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§0. Introduction

The purpose of this report is to make a survey of our recent trials to develop the exact WKB
analysis of the Painlevé transcendents. The motivation of such trials is two-fold: On one
hand, in view of the WKB-theoretic expression of a monodromy group ([SAKT],[AKT3])
we want to analyze isomonodromic deformations from the viewpoint of the exact WKB
analysis, which naturally leads us to ‘the study of the Painlevé equations with a large
parameter (Table A.1); on the other hand, such equations admit instanton-type formal
solutions, which seem to be crucially important to describe the connection formula for
Painlevé transcendents with a large parameter, and hence to describe the monodromic
structure in question. Unfortunately we have been unable to obtain complete solutions to
these problems. Still we believe that the results which we report here will convince the
reader of the importance of the subject.

This report is organized as follows:

In §1, we review some basic facts concerning the WKB analysis of isomonodromic
deformations of some Schrodinger equations, which we call (SLy) (c¢f. [AKT2]). One
important feature of our analysis is that an isomonodromic deformation inevitably brings
a double turning point into the theory (Proposition 1.2 (i)). This is really an unpleasant
feature of the problem, but it is the starting point of the new approach to the Painlevé
transcendents; first of all, this degeneracy is a counterpart of our way of constructing new
formal solutions of the Painlevé equations (Proposition 1.2 (i1)), and furthermore a subtle
and interesting analyticity property of a WIXB solution of (SL ;) at such a double turning
point is established (Proposition 1.2 (iii)). The analyticity property seems to reflect the
fact that such a point is tied up with the apparent singular point of (SL ).

In §2 we first introduce some basic notions such as a Stokes curve for the Painlevé
equations. They arc closely related to the Stokes gecometry of (SLy) in a (currently still)
mysterious way through an intriguing relation (2.4). We then establish an important
transformation theorem for some particular Painlevé transcendents to the effect that they
can be mutually transformed locally (Theorem 2.3). It is probably worth emphasizing that
the transformation is constructed with the aid of the transformation of (SL ;); although we

are nterested in the transformation of the Painlevé equations, it i1s achieved by studying
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the underlying Schrédinger equations (together with their deformation equations). Slightly
weaker version of these results are announced in [KT].

The formal solutions discussed in §2 generate another class of formal solutions of the
Painlevé equations; one of their characteristic properties is that they are infinite sums
of terms containing exponential factors, which give rise to a periodic structure concern-
ing the location of the singular points of their Borel transforms. We call such solutions
“Instanton-type solutions”. These solutions are the main subject of §3. As is easily imag-
ined, instanton-type solutions are important ingredients of the connection formula for
Painlevé transcendents with a large parameter. We exemplify this fact by a concrete com-
putation of the connection formula for the solution discussed in §2 in the case of Painlevé I.

In th‘e final section (§4), we discuss the exact WIKB analysis of (SL ), that is, some of
our conjectures on the transformation of (SL ;) whose coefficients contain instanton-type
solutions. Our expectation, though not yet fully confirmed, is that the connection formula
for all instanton-type Painlevé transcendents should be deduced through the transforma-
tion of the sort from the results for Painlevé I, a part of which is given in §3.

In ending this introduction, we would like to express our heartiest thanks to Professor

T. Aoki for the stimulating discussions with him.

§1. Deformation of WKB solutions.

First let us fix our notations.

Throughout this article we use the symbol (Pj) to denote the J-th Painlevé equation
with a large parameter 7. As is stated in the Introduction, the Painlevé equations (Py)
(J =1,---,VI) naturally arise as conditions for isomonodromic deformations (in the sense

of [JMU]) of the relevant Schrédinger equations

97 2
(L1) (5 +n2Qutectom) e tin) =0,

which will be denoted by (SLy). As a matter of fact, these Schrodinger equations (SL )
can be 1somonodromically deformed if the unknown function ¢ satisfies the deformation
cquation

O Qv 1 dAdyle.t, A\
(1.2) —t;/—ti:--lj(w,t./\) L 94 x.t4)

or B} or
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where A is a certain rational function. The Painlevé equation (Pjy) can be obtained as
the compatibility condition for the simultaneous equations (1.1) and (1.2).
As for the explicit forms of (Py), we refer the reader to Table A.1 in the Appendix

below.

