) shows the following (see [15]):

Proposition 3.1. (i) The Qg (B=0,1,2) are the minimal two-sided ideals of Q, and QQ, = f)pyS?.ﬂ.
(i) The Q is decomposed into the direct sum of three ideals Qﬁ, 1€, Q=Q0@®D U@ Q.

(iif) Each ideal Qg has D g***™* as its basis and it is isomorphic to the complete 4x4, 3x3 and 1x1

matrix algebras with multiplicities ¢g for 3=0,1,2, respectively.
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4. Second-order designs derived from B-arrays

Consider a fractional 3" factorial experiment. Let T be a fraction derived from a B-array of
strength 4 and size N having m constraints, 3 symbols and index set {A ijy, | iotirti=4, i=0}
which is written as BA(N,m,3,4; {\ i, i, }) for brevity. In all our evaluation, we code the three
symbols of a factor as 0, 1 or 2 and employ the standard orthogonal contrasts used in the 3™ case;

iz., -1, 0, 1 and 1, -2, 1 for the linear and the quadratic contrasts, respectively. Then the second-

order model for T'may be written as

EY(T)]=Er® and Varly(T)] =k,
where 8 '=({8(¢)}; {8(t)}; {6(D)}; {6(t:'t2)}). Here 8(¢), 6(t"), 8(F) and O(t:'t ") denote the
general mean, the linear and the quadratic components of the main effects of the factor t, and the
linear by linear components of the two-factor interactions of the factors t and ts, respectively,
where 1<t=<m and 1<t <t;<m. Then from Proposition 3.1, the information matrix E+’E r(= Mr,

say) is isomorphicto || kg || (= K, say) for $=0,1,2, where

Ko® = Y00 Ko =my, kP =mYy, ke = {m(m-1)/2}" Yo Ko' —(2y400+y301)/3
+H(M-1)y,00 Ko = Yyt m-1)y, Ko™ = {(m-1)/2} " 2(2y,,5t1,,)/3+(m-2)y 50}, k6 = 2y,
ot @Dy, K = {121 20t @2y, }s K0P = (ot Hso Yoy 9+ 2(M-2) (2 0
+Y,)3H{(@M-2)M-3)214e  K1° = NatVs0r)/3 Vo K = Yago=Yarp K1 = (M-2)"*{(2y,,,
a3 Yisobs K1 = 2aoo=Yaor Yoy K1 = (M2) Aypvp)s K1™ = (A s0qt Haort¥200)/9
HM-4) 2V Y2 3-0-3N0io K2 = (H 00t #3026/ 9-2( 2 g V1203 H Y ouor (4.1)
Here kg’ = kg’ and |
w0 = 7\4001-7\040+7\.004+4(7\.310+7\301+)\130+}.031+7\.103+7»013)+6(7\220+)\202+7\m)+12(7\211+7»121+7\112),

Yoso = Naoo+Aoos—4(As01+A103)+6A202,

Yo = —A400+Aoos—3A310-2h301— A 130+ Aosr+2A103+3No13—3(A220- Moz Aan—A112),
Vo1 = A400-2N040+Aoost+Asio+4 Asoi—5h1so-5SAosr+4A10s+Ahors—3(Az20-2 202+ Nozz—A211+ 2A 21— Az ),
Y130 = —Aa0o+Aoos—A310+2( Aso1—A103)+ho13+3(A211—An2), (4.2)

Yoo = 7\4oo+}\004+2(7\.310+7\013)+7\220-2?»202+7\.022—2(7»211+7\.m+7\112),
Yoo = )\.400+4}\.040+)\.004—27\.3104-4()\.301+)\.130+)\.031+)\.103) 2)\013—3(}\.220—27\.2020-7\.022) 6()»211+7\.121+)\.112),
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Vo1 = —haootAooa—2(A301~A130+ Ao31—A103)+ 3(A220-hoz2),

Y21 = 7\400+7\004;7»310—7\.013—2()\.220+7\.m2+7\.(mz)+7\211+47\.121+7»112

(see Kuwada [8]). Thus det(Mr )=0 if and only if det(K )=0 for some § (=0,1,2). Note that the
first, the second, the third and the last rows and columns of 4x4 matrix Ko correspond to {06(¢)},
{8(H}, {8()} and {B(t:'t")}, respectively, the first, the second and the last rows and columns of
3x3 one K 1 correspond to {8(t")}, {8()} and {B(t't)}, respectively, and the 1x1 one K .

corresponds to {0(t:'t2")}.

