An Example of the Cauchy Problem with Infinitely Branching Solutions

Makoto KAMETANI (亀谷 睦)

Reserch Institute for Mathematical Sciences, Kyoto University

§1. Result

We consider in this note the following nonlinear first order Cauchy problem in $\mathbb{C}^{\, 2}$

(1.1)
$$\begin{cases} u_{X_1}^{p} + x_1^{q} + a(u_{X_2}^{p} + x_2^{q}) = 0 \\ u(0, x_2) = \phi(x_2) \end{cases}$$

with the following assumptions [A.1]-[A.3]:

- [A.1] $p,q \in \mathbb{N}$ satisfying $p \ge 2$, $q \ge 2$, and $p+q \ge 5$.
- [A.2] ϕ is an entire function with the following property: $\phi'(y)^p/y^q$ is not identically constant.

Notation 1.1. Let d be the greatest common divisor of p and q, and we put p' := p/d, q' := q/d. We denote the least common multiple by m = dp' q'. We put $\zeta_m := exp(2 \pi i/m)$ and denote the smallest field containing $\mathbb{Q} \cup \{\zeta_m\}$ by $\mathbb{Q}(\zeta_m)$.

Under this notation our third assumtion is as follows:

[A.3] a is a complex constant satisfying

$$\{\,\alpha\in\mathbb{C}\,\,;\,\,\alpha^{\,m}=(\,-\,a^{\,})^{\,p'\,\,+\,q'\,\,}\}\cap\,\mathbb{Q}\,(\,\zeta_{\,\,m})=\varnothing\,\,.$$

Note that [A.3] can be written as $(-a)^{1/p+1/q} \not\in \mathbb{Q}(\zeta_m)$.

To state our result we give a remark on local holomorphic solutions of (1.1). We put

(1.2)
$$F(x;\xi) := \xi_1^p + x_1^q + a(\xi_2^p + x_2^q)$$
$$g(x;\xi_2) := -x_1^q - a(\xi_2^p + x_2^q)$$
$$\psi(y) := \phi'(y)^p + y^q.$$

We fix a simply connected domain Ω satisfying

$$(1.3) \Omega \subset \mathbb{C} \setminus \psi^{-1}(0).$$

Note that $\psi(y)/y \not\equiv const.$ by [A.2], in particular, $\psi(y) \not\equiv 0$, so there exists such a Ω satisfying (1.3). Since

$$g(0,y;\phi'(y)) = -a \psi(y) \neq 0 \text{ on } \Omega$$
,

we can find a simply connected domain W in \mathbb{C}^3 containing the set $\{(0,y;\phi'(y); y\in\Omega\} \text{ so that } g(W)\cap\{0\}=\emptyset$. Then the equation $f^p=g$ has p holomorphic roots $f_k\in \mathcal{O}(W)$, $1\leq k\leq p$, so we get the following decomposition of F:

(1.4)
$$F(x;\xi) = \prod_{k=1}^{p} (\xi_1 - f_k(x;\xi_2)) \quad (\xi_1 \in \mathbb{C}, (x;\xi_2) \in W).$$

By virtue of (1.4) the Cauchy problem (1.1) can be reduced on a neighborhood Ω of {0}× Ω in \mathbb{C}^2 to

(1.5)_k
$$\begin{cases} u_{X_1} = f_k(x; u_{X_2}) & x \in \Omega^{\sim} \\ u(0, x_2) = \phi(x_2). \end{cases}$$
 (1 \leq k \leq p)

Notation 1.2. Since $(1.5)_k$ has a uniquely determined holomorphic solution on a neighborhood of $\{0\}\times\Omega$ in Ω^{\sim} , we denote it by $u_k(x;\Omega)$. We also denote the maximal analytic continuation of $u_k(x;\Omega)$ to \mathbb{C}^2 by $u_k^*(x;\Omega)$.

Our main result is the following theorem:

Theorem 1.3. Under [A.1]-[A.3], for any Ω and each k, the function $u_k^*(x;\Omega)$ is an infinitely many-valued function.

