完全2組グラフのSs因子分解 (Ss-FACTORIZATION OF COMPLETE BIPARTITE GRAPHS)

近畿大 理工 潮 和彦 (Kazuhiko Ushio)

Department of Industrial Engineering, Faculty of Science and Technology, Kinki University, 577 Osaka, Japan

In this paper, trivial necessary conditions for the existence of an $S_{\text{\tiny 5}}$ -factorization of $K_{\text{\tiny m,n}}$ are given. Several types of construction algorithms of $S_{\text{\tiny 5}}$ -factorization of $K_{\text{\tiny m,n}}$ are also given.

1. Introduction

Let S_5 be a *star* on 5 vertices and $K_{m,n}$ be a *complete bipartite graph* with partite sets V_1 and V_2 of m and n vertices each. A spanning subgraph F of $K_{m,n}$ is called an S_5 -factor if each component of F is isomorphic to S_5 . If $K_{m,n}$ is expressed as an edge-disjoint sum of S_5 -factors, then this sum is called an S_5 -factorization of $K_{m,n}$.

In this paper, trivial necessary conditions for the existence of an S_5 -factorization of $K_{m,\,n}$ are given. Several types of construction algorithms of S_5 -factorization of $K_{m,\,n}$ are also given.

2. S₅-factor of K_{m, n}

The following theorem is on the existence of S_5 -factors of $K_{m,n}$.

Theorem 1. $K_{m,n}$ has an S_5 -factor if and only if (i) $m+n \equiv 0 \pmod 5$, (ii) $4n-m \equiv 0 \pmod 15$, (iii) $4m-n \equiv 0 \pmod 15$, (iv) $m \le 4n$ and (v) $n \le 4m$.

Proof. Suppose that $K_{m,n}$ has an S_5 -factor F. Let t be the number of components of F. Then t=(m+n)/5. Hence, Condition (i) is necessary. Among these t components, let x and y be the number of components whose endvertices are in V_2 and V_1 , respectively. Then, since F is a spanning subgraph of $K_{m,n}$, we have x+4y=m and 4x+y=n. Hence x=(4n-m)/15 and y=(4m-n)/15. From $0 \le x \le m$ and $0 \le y \le n$, we must have $m \le 4n$ and $n \le 4m$. Conditions (ii)-(v) are, therefore, necessary.

For those parameters m and n satisfying (i)-(v), let x=(4n-m)/15 and y=(4m-n)/15. Then x and y are integers such that $0 \le x \le m$ and $0 \le y \le n$.

Hence, x+4y=m and 4x+y=n. Using x vertices in V_1 and 4x vertices in V_2 , consider x S_5 's whose endvertices are in V_2 . Using the remaining 4y vertices in V_1 and the remaining y vertices in V_2 , consider y S_5 's whose endvertices are in V_1 . Then these x+y S_5 's are edge-disjoint and they form an S_5 -factor of K_m , n.

Corollary 1. $K_{n,n}$ has an S_5 -factor if and only if $n \equiv 0 \pmod{5}$.

3. S₅-factorization of K_{m, n}

We use the following notations.

Notation 1. r,t,b: number of S_5 -factors, number of S_5 -components of each S_5 -factor, and total number of S_5 -components, respectively, in an S_5 -factorization of $K_{m,n}$.

 t_1 (t_2): number of components whose centers are in V_1 (V_2), respectively, among t S_5 -components of each S_5 -factor.

 $r_1(u)$ $(r_2(v))$: number of components whose centers are all u (v) for any u (v) in V_1 (V_2) , respectively, among b S_5 -components.

3.1. Trivial necessary conditions of $S_{\rm s}$ -factorization of $K_{\rm m,\,n}$

We give the following trivial necessary conditions for the existence of $S_{\text{\tiny 5}}$ -factorization of $K_{\text{\tiny m, n}}$.

Theorem 2. If $K_{m,n}$ has an S_5 -factorization then (i) b=mn/4, (ii) t=(m+n)/5, (iii) r=5mn/4(m+n), (iv) t₁=(4n-m)/15, (v) t₂=(4m-n)/15, (vi) r₁=(4n-m)n/12(m+n), (vii) r₂=(4m-n)m/12(m+n), (viii) m \leq 4n and (ix) n \leq 4m.