5. Non-aliasing relationship for second-order model
At the beginning, we consider the case (A), i.e., the general mean and all main effects are
estimable and are not confounded with the two-factor interactions. In this case, @ o'=({0(¢)};
{8(th}; {6(H)}) and® 1’=({0(t1’t 2)}) in (2.1). Note that Mo corresponds to {6(¢)}, {6(t)} and
{6(H)}, and M1, corresponds to {8(t:'t2)}. Let Kg= || Kp(ij) || for B=0,1 (3,j=0,1), where Ko (00)
and K 1(00) are the first 3x3 and 2x 2 submatrices of K¢ and K i, respectively, and the remainings

are the submatrices of K'g of appropriate size. Then we have the following:

Theorem 5.1.  Let T be a BA(N,m,3,4; {\ iy i, i, }) With det(M r )=0, then a necessary and
sufficient condition for the general mean and all main effects to be estimable and not to be
counfounded with the two-factor interactions is that det(K g (00))=0 for 3=0,1 and that K y(11)=0 if

det(K y)=0 fory=0,1.

Proof. It follows from Proposition 3.1 that M is isomorphic to K g (00) for f=0,1, and hence
det(M)=0 if and only if det(K g (00))=0. Under det(M w)=0, M u—MwuMw” My is isomorphic to
Ks(11)-K s (10)K p (00)* K g (01) for B=0,1 and K », and hence det(M7)=0 if and only if det(Ks (11)
~Kp(10)K §(00)" K (01))=0 for some B (=0,1) or K »=0. While the left hand side of (2.4) is iso-
morphic to Kp 01){1-(K s (11)-K s (10)K g (00)" K (01)) (K s (11)- K (10)K g (00)" K g (01))}=K s (01)
 if det(K g =0 and if det(Kp (00))=0 (=0,1), 0 if det(K o)=0, 0 if det(K1)=0 and vanish if det(K »)
=0, where 0, =0, «1. Therefore (2.4) implies that K y (11)=0 if det(K y)=0 and if det(K y (00))=0 for

v=0,1. This completes the proof.
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Note from (4.1) and (4.2) that K»=0 if and only if Aze=A22=hezz=A211=A121=A112=0.
Remark 5.1. The (2.3a,b) show that Ag**"'9@ are estimable if det(K s )=0 ($=0,1,2).

Example 5.1. (I) Let Thea BA(12,4,2,4;{0,0,0,0,1,1,1,0,0,0,0,0,0,0,0}), where the index set
{Nigiin} ={ Aaoo, hoso, Ans, A3ro, A1, A 130, A1, A103, N3, Ao, Aoz, hez, A1, Az, Az} Then from (4.1)
and (4.2), :

Ko={12 -4 12 O\ g _( 6 0 -42\, k,=0.
0

-4 6 -8 0 0 18
L-12 8 66 0) L4‘/§ 0 8)
0 0 0 0

Thus det(K ¢)=0, det(K 1)=0, K =0, det(K p (00))=0 for f=0,1 and K 0 (11)=0. Therefore @ o'=
(6(9),0(1%),06(2"),0(3Y),0(4%),0(12),0(2%),0(3%),6(4?) is estimable and is not confounded with @ ¢
=(0(1'2"),0(1'3"),06(1'4"),0(2'3"),0(2'4"),0(3'4")). Furthermore A*'*'@ is estimable.

(II) Let Tbe a BA(12,4,2,4;{1,0,1,0,0,0,1,0,0,0,1,0,0,0,0}), then we get

_{12 2 6 0 _{(9 3 0 -
Ko=I22 5 % o) Ki=[3 5 0),1(2 16,
l6 -5 57 OJ 000
0 0 0 16

and hence det(K 0)=0, det(K1)=0, K2 =0, det(K g (00))=0 for f=0,1 and K 1(11)=0. Therefore Qo is
estimable and is not confounded with @ 1, and also A*™™@ and A XY@ are estimable, where

O and O are the same vectors as in (I).