Now we explain our motivation to consider (1.1). In [2] we studied first order nonlinear Cauchy problem in a neighborhood M of x on \mathbb{C} :

(1.6)
$$\begin{cases} G(x; u_{x}; u) = 0 & x = (x_{1}, \dots, x_{n}) \in M \\ u(x_{1}^{0}, x') = \phi(x') & \text{on } M \cap \{x_{1} = x_{1}^{0}\}. \end{cases}$$

where $G(x;\xi;z)$ is holomorphic in the first order jet bundle $J^{1}(M)$ and where $\phi(x')$ is holomorphic on $M \cap \{x_1 = x_1^0\}$. We fix a point

e ° = (x °;
$$\xi$$
 , °, ϕ , (x °); ϕ (x °)) ∈ $\int_{x^0} (M)$

with $G(e^{\circ}) = 0$, and assume the following [A.4]-[A.6]:

[A.4]
$$\sum_{i} \frac{\partial G}{\partial \xi_{i}} (e^{\circ}) \frac{\partial}{\partial x_{i}} \neq 0 \quad \text{in } T_{\chi^{0}}(M).$$

- [A.5] The function $\xi_1 \to G(x^0; \xi_1, \phi_x(x^0); \phi(x^0))$ vanishes at ξ_1^0 with a finite vanishing order $p \ge 1$.
- [A.6] There exists a holomorphic extension $\Phi(x)$ of $\phi(x')$ with $\Phi_x(x^0) = (\xi_1^0, \phi_x(x^0))$ to a neighborhood of x^0 in M so that Φ has several "good" properties.

For the precise meaning of [A.6] see § 2 in [2].

The main result of [2] was the following theorem.

Theorem 1.4 ([2], Theorem 4.2). Under [A.4]-[A.6], the Cauchy problem (1.6) has finitely many-valued analytic solutions around x° . Further, the ramification degrees of such solutions around x° can be calculable by means of the Newton polygon N(g°) of the function

$$g^{\bullet}(x';\tau) = G(x_1^{\bullet}, x';\tau dx_1 + \Phi_{\star}(x_1^{\bullet}, x');\phi(x')).$$

It is our motivation to consider (1.1) as an example of the Cauchy problem (1.6) which do **not** satisfy the condition [A.4]. Indeed, if we choose $\phi(x_2)$ in (1.1) as $\phi'(0) = 0$ then [A.4] at the point $e^0 = (0;0;\phi(0)) \in J^1(\mathbb{C}^2)$ is not satisfied. We also note that Theorem 1.3 concerns a **global** ramification degrees of the solutions of (1.1).

§ 2. Characteristic Strips

Our proof of Theorem 1.3 is based on the following three tools:

- (I) Classical theory of characteristic strips for first order nonlinear Cauchy problems.
- (II) Representation of the Hamilton flows associated with (1.1) by means of a special function $s_{pq}(\tau)$.
- (III) Automorphic property of s $_{pq}$ or its uniformization σ_{pq} .

In this section we give a quick review of (I). For the tools (II) and (III) see §§ 3-5.

Let us consider the following Cauchy problem in \mathbb{C}^n :

(2.1)
$$\begin{cases} G(x; u_x; u) = 0 & x \in \mathbb{C}^n \\ u(0, x') = \phi(x') & x' \in S = \{x_1 = 0\} \end{cases}$$

and assume that $G(x;\xi;z)$ and $\phi(x')$ are holomorphic. We also assume that there exists a domain Ω in S so that the equation

(2.2)
$$G(0, y; \xi_1, \phi_x(y); \phi(y)) = 0$$

has a holomorphic root $\xi_1 = f(y)$ on Ω . We put

$$\rho(y) = (0, y; f(y), \phi_{x'}(y); \phi(y))$$

and denote the characteristic strip associated with G issuing from $\{ \rho(y); y \in \Omega \}$ by $\Phi(t,y) = (X;\Xi;Z)(t,y)$:

(2.3)
$$\partial_{x} X_{j} = [(\partial/\partial \xi_{j})G](\Phi) \qquad (1 \leq j \leq n)$$

$$\partial_{x} \Xi_{j} = -[(\partial/\partial x_{j})G](\Phi) - \Xi_{j}[(\partial/\partial z)G](\Phi) (1 \leq j \leq n)$$

$$\partial_{x} Z = \sum_{j=1}^{n} \Xi_{j}[(\partial/\partial \xi_{j})G](\Phi)$$

(2.4)
$$\Phi(0,y) = \rho(y)$$
.