Definition 1.1. Let F;()\,t) denote the coefficient of n? in (Pj). Then Fj(\t) is a
rational function of (\,t), i.e., a ratio of two polynomials of (\,t). We denote by F}(z\,t)
the polynomial in the numerator, which is normalized as in Table A.2. (We note that the

normalization factor is slightly different from [KT].)

We also list up Q; (resp. Ay) in Table A.3 (resp. Table A.5). In writing down the
potential @y, we use in Table A.3 the symbol I'; (whose list can be seen in Table A.4),

which is the t-dependent Hamiltonian with (A, v) obeying the Hamiltonian system

dA 73]\'1
—_— =

(1.3) dt v ’
dv . oL ;
a - Tan

This system is known to be equivalent to the Painlevé equation (Pjy) (cf. [O] and references
cited there).

Note that the equations (Py) to be discussed here differ from the original Painlevé
equations in that they contain a large parameter 5. In fact, the original one can be obtained
by substituting 7 = 1 in the expression of (P;) (cf. Table A.1). The situation is the same
also for the other equations, i.e., (1.1), (1.2) and (1.3). In particular, in this formulation

A and v are, in addition to satisfying (1.3), supposed to have the following expansions in

-1,

n
(1.4) A=X(t) + 07 A () + 07 A(t) + -
(1.5) v=w(t) + 0 (t) + () + -

while the variables (i.c., @ and t) and the other constants (such as ag, ay, etc. in Table
A.1) are supposed to be independent of 5. This way of introducing the parameter 7 is
compatible with the ordinary procedure of confluence of singularities in the Schrédinger

equations (SL ;) and the Painlevé equations (Py) (cf. e.g. [O]).



26

Now let us consider WIB solutions of the Schrédinger equation (SLy):
(1.6) vz, t,n) = exp/ Ss(z,t,n)dz,

where S;=1S;_1+ Sj0+ 17151 + - is a formal power series (in 77!) solution of the

Riccati equation with a parameter ¢:

Sz, t
8_M =n°Qu(z,t,7).

(1.7) Sy(x,t,n)* + £

When a non-zero WKB solution satisfies the deformation equation (1.2), A and v should
obey the Hamiltonian system (1.3), hence the Painlevé equation (P,) appears. Further-
more we then encounter several interesting phenomena concerning the structure of (SL ;)
itself and the logarithmic derivative Sy of 1;. In the remaining part of this section we
explain these phenomena which will be used in the WWIKB analysis of the Painlevé equations

below. Let us begin with the following proposition.

Proposition 1.1. Suppose that a non-zero WKB solution of (SL;) (J = I,---,VI) sat-
isfies (1.2). Then Sy, i.e., the logarithmic derivative of the WKB solution satisfies the

following equation:

9S, 0 1 94,

. — = —4,5;—- — .
(1.8) ot 8‘17< I20 TS "o )
Remark 1.1. The relation (1.8) entails that

1 04
(1.9) wy = Sydx + (.—‘lJSJ iy a‘v‘,)dt

is a closed form. Hence we can construct a WKB solution ¢ of (SL ) satisfying (1.2) by
(r.0)
setting ¢y = cxp/ wJ.
Making use of Proposition 1.1, we can actually analyze the structure of (SLy) and

the logarithmic derivative S of ¢;. We summarize them as follows:



27

Proposition 1.2. Under the same assumption as in Proposition 1.1 the following hold:
(i) Let Qo denote the leading part of Q. that is, the part which is homogeneous of
degree 0 with respect ton. Then we find the following:

= 0.
z=Ao(1)

(1.10) Quo(z,t) QJO( t)

= r\o(t)