Next we consider the case (B), i.e., all main effects are estimable and are not confounded with
the general mean and the two-factor interactions. Then @ ¢"=({0(t)}; {8(Y)}) and® 1"=({8(9)};
{0(t't2)}) in (2.1). Let Ko'=P 'KoP (= || Ko'Gi) || , say), K:'=K1(= || Ki'Gj) || , say), and K 2=

K, where

p=1(0 0\.

g300)

Here K g'(00) are the first 2x2 submatrices of K" corresponding to {6(t")} and {8(t)}, and the

0

[ N e Nan)
SOO M

remainings are the submatrices of K's* of appropriate size for =0,1. Then the following yields:

Theorem 5.2. Let T be a BA(N,m,3,4; {\ iyi, 1, }) with det(M r)=0. Then a necessary and suffi-

cient condition for all main effects to be estimable and not to be confounded with the general mean
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and the two-factor interactions is that det(K §'(00))=0 for =0,1 and that the last column of K ¢ is
proportional to the third one (i.e., the last column of Ko is proportional to the first oize) ifdet(K o)

=0, and Ki'(11) =0 if det(K:")=0.

Proof. From Proposition 3.1, Mw is isomorphic to K"00) for $=0,1, and hence M u-MoM
x Mo is isomorphic to Kg'(11)-K p'(10)K p'(OO)"K g'(01)and K,". Thus as shown in Theorelln 5.1,
det(Mw)=0 if and only if det(K §'©00))=0 for f=0,1, and under det( M w)=0, det(M1)=0 if and only
if det(K "(11)-K "(10)K 5°(00)" K 5'(01))=0 for some B (=0,1) or K2"=0. We consider the case
det(K 0)=0 and det(K o (00))=0. Let Ko(11)-K o'(10)K 0'(00)" Ko'(Ol)a(?): 2:) (= A", say) which
is positive semi-definite and a*c*=b*%. Now we assume a*=0, then from Lemma 2.1, it holds that
A =(8 do*) , where d*=0 if c*=0 and d*=1/c* if c*<0. Thus from (2.4), K ¢'(01){12 -(K c'(11)
—Ko'(10)K ¢'(00)" K o' (01))X K 0’(11)- K o'(10)K 0'(00)” Ko'(01)j}=(x*, (1-d*c*)y*), where x* and y*
are the 2x1 vectors corresponding to the first and the last columns of K ¢'(01), respectively. Hence
(2.4) implies that x*=0,. The (1,1)-element of K ¢'(11) is ke*=N=0. On the other hand, x*=0-
implies that the (1,1)-element of Ko'(11)-K o"(10)K ¢'(00)" K ¢'(01) is a*= k" —x*'K ¢ (00)" x*= ko".
This is contradict. Therefore a*=0. From Lemma 2.1, A® =(1 / 6‘ * 8) , and hence K ¢'(01){/>
—~(Ko'(11)-K 0'(10) K0'(00)* Ko'(01)X(K 0’(11)-K 0’ (10)K 0'(00)* K 0'(01)) }=(02, -(b*/a*)x*+y*). Hence
(2.4) implies that a*y *=b*x*. From the definition of a*, b* and c*, we have

a* = ko® - x*' K o' (00 'x*,

b* = ko™ - x* K'(00)y *=ko" — (b*/a*)x* K ¢'(00)'x*,

c* =Ko - y* Ko (00)'y* = ki* — (b*/a*)’x* K ¢'(00) " x*.
Thus since a*=0 and a*c*=b*?, if det(K¢")=0 and if det(K ¢'(00))=0, then a*k¢”=b*q" and a*k¢"=
b*ke®. Therefore (2.4) implies that the last column of K¢ is proportional to the third one. By
using the argument similar to Theorem 5.1, the (2.4) implies that K1°(11)=0 if det(K 1")=0 and if

det(K1°(00))=0. The proof is complete.