Proposition 2.1. If there exists a neighborhood V of $(0, y_0)$ in \mathbb{C}^n so that the restriction $X|_V$ is biholomorphic, then the function $u(x) = Z((X|_V)^{-1}(x))$, $x \in X(V)$, is a holomorphic solution of (2.1) satisfying

$$u_{X_1}(0, y) = f(y).$$

Further, the derivatives of u are given by

(2.5)
$$u_{X_i}(x) = \Xi_i((X|_v)^{-1}(x)), 1 \le j \le n$$

Proposition 2.1 follows from $G(\Phi(t,y)) \equiv 0$ and from $\Phi^* \alpha = 0$ where $\alpha = dz - \sum_{i=1}^n \xi_i dx_i$ is the fundamental 1-form on $J^1(\mathbb{C}^n)$.

§ 3. The Function s_{m}

In this section we define and study a special function $s_{pq}(\tau)$ which represents the Hamilton flow associated with (1.1).

We first define a function $\tau_{pq}(s)$, and next define s_{pq} as the inverse function of it.

Definition 3.1. For $p,q \in \mathbb{N}$ satisfying [A.1] we define an open sector S_q and a function $\tau_{pq}(s)$ by

(3.1)
$$S_q := \{ s \in \mathbb{C} ; 0 < arg(s) < \pi/q \},$$

(3.2)
$$\tau_{pq}(s) = \int_{\Gamma(s)} (1 - z^{q})^{-(p-1)/p} dz,$$

where $\Gamma(s):[0,1]\to S_q\cup\{0\}$ be a path joinning 0 to $s\in S_q$. Choosing the branch of $(1-z^q)^{-1/p}$ at z=0 as $1^{-1/p}=1$, (3.2) determines a function $\tau_{pq}\in \mathcal{O}(S_q)\cap C(S_q^-)$ independently of the choice of a path $\Gamma(s)$, where S_q^- denotes the closure of S_q in the extended complex plane $\mathbb{C}:=\mathbb{C}\cup\{\infty\}$.

Notation 3.2. We put $\omega_{pq} := \tau_{pq}(1) \in (0,\infty)$, and define an open triangle T_{pq} by

(3.3)
$$T_{pq} := \left\{ \tau \in \mathbb{C} : \begin{array}{l} 0 < \operatorname{arg}(\tau) < \pi/q, \text{ and} \\ \pi (p-1)/p < \operatorname{arg}(\tau - \omega_{pq}) < \pi \end{array} \right\}.$$

We denote the closure of T_{pq} in $\mathbb C$ by T_{pq}^- , and the vertex of T_{pq} distinct from 0 and ω_{pq} by λ_{pq} .

Proposition 3.3. The function τ_{pq} maps S_q conformally onto T_{pq} [resp. maps S_q homeomorphically onto T_{pq}], with

(3.4)
$$(\tau_{pq}(0), \tau_{pq}(1), \tau_{pq}(\infty)) = (0, \omega_{pq}, \lambda_{pq}).$$

Proof. We use the formula of Schwarz-Christoffel, which asserts that the conformal map Ψ from the upper half plane H onto T_{pq} with the property $(\Psi(0), \Psi(1), \Psi(\infty)) = (0, \omega_{pq}, \lambda_{pq})$ can be written as the following form:

(3.5)
$$\Psi(z) = A \int_{z_0}^{z} \zeta^{-(q-1)/q} (\zeta - 1)^{-(p-1)/p} d\zeta + B$$

where $z_0 \in H$ and where A and B are constants. Substituting $z = \psi$ (s) = s of into (3.5), we have the composition $\Psi_1 = \Psi \circ \psi$ given by

(3.6)
$$\Psi_{1}(s) = q A \int_{S_{0}}^{S} (\sigma^{q} - 1)^{-(p-1)/p} d\sigma + B$$

which maps S_q conformally onto T_{pq} with

$$(3.7) \qquad (\Psi_{1}(0), \Psi_{1}(1), \Psi_{1}(\infty)) = (0, \omega_{pq}, \lambda_{pq}).$$

Evaluating the constants A and B by (3.7), we can deduce $\Psi_1 = \tau_{pq}$ so τ_{pq} has the desired property.

Definition 3.4. We define $s_{pq}: T_{pq} \rightarrow S_q$ by $s_{pq}:=\tau_{pq}^{-1}$. By

Proposition 3.3 and (3.2), s_{pq} maps T_{pq} conformally onto S_{q} , with

(3.8)
$$\begin{cases} s_{pq}'(\tau) = [1 - s_{pq}(\tau)^q]^{(p-1)/p} \\ s_{pq}(0) = 0 \end{cases}$$

The following proposition is the key result in this section.