(i1) The top terms vy(t) and Ao(t) in the expansions (1.5) and (1.4) respectively satisfy
(1.11) w(t) =0 and Fi(\(t),t) =

while vj(t) and A;(t) (j 2 1) are uniquely determined in a recursive manner.
(iii) For any odd integer j Sy j(x,t) is holomorphic near (z,t) = (Xo(to),to) if to is not

contained in

(1.12) A, % {t € C; there exists A such that Fi(A,t) = dF}(\,¢)/9A = 0}.
Proposition 1.2 (i) asserts that © = Ag(t) is a double turning point of (SL;): This
means that the Riemann surface of \/m is degenerate (for each fixed t). The
degeneracy of this sort is a real problem in the study of the Schrédinger equation (1.1) from
the viewpoint of the exact WIKB analysis (cf. [AXT2]) and an isomonodromic deformation
inevitably causes such a degeneracy; it is a tragedy. This phenomenon, however, is a
starting point of our subject “the exact WIKB analysis of the Painlevé transcendents”: As
Proposition 1.2 (ii) claims, starting with Ag(¢) determined in (1.11), we can obtain A(t)
recursively which solves the equation (P;) formally. Such a solution A of (Pjy) is our main

concern in this article.
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§2. A local transformation theorem for the solution \; of the Painlevé equation
(Ps)-

In the subsequent part of this report we discuss mainly the formal power series solution

Ay = ijo Aj(t)n77 of the Painlevé equation (P;). First we establish a local transforma-

tion theorem in this section: As we will see later (Theorem 2.3), the solution Ay of (Py)

can be locally transformed to A; in the formal sénse.

Let us begin with introducing the following terminologies.
Definition 2.1. (1) A turning point for \; is, by definition, a point t which satisfies

oF;

(Xo(t), 1) = 0.

Such a point t is said to be simple if

(2.2) 2ol 1) #0.

(i) For a turning point 7 for A\j a (real one-dimensional) curve defined by

t B
(2.3) Im/ \/a;\“](/\o(t),t) dt =0

is called a Stokes curve for \; (emanating from 7).

For example, in the case of (Pr), t = 0 is the unique turning point and the configuration

of the Stokes curves is as follows:

C

Figure2.1.

The relevance of these notions to the exact WIKB analysis of Ay, in particular, to
the location of the singular points of its Borel transform, shall be discussed in §3. The
following Proposition 2.1 shows they are also closely related to the Stokes geometry of the

Schrédinger equation (SL ).
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Proposition 2.1. Let 7 be a simple turning point for Aj. Then there exists a simple
turning point a(t) of SLy, i.e., a simple zero * = a(t) of Qjo(x,t, Ao(t)), which satisfies
the following:

(i) At t =7,a(t) merges with the double turning point = Ag(t).

(ii) The following relation holds:

(2.4) /:O(t) \/QJO(z t, Ao(t)) dt = _/ \/3FJ (s),s) ds.

The statement (i) implies that at a (simple) turning point 7 for A; the associated

Schrodinger equation (SLy) has a triple turning point. Furthermore, considering the
imaginary part of both sides of (2.4), we find that at a point ¢ in a Stokes curve for Ay
there exists a Stokes curve of (SL;) that connects two turning points of SLy, 1.e., Ag(0)
and a(o). ‘

Taking account of this relationship between the Stokes geometry of (P;) and that of
(SLy), we first consider the transformation of (SL;) to obtain the transformation of (Py)
in the following way.

Let 7 be a simple turning point for A ;(f) and & be a point in a Stokes curve emanating
from 7. Here we assume & is distinct from 7. Then Proposition 2.1 tells us that there
exists a simple turning point &(t) of (SL;) that merges with 5\0(5) at t = 7, and that, at
{=&,a(6) and Ap(&) are connected by a Stokes curve of (SL;). Let 7 denote the portion

of the Stokes curve that begins at @(&) and ends at Ag(&). Note that in the case of (SLr)

there exists only one simple turning point, 1.e., —2A¢(¢). (Hence a(t) should coincide with

—2X0(t).)