Remark 5.2. It follows from (2.3a,b) that A®®@"0 and A *"V@", are estimable if det(K o)
20, and A¢"""™@ " are estimable if det(K §")=0 (B=1,2), where 8 0" = ({6(¢)}) and O 1" =
{0(t ). |
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Example 5.2. Let Tbe a BA(8,4,3,4;{0,0,0,0,0,1,1,0,0,0,0,0,0,0,0}). Then from (4.1) and

(4.2), we get
22 0 0 0 ge_(2 0 O\ xr.
Ki=10 so 20 o X7=(0 18 0)’K2 0
0 20 8 OJ 0 0 0
00 0 0

Thus det(K 67)=0 for =0,1,2, det(Ky'00))=0 for y=0,1, the last column of K¢ is proportional to
the third one, and K ,'(11)=0. Therefore 8¢"= (8(1'),8(2"),8(3"),6(4"),8(1%),0(2%),6(3%),8(4%) is.
estimable and is not confounded with @1” =(8(¢),0(1'2"),8(1'3"),0(1'4"),08(2'3"),8(2'4"),6(3'4")).
However since det(K's")=0 for all B, no linear combinations of the elements of @:" are estimable.
Here det(K0(00))=0, where K 0(00) is the submatrix of Ko given in Theorem 5.1. Thus T'does not

satisfy the conditions of Theorem 5.1.

Finally consider the case (C), i.e., the linear components of the main effects are estimable and
are not confounded with the general mean, the quadratic ones of the main effects and the two-factor
interactions. Thus we have 8¢ = ({8(t")}) and 81" = ({6(¢)};{0(D)};{6(t't2")}) in (2.1). Let
Ko =Q'KoQ (=1l Ko"(j) Il , say), Ki"=K1(= || K1"(j) || , say), and K™= K2, where

_(01 00 |
Q 1 00 0\
lO 01 OJ
00 01 _
Here K" (00) are the first 1x1 submatrices of K™ which correspond to {6(t")}, and the remaining

K " (ij) are the submatrices of K s~ of appropriate size (3=0,1). Further let K" (-(j)) be the
(i,j)-cofactors of K ™ for p=0,1 (i,j=0,1,2,3 if B=0; i,j=0,1,2 if =1), where k™" are the (i,j)-

elements of Ks™. Then we get the folldwing:

Theorem 5.3.  Let T be a BANN,m,3,4; {\ iyi,i, }) with det(M r)=0. Then a necessary and suff-
cient condition for the linear components of the main effects to be estimable and not to be con-
founded with the general mean, the quadratic ones of the main effects and the two-factor infer-
actions is that det(K p” (00))=0 for B=0,1 and that K " (~(3,0))=0 if det(K o")=0 and if K 0" (~(3,3))
=0, K ¢"(~(2,0))=0 if det(Ko™)=K 0" (-(3,3))=0 and if K ¢" (-(2,2))=0, the third and the last columns
of K¢ are proportional to the second one (i.e., the third and the last columns of K o are propor;

tional to the first one) if det(Ko™")=K o"(-(3,3)) =Ko"(-(2,2))=0, the last column of K:" is propor- -
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tional to the second one if det(K 1™)=0 and if K 1" (-(2,2))=0, k1" "'=0 if det(K 1")=K 1" (-(2,2))=0

and if K1"*(-(1,1))=0, and i1""'=k1"?=0 ifdet(K.")=K1"(-(2,2))=K1"(~(1,1))=0.

Proof. As shown in Theorems 5.1 and 5.2, M is isomorphic to K™ (00) and My ~-MiocMo™ Mg

is isomorphic to K "(11)-K s (10)K §'(00)" K 5™ (01) for B=0,1 and K> ™. We consider the case

ha hz ha»s

det(K¢™)=0 and det(K¢"(00))=0. Then Ko”(l1)-Ko"(1O)Ko"(00)"Ko"(o1)=(h” hu h“), where
" h» hs h=