Proposition 3.5. For $p,q \in \mathbb{N}$ satisfying [A.1], let m be the least common multiple of them (Notation 1.1). Then it follows that $p^{-1}+q^{-1}+m^{-1} \leq 1$. Moreover, the following conditions (a)-(d) are equivalent:

- (a) s_{pq} is an elliptic function on \mathbb{C} .
- (b) s_{pq} is single-valued around the vertex λ_{pq} of T_{pq} .
- (c) The equality $p^{-1} + q^{-1} + m^{-1} = 1$ holds.
- (d) $(p,q) \in \{(2,3),(3,2),(2,4),(3,3),(4,2)\}.$

Proof. By [A.1], we have $1-p^{-1}-q^{-1}>0$, so $1-p^{-1}-q^{-1}\in m^{-1}\mathbb{N}$. Thus we get $p^{-1}+q^{-1}+m^{-1}\leq 1$. Since $(a)\Rightarrow (b)$ is trivial, we only have to show $(b)\Rightarrow (c)\Rightarrow (d)\Rightarrow (a)$.

To show (b) \Rightarrow (c) we apply the Schwarz's reflection principle to s_{pq} around $\tau = \lambda_{pq}$. Let T_{pq}^* be the reflection of T_{pq} with the segment $[\omega_{pq}, \lambda_{pq}]$, and let S_q^* be the reflection of S_q with the half line $(1,\infty)$. Since $s_{pq}(T_{pq}^*) = S_q^*$ by the principle, if τ rotates $2(1-p^{-1}-q^{-1})\pi$ around λ_{pq} then the value $s_{pq}(\tau)$ rotates $2q^{-1}\pi$ around ∞ . Thus the single-valuedness of s_{pq} yields that there exists a $n' \in \mathbb{N}$ so that

$$2(1-p^{-1}-q^{-1})\pi n'=2\pi$$
.

So, if τ rotates 2π around λ_{pq} then $s_{pq}(\tau)$ rotates $2q^{-1}\pi n'$ around ∞ , which deduces $q^{-1}n' \in \mathbb{N}$. Thus, there exists a $n \in \mathbb{N}$ satisfying $(1-p^{-1}-q^{-1})qn=1$. Then we deduce $qn/p \in \mathbb{N}$, which implies $n \in p' \mathbb{Z}$. Thus we get $qn \in m\mathbb{Z}$, so we conclude that $(1-p^{-1}-q^{-1})m$ is a divisor of 1, which shows (c).

To show $(c) \Rightarrow (d)$ we remark that (c) is equivalent to

(3.9)
$$dp' q' = m = m(p^{-1} + q^{-1} + m^{-1}) = q' + p' + 1.$$

If p' q' = 1 then p' = q' = 1, so (3.9) implies d = 3, thus we get (p,q) = (3,3). If p' q' = 2 then (p',q') = (1,2) or (2,1), so (3.9) implies d = 2, thus we get (p,q) = (2,4) or (4,2). In the case $p' q' \ge 3$, we use the inequality

(3.10)
$$dp' q' = q' + p' + 1 \le 2 + p' q'$$

which is a consequence of $(p'-1)(q'-1) \ge 0$. By (3.10) we have $0 \le d-1 \le 2/(p'q') \le 2/3$, so we get d=1. Then (3.9) means pq=q+p+1, which is equivalent to (p-1)(q-1)=2. Thus we deduce (p,q)=(2,3) or (3,2).

To show $(d) \Rightarrow (a)$, we need the following notation.