Theorem 2.1. There exist a neighborhood V of &, a neighborhood U of %, and holomor-
phic functions x;(#,t) (j = 0,1,2,...) on U xV and ti({) (j =0,1,2,...) on V so that
the following relation may hold:

- 2

N - (. t.1 " .
(2.5) Qm-,t,n):(—’(;——i) Qule(F,E,m), i), n)—%zf—{w(z,t,n);f}-
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Here z(%,t,n) and t(f,n) respectively denote the formal series Z >0 Zi(Z, t)n J and

83z/93° 0%z /93?
T0r/8x dz /9%

Furthermore we can construct x;(Z, t) and t;(f) so that they should sat1sfy the following:

() zo(a(®)) = —2x0(to(£)), zo(Ro(f)) = Ao(to(?)), and 8z¢/d3 #0on U x V.

2 >0 t;(tyn~7, and {z; i} denotes the Schwarzian derivative ————

(ii)) We find

(2.6) /,/aFJ (Ro(3 s)do-—/ aF’(,\o(a

and, in particular, dto/di #0 on V.

t=io(f)

(iii) For odd j's the function x; and t; vanish identically.
Remark 2.1. The roles of (SL;) and (SLy) are symmetric in the above result, that
is, they can be interchanged.

The relation (2.5) means that we can transform (SLj) into (SL;) by the (formal)

transformation
(2 =a(3,,n) = 250 xaj (&, 8~
(2.7) Jt=tEn) = 5 te(tn™
O~ 1+ N2 st
d’](ws tv 77)' I=1:(i‘.i,1]) = (%(l’,t, 77)) T,Z)J(lf,t, 77)

\ t=t(t,n)

on a neighborhood U of % (for each fixed { in V). Furthermore this transformation au-
tomatically brings the deformation equation for P to that for ¥ through the following

result.

Theorem 2.2. Let x(&,t,1) and t(f,7) be the formal series constructed in Theorem 2.1.

Then the following relation holds:
(2.8)

ot - dx ox
.t /\ i R — _: “ ‘f i ~ =~ -~ . ~
Ap(a,t, Ar( ﬂ}))l;l_:;'((z_,(,;),,) <0t({’”)) {4J(1,t,/\J(t,7)))aa( t,t,n) — 8t( 1, 7)}

In fact, using (2.8) we can casily verify that the deformation equation (1.2) for by

should be transformed to that for i»; by the transformation (2.7). Thus we have obtained
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the formal transformation which transforms the system (1.1) and (1.2) for any J to that
for J=1.
Making use of this transformation (2.7), we find the following local transformation

theorem for the solution A; of the Painlevé equations (Py).

Theorem 2.3. Using the series z(%,%,n) and t(f,n) in Theorem 2.1, we find the following:

(2.9) M(t(E,n),n) = 2(2,1,7) .

§3. Instanton-type solutions and the exact WKB analysis of (FPy).

Theorem 2.3 gives us a hope that basic properties of A; should be deduced from those
of Ar. Having such a hope in mind, we now study the solution A; of the first Painlevé
equation (Pr) from the viewpoint of the exact WKB anaiysis. Our main concern is the
connection formula for A;.

For the sake of notational simplicity let us discuss the following equation (Py)’ instead

of (P[).

(Pr) C2 o 2(a% ).
dt?

Note that the equation (P;)’ is obtained from (P;) through a change of scales, i.e., consid-
ering aA;(ft) for suitable constants a and J. For (P;)' the formal power series solution

corresponding to Ay (which is denoted by A throughout this section) is expressed as follows:
: 15 .
(3.1) A= Z Aoj(8)n =% = Zajtf ~ 2y,
>0 j>0

where the cocficient a; is given by the following recursive formula:

(IO = 1, (I»] = _1/8w (1‘2 = —40/128

aj = T(} —_ 1 (11_1 - ( E ”L”l J 2 3)

By using the relation (3.2) we immediately find that the solution A does not converge in

the usual sense. To overcome this difficulty we apply the Borel resummation technique to
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the solution A, which is actually the basic idea in the theory of the exact WKB analysis.
For the definition of the Borel resummation we refer [V], [AKT1], etc. Our expectation
is that the Borel sum of A should define an analytic solution of (Pr)’ except on Stokes
curves and that on a Stokes curve it has a kind of discontinuity which is described by the

so-called connection formula.