hu={Ko" %Ko = (k0" ")} 0" ®, hu(=ha)=(x0"" k0" =Ko K0 %)™,
hua(=hen)= (k0™ k0™ ke ke Yic™®,  haa= {6 e e (12 o™,
has(=hss)= (ke k0™ ko PPV ®,  has= {6 ke~ (") o™ .
Assume hu=0. Then since Ko"(11)-K o (10)K 0™ (00)* K 0”(01) is positive semi-definite, (K o™(11)
-K " (10)K ¢ (00)" Ko™ (01)) =diag[0, B?], where Ko"(11)-Ko"(10)K ¢"(00)" K 0" (01)=diag[0, B] and
B is some 2x2 matrix. The (2.4) implies that
(ko™ ™, ko™, ko ®){I —~(Ko"(11)-Ko (10K 0”00y K o™ (01)5(K 0" (11)-K o" (10)K 0" (00 K 0™ (01)) }
=(ko™, (o™, Ko ®){I- B*B}) ‘
=(0, 0, 0),
and hence we get ko"*'=0. Thus h;y=0 implies ko™"=0 since ko"®(=K o"(00))=0. This is

"=ke®=N. Therefore hi=0. After some calculations, we have

contradict because ko™
“huhe—hha=Kd"(-3,3))/ke™”, hphs-huhs=K"(-3,2))/c0"%,
hihs-hihe=Ko"(-3,0))/ke"®, huhs-hpha=Ko"(-2,2))/xe"",
hishs—hphs=K " (-(2,1))/ko"®.

If Ko™ (-(3,3))=0, i.e., huhz—hphx=0, then from Lemma 2.2, (Ko (11)-K o (10)K o™ (00)" K o™ (01))?

he ha 0
0 0 O

={1/(h11hzz—h12h21)}( h=  -ha 0) . Thus (2.4) implies that

(0™, k0%, k0" P){3-(Ko"(11)-K 0" (10)K 0" (00) 'K 0" (01)))(K 0" (11)- K o™ (10)K 0" (00) *K 0™ (01)) }
= (0, 0, ko™ ®+{x0"" Ko (-3,1)+ko" K 0" (-(3,2)}/Ko"(-(3,3)))

=(O’ 0, 0)’

and hence we get o™ " Ko™ (-3, 1)+k0" "K 0" (-(3,2))+K0 Ko™ (-(3,3))=0. While k0" %K ¢"(-(3,0))

+ko " Ko™ (-G, 1))+K0 " K 0" (-(3,2))+Ko"® K " (~(3,3))=0. Therefore we have K o (~(3,0))=0 since
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o~ ®=0. Similarly if Ko¢"(~(3,3))=0 and if Ko™(-(2,2,))=0, then we can get ko"" Ko (-(2,1)) +ko"®
x Ko™ (-(2,2,))+K0 K" (~(2,3))=0, and hence Ko (-(2,0)=0. If K o"(~3,3))=K¢"(~(2,2))=0, from
Lemma 2.2, we have (Ko"(11)-Ko"(10)K 0 (00 'K o (01))’=diag[hu, 0, 0]. Thus from (2.4),
(0™, 10" %, Ko ") {Is~(Ko " (11)-Ko " (10)K 0™ (00) 'K o™ (01))5(K 0" (11)- Ko™ (10)K ¢ (00) " K ¢"*(01)) }
= (0, k6" —c6" huz/has, ko ® e hus/hys)
=(0, 0, 0).
After some calculations, ko"®-i¢ " "hp/hu=0 and Ko ®—ko""hi/hu=0 mean that koo™

*%(]