Notation 3.6. Let Q be the closure of the union of T_{pq} and its reflection with the real axis. Let r_k [resp. ρ] be the $2\pi/p$ [$2\pi/q$] rotation in $\mathbb C$ with center $\zeta_q^k\omega_{pq}$ [the origin]. We put

(3.11)
$$F_{pq} := \text{the interior of } \left[\bigcup_{j=0}^{p-1} \bigcup_{k=0}^{q-1} r_{k}^{j} (\rho^{k}(Q)) \right],$$

which is an open 2(p-1)q-gon in \mathbb{C} . For each $n \in \mathbb{Z}$ satisfying $0 \le n \le (p-1)q-1$, dividing n by (p-1), we write n as

$$(3.12) n = (p-1)k + j (0 \le k, 0 \le j \le p-2),$$

and we define sides s $_n$ and s $_n$ ' of F $_{pq}$, and side-pairing maps $\{g_s \in Aut(\mathbb{C}); s \in \{s_n, s_n'; 0 \le n \le (p-1)q-1\}\}$

as follows:

(3.13)
$$s_n = r_k^{j+1}(\rho^k([0,\lambda_{pq}])), s_n' = r_{k+1}^{j+1}(\rho^k([0,\lambda_{pq}]))$$

(3.14)
$$g_s = r_{k+1}^{j+1} \circ r_{k}^{-j-1} \text{ if } s = s_n, \text{ and}$$

$$g_s = r_{k}^{j+1} \circ r_{k+1}^{-j-1} \text{ if } s = s_n'.$$

We illustrate the polygon F_{pq} in the case (p,q)=(3,3):

Figure 3.7. F₃₃ with the side-pairing maps.

Let G_{pq} be the group generated by the side-pairing maps (3.14). Since any $g \in G_{pq}$ is a translation in \mathbb{C} , there exists a constant $c(g) \in \mathbb{C}$ so that g(z) = z + c(g) for $z \in \mathbb{C}$. For all (p,q)

satisfying the condition (d), it can be verified that G_{pq} is generated by g_0 and g_1 which are independent over \mathbb{R} . Further, F_{pq} is a *fundamental domain* for the group G_{pq} , that is, the following conditions hold:

(3.15)
$$\mathbb{C} = \bigcup_{g \in G_{p,q}} g (F_{p,q})$$

(3.16)
$$g \in G_{pq} \setminus \{I\} \text{ implies } g(F_{pq}) \cap F_{pq} = \emptyset.$$

Since s_{pq} is invariant under the action of G_{pq} and is single-valued on \mathbb{C} , s_{pq} is an elliptic function.

§ 4. Representation of Hamilton Flows

In this section we give the representation of the Hamilton flows associated with (1.1) by means of s $_{pq}(\tau)$. Let us recall the simply connected domain Ω in $\mathbb{C} \setminus \psi^{-1}(0)$ and the decomposition (1.4) of $F(x;\xi)$. We put

(4.1)
$$\rho_{k}(y) = (0, y; f_{k}(0, y; \phi'(y)), \phi'(y))$$

which lies in $T^*(\mathbb{C}^2) \cap F^{-1}(0)$.

Lemma 4.1. Let Ω_1 be a simply connected subdomain of Ω so that $\{y^q/\psi(y); y \in \Omega_1\} \subset \mathbb{C} \setminus [1,\infty)$. Then there exist $A_k, B, E \in \mathbb{O}(\Omega_1)$ such that

$$A_{k}(y)^{q'} = f_{k}(0, y; \phi'(y))$$

$$B(y)^{p'} s_{pq}(E(y)) = y$$

$$B(y)^{q'} [1 - s_{pq}(E(y))^{q}]^{1/p} = \phi'(y).$$

Moreover, the function $\alpha_k(y) = -a (B(y)/A_k(y))^{m-p'-q'}$ is constant on Ω_1 so that $\alpha_k^m = (-a)^{p'+q'}$.

Proof. Since $f_k(0,y;\phi'(y))^p = -a \psi(y) \neq 0$ on Ω , the existence of A_k is obvious. To show the existence of B, we put

$$(4.2) V_{q} = \mathbb{C} \setminus \bigcup_{k=0}^{q-1} \zeta_{q^{k}}[1,\infty).$$

Let B(y) be a holomorphic root of $B^m = \psi$ on Ω_1 . Then, $y \in \Omega_1$ implies $(y/B^p)^q = y^q/\psi(y) \in \mathbb{C} \setminus [1,\infty)$, so $y/B^p \in V_q$. Since $\tau_{pq}|V_q$ is single-valued, we can define $E_B \in \mathcal{O}(\Omega_1)$ by

$$E_B(y) = (\tau_{pq} | V_q)(y/B(y)^{p'}).$$

By $s_{pq} \circ \tau_{pq} = id$, we get $B(y)^p s_{pq}(E(y)) = y$ on Ω_1 . Let us put $B^*(y) := \zeta_m B(y)$. Then