Figure 3.1 shows the configuration
of Stokes curves for (Pr)’. We want to

determine the explicit form of the

connection formula for A on each of
these Stokes curves. First of all, let us Figure 3.1.
recall that the Borel sum of A is defined as a Laplace integral of the Borel transform

Ap(t,y) of A\. Then it is reasonable to guess that the connection formula for A should be

of the following form:
(3.3) A A ey g

where ¢(t) designates the location of a singular point of the Borel transform Ap(t,y) and
A1 corresponds to its singular part at y = ¢(t). (The meaning of the formula (3.3) is that,
if we take the Borel sum of A in one of the sectorial regions in Figure 3.1 and consider
its analytic continuation to the adjacent region across a Stokes curve, then the resulting
solution should have the expansion given in the right-hand side of (3.3) in that adjacent
region.) In view of (3:3) we find that a new class of formal solutions described in the

following theorem is an important ingredient of the connection formula for A.

Theorem 3.1. The equation (P;)" admits the following formal solution:

(3.4) A = \(D + ¢~ e\ (1) + e~ 2o(tn ) (2) .

bl

where cach A\U0) = Zkzo /\i])(t)lf_k is a formal power scries of n=1. Furthermore, in order
that the formal scries (3.4) may define a solution of (Pr)'. it is necessary and sufficient

that the following conditions should be satisfied:
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(i) MO jtself satisfies (Py)'. (Hence A% coincides with the solution mentioned above.)
(i) $(t) =2
(iii) A1) satisfies the following:
,d?AW

. (0), —k (1) _ —1 1y(1) _
(3.5); -2 ;/\k n A (7¢ +¢ A +n” a0 =0

() (k > 0) 1s a solution of a first order linear ordinary differential

This implies that each A},
equation with a 1'egula.r singular point at t = 0.

(iv) The other A (j > 2) satisfies

‘ 12)\(7)
(35);  20PA - AONO _jy 29 B +¢”/\“’)+n“2(m = ) A,
l+m=j
I,m2>1

In particular, all )\g\.j ) (7 > 2,k > 0) are determined recursively and uniquely. Otherwise
stated, “j-instanton contributions A" (j > 2) are uniquely determined by A(® and A(1),

Note that in this Theorem 3.1 we consider the exponential term —e~ %7 to be very
small compared with the formal power series part A(?9). We call such formal solutions

“instanton-type” solutions.

Remark 3.1. The explicit form of the equation that /\(k” (k > 0) should satisfy is the

following:

Wlﬂw”

dt 5

(36) (] (1) \/5 o 2 l (1)

( dt 1A 2 H (4t dt? Ao
Hence we find MY has the expansion

L 5

(3.7) A = (o4 ey 4+t H~—ffa .

with arbitrary constants ¢; (I =0,1,2,--.).
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Remark 8.2 Let i denote e=®(Y7X(1)_ Then it can be easily seen that u satisfies the following
linearized equation of (P;) at the solution A(%):

2

= 22 A0y

(3.8)

The simplest way to verify statements (i1) and (ii1) in Theorem 3.1 is to use this linearized

equation (3.8).

Remark 3.3. If we replace (ii) by

_ R

(i1) ¢(1)* = 5 (ATg(t),1)

and modify (iii) and (iv) in an appropriate way, we find Theorem 3.1 holds for every
Painlevé equation (P;). That is, even for (Py) the following instanton-type solutions

should exist:
(3.4), ,\(JO>+6—¢JU):;/\(JI) +em2000my 4

In particular, this implies that the Borel transform of the formal power series solution Ay

has a singularity at

(3.9) y=m {/ \/ %Ij\l(/\g(t), t)dt + yg} (yo : const)

where 7 is a turning point and m is an arbitrary integer. Our expectation is that the
constant ygvsh(ml(l he equal to 0 (in the case of (Pr)' this can be really confirmed, as we
shall see below) and the definition of Stokes curves for A; given in §2 was motivated by
this expectation.