Proof. Suppose that $K_{m,n}$ has an S_5 -factorization. Then it holds that b=mn/4, t=(m+n)/5, r=b/t=5mn/4(m+n), $t_1=(4n-m)/15$, $t_2=(4m-n)/15$, $m \le 4n$ and $n \le 4m$. Let $s_1(u)$ $(s_2(v))$ be the number of components which have endvertex u (v) for any u (v) in V_1 (V_2) , respectively, among b S_5 -componets. Then it holds that $r_1(u)+s_1(u)=r$, $4r_1(u)+s_1(u)=n$, $r_2(v)+s_2(v)=r$ and $4r_2(v)+s_2(v)=m$. Hence we have $r_1(u)=(4n-m)n/12(m+n)$ and $r_2(v)=(4m-n)m/12(m+n)$. $r_1(u)$ $(r_2(v))$ doesn't depend on u (v), respectively. Therefore, Conditions (i)-(ix) are necessary. \square

Corollary 2. If $K_{n,n}$ has an S_5 -factorization then $n \equiv 0 \pmod{40}$.

3.2. Extension theorem of S_5 -factorization of $K_{m,n}$

We prove the following extension theorem, which we use later in this paper.

Theorem 3. If $K_{m,n}$ has an S_5 -factorization, then $K_{sm,sn}$ has an S_5 -factorization for every positive integer s.

Proof. Let V_1 , V_2 be the independent sets of $K_{\text{em,en}}$, where $|V_1| = \text{sm}$ and $|V_2| = \text{sn}$. Divide V_1 and V_2 into s subsets of m and n vertices each, respectively. Construct a new graph G with a vertex set consisting of the subsets which were just constructed. In this graph, two vertices are adjacent if and only if the subsets come from disjoint independent sets of $K_{\text{em,en}}$. G is a complete bipartite graph $K_{\text{e,e}}$. Noting that the cardinality of each subset identified with a vertex set of G is m or n and that $K_{\text{e,e}}$ has a 1-factorization, we see that the desired result is obtained. 1-factorization of $K_{\text{e,e}}$ is discussed in [1,3]. \square

3.3. Sufficient conditions of $S_{\bar{n}}$ -factorization of $K_{m,n}$

We consider the following three cases.

Case (1) m=4n: In this case, from Theorem 3, $K_{4\,n,\,n}$ has an S_5 -factorization since $K_{4,\,1}$ is just S_5 .

Case (2) n=4m Obviously, $K_{m,4m}$ has an S_5 -factorization.

Case (3) m<4n and n<4m: In this case, let x=(4n-m)/15 and y=(4m-n)/15. Then from Conditions (iv)-(v), x and y are integers such that 0<x< m and 0<y< n. We have x+4y=m and 4x+y=n. Hence it holds that $b=(x^2+4xy+y^2)+xy/4$, t=x+y, r=(x+y)+9xy/4(x+y), $t_1=x$, $t_2=y$, $r_1=x-3xy/4(x+y)$ and $r_2=y-3xy/4(x+y)$. Let z=3xy/4(x+y), which is a positive integer. And let (x,4y)=d, x=dp, 4y=dq, where (p,q)=1. Then dq/4 is an integer and z=3dpq/4(4p+q). The following lemmas can be verified.

Lemma 1. (p,q)=1 ===> (pq,p+q)=1.

Lemma 2. (p,q)=1 ===> (pq,4p+q)=1 (q is an odd integer), 2 (q/2 is an odd

integer) and 4 (q/4 is an integer).