$$S_{pq}(E_{B*}(y)) = y/(\zeta_m B(y))^{p'} = S_{pq}(E_B(y))/\zeta_q$$

so we get $s_{pq}(E_{B*})^q = s_{pq}(E_B)^q = y^q/\psi(y) \in \mathbb{C} \setminus [1,\infty)$. Since $(1-z)^{-1/p}$ is single-valued on $\mathbb{C} \setminus [1,\infty)$, we deduce that

$$[1 - s_{pq}(E_{B*})^q]^{1/p} = [1 - s_{pq}(E_B)^q]^{1/p}.$$

Since $B^m = \psi$ implies

$$(B^{q'}[1-s_{pq}(E_B)^q]^{1/p})^p = B^m(1-s_{pq}(E_B)^q)$$

= $\psi[1-(y^q/\psi)] = \phi'(y)^p$,

we can find some $j \in \{0, \dots, m-1\}$ so that $B^{*(j)} = \zeta_m{}^j B$ satisfies

$$(B^{*(j)})^{q'}[1-s_{pq}(E_{B^{*(j)}})^{q}]^{1/p}=\phi'(y).$$

The last assertion on α_k easily follows from $(A_k/B)^m = -a$.

The representation of the Hamilton flows is as follows:

Proposition 4.2. Let $\Phi_{\mathbf{k}} = (X; \Xi)(t, y)$ be the Hamilton flows associated with $F(x; \xi) := \xi_1^p + x_1^q + a(\xi_2^p + x_2^q)$, issuing from $\rho_{\mathbf{k}}(y)$ at t = 0. Let Ω_1 and $A_{\mathbf{k}}, B, E \in \mathcal{O}(\Omega_1)$ and $\alpha_{\mathbf{k}} \in \mathbb{C}$ be chosen as in Lemma 4.1. Then $\Phi_{\mathbf{k}}$ can be represented as

$$X_{1} = A_{k}(y)^{p'} S_{pq}(\tau)$$

$$X_{2} = B(y)^{p'} S_{pq}(-\alpha_{k}\tau + E(y))$$

$$\Xi_{1} = A_{k}(y)^{q'} [1 - S_{pq}(\tau)^{q}]^{1/p}$$

$$\Xi_{2} = B(y)^{q'} [1 - S_{pq}(-\alpha_{k}\tau + E(y))^{q}]^{1/p}$$

where we put $\tau = \tau (t, y) = pA_k(y)^{m-p'-q'} t$.

Proposision 4.2 follows from a direct computation with Lemma 4.1 and with the differential equation (3.8).

§ 5. Uniformization of s_{m}

We will treat the case $p+q \ge 7$ and construct a uniformization of the multi-valued function s_{pq} on $\mathbb C$. In the case $p+q \ge 7$, note that Proposition 3.5 implies

$$(5.1) p^{-1} + q^{-1} + m^{-1} < 1.$$

Notation 5.1 Let $\mathbb D$ be the the unit open disk in $\mathbb C$. We regard $\mathbb D$

as a hyperbolic plane with the Poincaré metric

$$ds^2 = (1 - |z|^2)^{-2} (dx^2 + dy^2).$$

It is well-known that geodesics in $\mathbb D$ with respect to this metric consist of all (Euclidean) circles which are orthogonal to the circle at infinity $\{|z|=1\}$.

Definition 5.2. By (5.1) there exists a hyperbolic triangle with inner angles $p^{-1}\pi$, $q^{-1}\pi$ and $m^{-1}\pi$. We denote by $T_{pq}^{\#}$ the uniquely determined triangle with vertices 0, $\omega_{pq}^{\#}$, $\lambda_{pq}^{\#}$ so that

(5.2)
$$\omega_{pq}^* \in (0,1)$$
 and $\lambda_{pq}^* \in \mathbb{D} \cap \{\operatorname{Im}(z) > 0\}$

(5.3)
$$\angle 0 = q^{-1}\pi$$
, $\angle \omega_{pq}^{\#} = p^{-1}\pi$, and $\angle \lambda_{pq}^{\#} = m^{-1}\pi$.

By Riemann's mapping theorem, there exists a map π which maps T_{pq}^{\sharp} conformally onto the triangle T_{pq} defined by (3.3) [resp. maps $(T_{pq}^{\sharp})^{\sim}$ homeomorphically onto T_{pq}^{-}], where \sim denotes the closure in \mathbb{D} .