It follows from Theorem 3.1 that the explicit form of the connection formula for A (cf.
the expression (3.3)) can be uniquely determined exeept some constants of integration for
#(t) and /\il)(t) (k' =0,1,2,---). In what follows we try to fix these constants and find
the exact form of the connection formula for the solution A of the first Painlevé equation

(Pr)".
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Let us denote by Ag(t,y) the Borel transform of A as usual. Its explicit form is given

as follows by the definition:

_%j

W=

93
y-J

(CV]

(3.10) Ap(t,y) = FZO (.“]?')!t

[e3)
E ijJ,
j=0

where {a;} is a series of constants given by the recursive relation (3.2) and z and {b;} are

-

t

defined as follows:

5 a; 32 .
= 24792 h = —L (22N (5 =

It is easily verified that the sum 3 b;z/ actually converges for sufficiently small z and

that the Borel transform Ag(t,y) defines an analytic function near y = 0 for each fixed
t # 0. Here let us further assume that Ag(#,y) can be extended as (multi-valued) analytic
function of y to the whole complex plane except at most countable number of isolated
singular points. Taking account of the fact that t='/2Xg(t.y) is described as an analytic
function of one variable =, we find Theorem 3.1 implies the following:

(i) The radius of convergence of ¥ b;z7 is equal to 1.

(i1) On the unit circle, the point = = 1 is the unique singular point of 5 bjzj.

(ii1) At = =1 we have the following expression:
(3.12) D bz = (1= )P f(z) + g(2),

where f and ¢ are holomorphic functions in a neighborhood of =z = 1.

It follows from (ii) that Ap(t,y) is singular at y = igtsﬂ. This means that the
definition of Stokes curves given in §2 is ‘good’ in the case of (Pr)’, that is, the Borel sum
of A actually has a discontinuity on Stokes curves Im t>/* = 0. Furthermore, noting that
the term (1 — z)Y/2f(=) in the expression (3.12) corresponds to (the Borel transform of)

A i Theorem 3.1, we can conclude that on a Stokes curve Im %1 = 0 the following

connection formula holds for A:

(3.3) D i UL IS L U (TR

where
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t 0’)
(3.13) o(t) = \/5/ t/dt = il‘—s/_lts/ﬂ
0

)
(3.14) A = 9(_1.)2_3/4 /57 77—1/2t—-1/8(1 _ Ezﬁt—snn—x +-00)

(6 = f(2)|:=1) and AU) (j > 2) are uniquely determined by the recursive formula (3.5);.
This is the connection formula for the formal power series solution A. As is clear from

(3.3)', instanton-type solutions play an important role in this expression.

Finally we show an explicit formula for § = f(1) in the following way: Applying the
celebrated Darboux method (cf. e.g. [CH], pp.532-533) to the analytic function } b;z7
(roughly speaking, its essence consists in comparing Y b;z7 with a linear combination of

(1= 2)*1/2 (kL =0,1,--+)), we obtain the following characterization of the constant 6.
Proposition 3.1. Let {6;} be a sequence of positive numbers defined by the following

recursive relation:

90 = 1, 91 = 4/23, 9-_)_ = 392/1575.
(2k — 1)1(2k = 3)2L — 1)'Y(2 — 3)!!

(=1 1 0
0; =01 + 3 : : 0.8, (>3
TU-Pu-h7T T e (2j — D2j — )1 b (5 23)
k,I>3
where (2n — 1) = (2n - 1)-(2n —3)- ----1. Then § = lim ;.

j—oo

§4. Toward the exact WKB analysis of (P;) and (SLy).