Using these p,q,d, the parameters m and n satisfying Conditions (i)-(ix) are expressed as follows:

```
Lemma 3. (p,q)=1 and 3dpq/4(4p+q) is an integer
```

===> (I) m=4(p+q)(4p+q)s, n=(16p+q)(4p+q)s ((4p+q)/3:not integer) or m=4(p+q)(4p+q)s/3, n=(16p+q)(4p+q)s/3 ((4p+q)/3:integer) when q is an odd integer,

(II) m=4(p+2q')(2p+q')s, n=2(8p+q')(2p+q')s ((2p+q')/3:not integer) or m=4(p+2q')(2p+q')s/3, n=2(8p+q')(2p+q')s/3 ((2p+q')/3:integer) when q=2q' and q' is an odd integer,

(III) m=4(p+4q")(p+q")s, n=4(4p+q")(p+q")s ((p+q")/3:not integer) or m=4(p+4q")(p+q")s/3, n=4(4p+q")(p+q")s/3 ((p+q")/3:integer) when q=4q",

where s is a positive integer.

We use the following notations for sequences.

Notation 2. Let A and B be two sequences of the same size such as

A: a₁,a₂,...,a_u

B: $b_1, b_2, ..., b_u$.

If $b_i=a_i+c$ (i=1,2,...,u), then we write B=A+c. If $b_i=((a_i+c) \mod w)$ (i=1,2,...,u), then we write $B=A+c \mod w$, where the residuals $a_i+c \mod w$ are integers in the set {1,2,...,w}.

Lemma 4. (p,q)=1 and q is an odd integer m=4(p+q)(4p+q)s, n=(16p+q)(4p+q)s, where s is a positive integer $K_{m,n}$ has an S_5 -factorization.

Proof. When s=1, the proof is by construction (Algorithm I). Let x=(4n-m)/15, y=(4m-n)/15, t=(m+n)/5, r=5mn/4(m+n). Then we have x=4p(4p+q), y=q(4p+q), $t=(4p+q)^2$, r=(p+q)(16p+q). Let $r_m=p+q$, $r_n=16p+q$, $m_0=m/r_m=4(4p+q)$, $n_0=n/r_n=4p+q$. Consider two sequences R and C of the same size 16(4p+q).

R: 1,1,1,1,2,2,2,2,...,4(4p+q),4(4p+q),4(4p+q),4(4p+q)

C: 1,2,...,16(4p+q)-1,16(4p+q).

Construct p sequences R_i such that $R_i=R+4(i-1)(4p+q)$ (i=1,2,...,p).