=Ko Kow12 and KowB

Ko~ '=ic0""Kko™ ", respectively. While from K o"(-(3,3))=K 0" (-(2,2))=0 and
det(K ¢"(11)-K " (10)K 0" (00)" K 0" (01))=0, we get ko" ko Z=(i0" %) , ko K0 *=(i0"")* and
Ko™ Ko P=ko" Pico™, respectively. Therefore if Ko"(~(3,3))=Ko"(~(2,2))=0, then the third and the
last columns of Ko™ are proportional to the second. Next we consider the case det(K 1™)=0 and
det(K 1"(00))=0. By using the argument similar to the case det(K ¢)=0 and det(K o'(00))=0 in
Theorem 5.2, if K 1" (~(2,2))=0, i.e., k1" %k1™ "~ (11" ")*%<0, then (2.4) implies that the last column
of Ki" is pfoportional to the second one. If K 1™(-(2,2))=0 and K 1" (-(1,1))=0, i.e., 1" %k:"?
~(k1"®)? 20, it follows from Lemma 2.1 that (K :"(11)-K "(10)K 100y’ K 1"(01))® =diag[O,
141" %k1™? = (k1" ®)’}]. Thus we get K1 ©01){2 -(K1"11)-K1"10)K 1" (00)* K 1" (O1)2 (K 1" (11)
-K1"10)K " 00y K 1" 01)}= (k1" 0). The (2.4) implies that «1"®=0 and hence k:""(=x:"")
=0. Therefore k:""'=0if K1"(~(2,2))=0 and if K1"(~(1,1))=0. Lastly consider the case K 1"(~(2,2))
=K1"(-(1,1))=0. Then we have K 1) -K 1" (10)K 1" (00 K 1" (01)=0: x2 , and hence K 1" (01){1>
~(K1"(11) ~K1" 10K 1" (00)" K17 (01))® (K 1" (11)-K 1" (10)K 1" (00)" K ]*‘(oi))}= K 1"(01). The (2.4)
implies that K'1"(01)=02. From K1"(-(2,2)=K1"(~(1,1))=0 and K1"(01)=02, we get K =i 2

=0. The theorem is thus established.

Remark 5.3. The (2.3a,b) show that A*®©@ ", AM*Vg ™ and AM™D@ 5" are estimable if
det(K ¢")=0, AM™™O 1" and AH™™ @ ™ are estimable if det(K 1")=0, and A" @ ™ is
estimable if det(K>")=0, where @10 = ({8(4)}), 81" = ({8()}) and 8™ = ({8(t't2)}). |
Example 5.3. (I). Let T be a BA(2x+6y,4,3’,4;{x,0,x,0,‘0,0,0,0,0,0,y,0,0,0,0}), where x,y=1.

Then we have
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" o_ ( 8X 0 0 0 - _ 8y 0 0 - _
Ko 0 2(x+3y) 4(x+3y) Zﬁ(x-y)] » K 0 0 0),’ K2" = 16y.
0 0 O

Lo 4(x+3y) 8(x+3y) 4V6(x-y)
0 2J3(x-y) 4J6(x-y) 4(3x+y)

Thus det(K s™)=0 and det(K " (00))=0 for =0,1, and K 2;';=0. After some calculations, we get
K o"(-3,3)=0, Ko"(-@2)=0, Ko"(-20)=0, K1"(-22)=K 1"(-1,1)=0 and ;" "=k:"*=0.
Therefore 8 o™’ = (8(1'),8(2"),8(3),0(4")) is estimable and is not confounded with @ " =
(0(0),0(1%),0(29,0(3%),0(4%),06(1'2"),06(1'3"),0(1'4%),0(2'3"),0(2'4"),8(3'4")).  Furthermore since
K2"20, A" M@ " is estimable, where @™ = (8(1'2"),0(1'3%),0(1'4),0(2'3"),6(2'4"),0(3'4").
While since det(K 1'(00))=0, T does not satisfy the conditions of Theorem 5.2, where K 1'(00) is the
submatrix of K" in Theorem 5.2.
(II) Let Tbe a BA(x+8y,4,3,4;{0,x,0,0,y,0,0,y,0,0,0,0,0,0,0}), where x=0 and y=1. Then
Ko = (%y X -:)Sy -4(x({4y) 8\’ K" = (80y 8 8 )’ K" = 0.

0 -4x-4y) 16(x+2y) OJ 0 0 1ey

0 0 0 0
Thus det(K s™)=0 for B=0,1,2, and det(K ,"(00))=0 for y=0,1. After some calculations, we have
K1"(-2,2)=0, K1"(-(1,1))»0 and x:""=0. If x=0, then Ko"(-(3,3))=K 0" (-(2,2))=0, and the third
and the last columns of K¢~ are proportional to the second one. On the other hand, if x=1, i.e., x
=0, then Ko™(-(3,3))=0 and K¢ "(-(3,0))=0. Therefore @¢" is estimable and is not confounded with

@:". Obviously det(K1°(00))=0. Thus T does not satisfy the conditions of Theorem 5.2.
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