As we have scen so far, the formal power series solution Ay of (Py) can be locally trans-
formed to the solution A; of (P;) and the connection formula for A; is explicitly described
in terms of instanton-type solutions. However, in order to obtain the explicit form of the
connection formula for Ay, it should be more efficient if we could establish a local transfor-
mation theorem not only for Ay hut also for the instanton-type solutions of (Py). Though
we have not yet succeeded i proving it, we briefly discuss this problem in this section and
present a conjecture on the transformation of the mstanton-type solutions of (Py) as well

as the transformation of (SL,) with instanton-type coefficients.
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Our discussion will be done in a similar way as in §2. First by substituting instanton-

type solutions (3.4) of (Py) into the explicit expression of the potential @ ; we obtain

d")
(4.1) ( 3 QY + e QY + )) ¥y =0,

To study transformations of the Schrédinger equations (4.1) with “instanton-type” coef-
ficients, we consider transformations of instanton-type solutions of the Riccati equation
associated with (4.1) (instead of WIXB solutions of (4.1)). That is, we consider the follow-

ing Riccati equation

(4.2) i+ 5 = (@Y + QP 4,

and discuss its instanton-type solution S, of the following form:
(4.3) Sy(a,t,y) = S(JO)('af,t, n) + e’¢J(t)"S(Jl)(ar,t,77) 4

Using these instanton-type solutions (4.3), we try to construct a transformation in such a

way that 1t should satisfy the following:

(4.4) Sy(@,tn)=— 3 IR + == (&,6,m)S(a(,t.n),t(t,n),n),

where S and S; are instanton-type solutions of the Riccati equation associated with (SLy)
and (SLy) respectively, and the transformations x(&,#,7) and ¢(f,7) are assumed to have
the following “instanton-type” expansions:

(3, 5,m) = 2O(F, E ) + et Emn (G § o) 4.
(4.5)
t(£, 1) = tO(F, ) + e=orEmng(F 1y 4

(1)

For example, 2} and t{!) should satisfy the following:

(4.6) e 230, 8,0)

1 27 [fpm ) (1) o0, (1) 0) 7
= _; IT(())' 1'(“)” - I_(())l +'1' SI ( (l fﬂ’])ﬁf (t‘,1)5"7)
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where A¢ = (¢;(tO(¢,n)) - ,o’,(téo)(f)))ng = (¢7(t (¢, n)) - &J(f))1;2 and ' designates the
derivative with respect to #. Now our conjecture is that, just as in Theorem 2.1, there
should exist formal power series 27)(%,%,7) and tU)(£,17) (j = 0,1,2,- - ) which solves the
equation (4.4) and each coefficient of which is holomorphic on U x V and on V respectively
(recall that V (vesp., U) denotes a neighborhood of a point in a Stokes curve for Ay (resp.,
of the portion of the Stokes curve that begins at a simple turning point and ends at the
double one)), and further that in terms of 2V (i,£,1) and t')(£,7) we have the following
transformation formula between :\(Jl) and /\([1):
)

~ ~ -1 -~
(4.7) (O @)t E ) + e 2L O E ), )

3;1'(0) T(0), ~ ~ N ~ T ~ ~
=57 AP E ), & mAY E ) + 2V APE ), 8 ).

Note that (4.7) can be regarded as the concrete expression of the alien derivative (in
the sense of Ecalle) of (2.9) (cf. [E], [P]).

Our expectation is that, once the transformation (4.7) is established, the connection
formula for (P;) can be deduced through it from the results for (P;). Furthermore we hope
that it should be also possible to determine the explicit form of the connection formula for
all instanton-type Painlevé transcendents. Concerning these subjects, as our study is still

in progress, we would like to discuss them elsewhere in some future.



Appendix.
Table A.1.
d*\
(Pr) pr
ED
P
EDY
(Pr11) Pl
d*\
Fv) - Gm
EDY
(Pv)  —%
ED)
B
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Tables of the Painlevé equations and the associated Schrédinger

equations with a large parameter.

(Painlevé equations with a large parameter n).

= (X2 +1).

= 22X +tA +a).