Construct p sequences C_i such that $C_i = (C+4(i-1) \mod 16(4p+q))+16(i-1)(4p+q)$

```
R': r_1, r_2, ..., r_{4(4p+q)}, where r_i = (i-1)p+1 \mod 4(4p+q) (i=1,2,...,4(4p+q))
 C': c_1, c_2, ..., c_{4(4p+q)}, where c_i=n-(i-1)q \mod q(4p+q) (i=1,2,...,4(4p+q)).
Construct q sequences R_i' such that R_i'=R'+4(i-1)(4p+q)+4p(4p+q) (i=1,2,...,q).
Construct q sequences C_i' such that C_i'=(C'-(i-1) \mod q(4p+q))+16p(4p+q)
(i=1,2,...,q). Consider two sequences I and J of the same size.
 I: R_1, R_2, ..., R_p, R_1', R_2', ..., R_q'
 J: C_1, C_2, ..., C_p, C_1', C_2', ..., C_g'.
Then the size of I or J is 4t. Let i_k and j_k be the k-th element of I and J,
respectively (k=1,2,...,4t). Join two vertices i_k in V_1 and j_k in V_2 with an edge
(i_k,j_k) (k=1,2,...,4t). Construct a graph F with two vertex sets \{i_k\} and \{j_k\} and
an edge set \{(i_k, j_k)\}. Then F is an S_5-factor of K_{m,n}. This graph is called an
S_5-factor constructed with two sequences I and J.
Construct r_m sequences I_i such that I_i=I+(i-1)m_0 \mod m (i=1,2,...,r_m).
Construct r_n sequences J_j such that J_j=J+(j-1)n_0 mod n (j=1,2,...,r_n).
Construct r_m r_n S_5-factors F_{ij} with I_i and J_j (i=1,2,...,r_m;j=1,2,...,r_n). Then it is
easy to show that F_{i,j} are edge-disjoint and that their sum is an S_5-factorization
of K_{m,n}. By Theorem 3, K_{m,n} has an S_{\epsilon}-factorization for every positive integer
s. 🗆
Lemma 5. (p,q)=1 and q=2q' (q') is an odd integer
           m=4(p+2q')(2p+q')s, n=2(8p+q')(2p+q')s, where s is a positive integer
           K_{m,n} has an S_5-factorization.
   ===>
Proof. When s=1, the proof is by construction (Algorithm II). Let x=(4n-m)/15,
y=(4m-n)/15, t=(m+n)/5, r=5mn/4(m+n). Then we have x=4p(2p+q'), y=2q'(2p+q'),
t=2(2p+q')^2, r=(p+2q')(8p+q'). Let r_m=p+2q', r_n=8p+q', m_0=m/r_m=4(2p+q'),
n_0=n/r_n=2(2p+q'). Consider two sequences R and C of the same size 16(2p+q').
 R: 1,1,1,1,2,2,2,2,...,4(2p+q'),4(2p+q'),4(2p+q'),4(2p+q')
 C: 1,2,...,16(2p+q')-1,16(2p+q').
Construct p sequences R_i such that R_i=R+4(i-1)(2p+q') (i=1,2,...,p).
Construct p sequences C_i such that C_i = (C+4(i-1) \mod 16(2p+q'))+16(i-1)(2p+q')
(i=1,2,...,p). Consider two sequences R' and C' of the same size 4(2p+q').
 R': r_1, r_2, ..., r_{4(2p+q')}, where r_i = (i-1)p+1 \mod 4(2p+q') (i=1,2,...,4(2p+q'))
 C': c_1, c_2, ..., c_{4(2p+q')}, where c_i=n-2(i-1)q' mod 2q'(2p+q') (i=1,2,...,4(2p+q')).
Construct 2q' sequences R_i' such that R_i'=R'+4(i-1)(2p+q')+4p(2p+q')
(i=1,2,...,2q'). Construct 2q' sequences C_i' such that C_i'=(C'-(i-1) mod
2q'(2p+q')+16p(2p+q') (i=1,2,...,2q'). Consider two sequences I and J of the
```

(i=1,2,...,p). Consider two sequences R' and C' of the same size 4(4p+q).

```
same size 4t.
 I: R_1, R_2, ..., R_p, R_1', R_2', ..., R_{2q}
 J: C_1, C_2, ..., C_p, C_1', C_2', ..., C_{2q}.
Construct r_m sequences I_i such that I_i=I+(i-1)m_0 mod m (i=1,2,...,r_m).
Construct r_n sequences J_j such that J_j=J+(j-1)n_0 \mod n (j=1,2,...,r_n).
Construct r_m r_n S_5-factors F_{ij} with I_i and J_j (i=1,2,...,r_m;j=1,2,...,r_n). Then it is
easy to show that F<sub>ij</sub> are edge-disjoint and that their sum is an S<sub>5</sub>-factorization
of K_{m,n}. By Theorem 3, K_{m,n} has an S_5-factorization for every positive integer
s. 🗌
Lemma 6. (p,q)=1 and q=4q"
            m=4(p+4q")(p+q")s, n=4(4p+q")(p+q")s, where s is a positive integer
            K<sub>m, n</sub> has an S<sub>5</sub>-factorization.
Proof. When s=1, the proof is by construction (Algorithm III). Let x=(4n-m)/15,
y=(4m-n)/15, t=(m+n)/5, r=5mn/4(m+n). Then we have x=4p(p+q^*), y=4q^*(p+q^*),
t=4(p+q")^2, r=(p+4q")(4p+q"). Let r_m=p+4q", r_n=4p+q", m_0=m/r_m=4(p+q"),
n_o=n/r_n=4(p+q). Consider two sequences R and C of the same size 16(p+q).
 R: 1,1,1,1,2,2,2,2,...,4(p+q"),4(p+q"),4(p+q"),4(p+q")
 C: 1,2,...,16(p+q'')-1,16(p+q'').
Construct p sequences R_i such that R_i=R+4(i-1)(p+q^*) (i=1,2,...,p).
Construct p sequences C_i such that C_i = (C+4(i-1) \mod 16(p+q^*))+16(i-1)(p+q^*)
(i=1,2,...,p). Consider two sequences R' and C' of the same size 4(p+q").
 R': r_1, r_2, ..., r_{4(p+q^*)}, where r_i = (i-1)p+1 \mod 4(p+q^*) (i=1,2,...,4(p+q^*))
  C': C_1, C_2, ..., C_{4(p+q^*)}, where C_i=n-4q^*(i-1) \mod 4q^*(p+q^*) (i=1,2,...,4(p+q^*)).
                    sequences R_i' such that R_i'=R'+4(i-1)(p+q)+4p(p+q)
Construct 4q"
(i=1,2,...,4q"). Construct 4q" sequences C_i' such that C_i'=(C'-(i-1) \mod 1)
4q"(p+q"))+16p(p+q") (i=1,2,...,4q"). Consider two sequences I and J of the
same size 4t.
 I: R_1, R_2, ..., R_p, R_1', R_2', ..., R_{4q}
  J: C_1, C_2, ..., C_p, C_1', C_2', ..., C_{4q^n}'.
Construct r_m sequences I_i such that I_i=I+(i-1)m_0 mod m (i=1,2,...,r_m).
Construct r_n sequences J_j such that J_j=J+(j-1)n_0 \mod n (j=1,2,...,r_n).
Construct r_m r_n S_5-factors F_{ij} with I_i and J_j (i=1,2,...,r_m;j=1,2,...,r_n). Then it is
easy to show that F_{\rm ij} are edge-disjoint and that their sum is an S_{\rm 5}-factorization
of K_{m,n}. By Theorem 3, K_{m,n} has an S_s-factorization for every positive integer
s. |
```