Notation 5.3. We denote by π_{pq} the conformal map $\pi: T_{pq}^{\sharp} \to T_{pq}$ with $(\pi(0), \pi(\omega_{pq}^{\sharp}), \pi(\lambda_{pq}^{\sharp})) = (0, \omega_{pq}, \lambda_{pq})$. We denote the composition $s_{pq} \circ \pi_{pq}$ by σ_{pq} .

We consider the analytic [resp. meromorphic] continuation of π_{pq} [σ_{pq}] to D. To do this we need to construct a polygon F_{pq} in D, which is obtained by similar way of the construction (3.11) of F_{pq} in the case $p+q \le 6$.

Definition 5.4. Let $(T_{pq}^*)'$ be the reflection of T_{pq}^* with the geodesic (-1,1), and we put $Q:=[T_{pq}^*\cup(T_{pq}^*)']^\sim$. We denote by r_k [resp. ρ] the elliptic $2\pi/p$ [$2\pi/q$] rotation in $\mathbb D$ with center $\zeta_q^k\omega_{pq}^*$ [the origin]. We define F_{pq} by

(5.4)
$$F_{pq} := \text{the interior of } \begin{bmatrix} \bigcup_{j=0}^{p-1} \bigcup_{k=0}^{q-1} r_{k}^{j} (\rho^{k}(Q)) \end{bmatrix}.$$

Note that F_{pq} is a 2(p-1)q-gon in \mathbb{D} . For each $n\in\mathbb{Z}$ satisfying $0\le n\le (p-1)q-1$, dividing n by (p-1), we write

(5.5)
$$n = (p-1)k + j \quad (0 \le k, 0 \le j \le p-2).$$

Definition 5.5. We define sides s_n and s_n' of F_{pq} and side-pairing maps

$$\{\,g_{\,S}\in Aut(\,\mathbb{D}\,)\,;\ s\in\{\,s_{\,n},\,s_{\,n}'\,;\,0\leq n\leq(\,p-1\,)\,q-1\,\}\}$$

as follows:

(5.6)
$$s_{n} = r_{k}^{j+1} (\rho^{k}([0,\lambda_{pq}^{\#}])), \text{ and }$$

$$s_{n}' = r_{k+1}^{j+1} (\rho^{k}([0,\lambda_{pq}^{\#}]))$$

(5.7)
$$g_s = r_{k+1}^{j+1} \circ r_{k}^{-j-1} \text{ if } s = s_n, \text{ and}$$

$$g_s = r_{k}^{j+1} \circ r_{k+1}^{-j-1} \text{ if } s = s_n',$$

where $[0,\lambda_{pq}^{*}]$ denotes the geodesic segment joining 0 to λ_{pq}^{*} . We illustrate the polygon F_{pq} in the case (p,q)=(3,4): Figure 5.6. F_{34} with the side-pairing maps.

We recall the following general definition.

Definition 5.7. Let G be a subgroup of $Aut(\mathbb{D})$. A subset Ω is called a *fundamental domain for* G if

- (i) Ω is a domain.
- (ii) The hyperbolic area of $\partial \Omega$ is 0.
- (iii) $\mathbb{D} = \bigcup_{g \in G} g(\Omega^{\sim})$ (where \sim denotes the closure in \mathbb{D}).
- (iv) $g \in G \setminus \{I\} \text{ implies } g(\Omega) \cap \Omega = \emptyset$.

Definition 5.8. A fundamental domain Ω for G is called *locally finite* if for any compact K in D only finitely many g in G satisfy $g(\Omega^{\sim}) \cap K \neq \emptyset$.

We now use the Poincaré's theorem originated by [3], which gives a sufficient condition for a polygon P with side-pairing maps $\{g_s; s \in \{s \text{ ides of P}\}\}$

to be a locally finite fundamental domain for the group generated by the side-pairing maps. To state the Poincaré's theorem we need a notion of a cycle of a vertex of P.