2 / !
~ () 20 a2 a2

1 1 dA\? 1dx (A=1)? 1
= (=+—) L) -== 2\ — —
(2A+A—1><dt) T ( 2/\>

2 22(A = 1)? 1ot at2A+1
2 AT O—1)2 T (=13

_1<1+1+1)d/\2<1+1+1)dz\
T2\t a-1 A=t/ \at t t—1 X—t) dt

22X = 1)(A = t) [ A2 —2tA+t

+7 [(ao+aw)—ao

t2(t — 1)2 T AN (A-1)?

. t t—1 t(t — 1)
+7] (ao+a1+at+aw)—a0;‘3+a1(/\_l)2—at(/\_t)z .

Table A.2. (Fj(A,t): coefficient of n% in (Py)).

Flt(/\v t)
FITI(’\) t)

F]tll(’\w t)

F;V(’\‘3 t)

= 6N +t¢.
= 22+t +a.

= 2aetM + ol A — o) — 200t .

3 .
= Z)\4 + 2t/\3 + (tz + 401) /\2 - 4(10 .
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FEOu1) = (00 + 0oo) AN = 1)° — ap(A = 1) + aatA?(A = 1) — eyt X2 (A + 1)

FLit) = (a0+ a1+ a + ac) A2(A = 1)2 (A = )2 — agt(A — 1)3(A — t)?
+ay(t — DAZA = )2 — aut(t — DA%(A - 1)2.

Fi(\t) = Fl(\t).
Fru(\t) = FL(\t).
8

Fin(At) = aFIfn(/\at)-
| .
Fvht) = S FlOD).
Fy(\t) = ——Z—F*(At)
AP TS RS R A
2 t
Fyi(\t) = FhiA0).

21220~ 1A —1)

Table A.3. (Schriodinger equations with a large parameter n).

92
(SLJ) (_51‘:5+772QJ($J>77)> wJ(l:tﬂ?)zo
— 3 -1 Y -2
Qr = 4”4+ 2tz +2K; -7 x_)\+n TCEuVE
Qi = zt+t2® +2ax + 2K - 7! Y +n7? 3 .
' T— A 4(z — N)?
_agt? | apt | abt 2, tKqp
Qur = - T T’*‘aoot 5.2
1 1 3
-1{_- _ /\ -2
+ (21:2 3:(1'—/\)) v 4(z — N)?
. (44 T+ 2t 2 1\1y _1 AV _2 3
Qv = F+al+< 4 ) o 7:(.’5—/\)+7’ 4(z — A)?
Ov = oy o, t? eyt (oo th,
O 2 T -1 @—1)P (-1 x(x - 1)
4 AA=1) _ 3
-l 2
T i —DE-n T i@
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’ _ (¢7)) g (0793 Q;, t(t-— 1)Kv1
Qi = 2 (z—1)2 +x(z—1) + (z —t)? +z(x—1)(:1:—t)
o AMA=1w 9 3

@-D-n "z

Table A.4. (Hamiltonian Ky in (SLy)).

K, = %[uz-—(4/\3+2t/\)].
K = %[1/"—(/\4+t/\2+2a/\)].
2)2 13V aot?  aft Al t 9
Ky = T[V2—7)1’2—/\—(T+F+—)‘—+aoot .
v o A+2t)°
- 0
KIV = 2/\|:l/2—7] IX— (v+a1+<—7) ):l .
A(A—1)2
Ky = _(_t_l
1 1 Qp Ozlt2 azt Uoo )}
2 _-1(2 4 Y [% + .
X[” 7 (A+A—1)” <A2+(A—1)4+(A—1)3 O -1y
A=D1 -1)
Kvr = t(t— 1)

(1 1 o) Q) Xoo % .
x [vz—n (X*ATT)""<F+(A-1)2+A(A—1)+(A—t)2>J

Table A.5. (Deformation equations).

Oy Oy __loay
'—a”t—=AJ(x1t)/\)’—a?+BJ($rt>/\)¢J) BJ_ 2 Oz '

1 20z T 2z
Ar=A; = _/\), Al”:t(m—/\)-*_? A“’““l._)\’

Ay = é:_lm_-ﬁ
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