In Lemma 6, put p=1, q=4q"=4. Then we have the following example.

Example 1. K_{408,408} has an S₅-factorization.

By Corollary 2 and Example 1, we have the following theorem.

Theorem 4. $K_{n,n}$ has an S_5 -factorization if and only if $n \equiv 0 \pmod{40}$.

- Conjecture 1. (p,q)=1, q is an odd integer and (4p+q)/3 is an integer m=4(p+q)(4p+q)s/3, n=(16p+q)(4p+q)s/3, where s is a positive integer and s/3 is not an integer $K_{m,n}$ has an S_5 -factorization.
- Conjecture 2. (p,q)=1, q=2q' (q' is an odd integer) and (2p+q)/3 is an integer m=4(p+2q')(2p+q')s/3, n=2(8p+q')(2p+q')s/3, where s is a positive integer and s/3 is not an integer $K_{m,p}$ has an S_5 -factorization.
- Conjecture 3. (p,q)=1, q=4q and (p+q)/3 is an integer m=4(p+4q)(p+q)s/3, n=4(4p+q)(p+q)s/3, where s is a positive integer and s/3 is not an integer $K_{m,n}$ has an S_5 -factorization.

References

- [1] G. Chartrand and L. Lesniak, Graphs & digraphs, 2nd ed. (Wadsworth, California, 1986).
- [2] H. Enomoto, T. Miyamoto and K. Ushio, C_k -factorization of complete bipartite graphs, Graphs and Combinatorics, 4 (1988), pp. 111-113.
- [3] F. Harary, Graph theory (Addison-Wesley, Massachusetts, 1972).
- [4] K. Ushio, P_3 -factorization of complete bipartite graphs, Discrete Math., 72 (1988), pp. 361-366.
- [5] K. Ushio and R. Tsuruno, P_3 -factorization of complete multipartite graphs, Graphs and Combinatorics, 5 (1989), pp. 385-387.
- [6] K. Ushio and R. Tsuruno, Cyclic S_{κ} -factorization of complete bipartite graphs, Graph Theory, Combinatorics, Algorithms and Applications (SIAM, 1991), pp. 557-563.
- [7] K. Ushio, *G-designs and related designs*, Discrete Math. 116 (1993), pp. 299-311.