Definition 5.9. Let x be a vertex of P. We call a finite sequence $\{x_0, x_1, \dots, x_{n-1}\}$ a cycle of x if

- (i) $x_0 = x_n = x$, and $x_i \neq x_j$ for $0 \le i < j \le n 1$.
- (ii) For any $1 \le j \le n$ there exist sides s , and t , of P so that

(5.9)
$$\{x_j\} = s_j \cap t_j, g_{s_j}(s_j) = t_{j-1} \text{ and } g_{s_j}(x_j) = x_{j-1}.$$

We note that if $C(x) = \{x_0, x_1, \dots, x_{n-1}\}$ is a cycle of x then every x_i is a vertex of P, and that $C^{-1}(x) = \{x_n, x_{n-1}, \dots, x_1\}$ is also a cycle of x. Further, there is no cycle of x different from C(x) and $C^{-1}(x)$.

Theorem 5.10 (Poincaré's theorem of a restricted type). Let P be a relatively compact polygon in $\mathbb D$ with side-pairing maps (5.8). Assume the following condition (angle condition) (5.10) for any vertex x: let $C(x)=\{x_0,x_1,...,x_{n-1}\}$ be a cycle of x, and let θ , be the inner angle of P at the vertex x_i . In this situation, there exists a $N=N(C(x))\in \mathbb N$ so that

(5.10)
$$\sum_{j=0}^{n-1} \theta_{j} = 2 \pi / N.$$

Then P is a locally finite fundamental domain for the group which is generated by the collection (5.8).

For the proof of Theorem 5.10 see [1] or [3].

We want now to apply Theorem 5.10 to our F_{pq} with the side-pairing maps (5.7). To do this we must verify the following lemma.

Lemma 5.11. The polygon F_{pq} with the side-pairing maps (5.7) satisfies the angle condition (5.10) with N(C(x)) = 1 for all vertices x of F_{pq} .

Proof. Let x be a vertex of F_{pq} . Then there exists a uniquely determined $n \in \{0,1,\dots,(p-1)q-1\}$ such that x lies in s_n . There are two cases which can occur:

Case 1.
$$x = r_k^{j+1} (\rho^k (\lambda_{pq}^*)),$$

Case 2.
$$x = r_k^{j+1}(\rho^k(0)) = r_k^{j+1}(0),$$

where j and k are related with n by (5.5).

We will first show the following claim:

Claim 5.12. Let n' be the uniquely determined integer by

(5.11)
$$x' := g_{s_n}(x) \in s_{n'}$$
.

Then it follows that

(5.12)
$$n' \equiv n + p \mod (p-1)q$$
 in the case 1,

(5.13)
$$n' \equiv n + p - 1 \mod (p - 1)q$$
 in the case 2.

Proof of Claim 5.12. We first show (5.12). By the definition (5.7) of the side-pairing maps, we have

$$x' = r_{k+1}^{j+1} r_k^{-j-1} (r_k^{j+1} (\rho^k (\lambda_{pq}^{\#})) = r_{k+1}^{j+1} (\rho^k (\lambda_{pq}^{\#})).$$

Since
$$\rho^{k}(\lambda_{pq}^{\#}) = r_{k+1}(\rho^{k+1}(\lambda_{pq}^{\#}))$$
, we get $x' = r_{k+1}^{j+2}(\rho^{k+1}(\lambda_{pq}^{\#}))$.

Thus, by (5.6), $x' \in s_n$ is equivalent to $n' \equiv (p-1)(k+1) + j + 1 \mod (p-1)q,$

which implies

$$n'-n \equiv (p-1)(k+1)+j+1-[(p-1)k+j]=p.$$

Next we show (5.13). By (5.7) we also have

$$x' = r_{k+1}^{j+1} r_k^{-j-1} (r_k^{j+1} (0)) = r_{k+1}^{j+1} (\rho^{k+1} (0)).$$

So we get by (5.6) that $n' \equiv (p-1)(k+1)+j \mod (p-1)q$, which implies

$$n' - n \equiv (p-1)(k+1) + j - [(p-1)k + j] = p-1$$
.

This completes the proof of Claim 5.12.

We continue the proof of Lemma 5.11. Let $C(x) = \{x_0, \dots, x_{\nu-1}\}$ be the cycle of $x = x_0$. In the case 1, Claim 5.12 shows that $\nu = \#C(x)$ is the minimum of $\mu \in \mathbb{N}$ satisfying

(5.14)
$$n + \mu p \equiv n \mod (p-1)q$$
.

Since (5.14) is equivalent to μ p' \in (p-1)q' \mathbb{Z} , the coprimeness of p' and (p-1)q' implies $\mu \in$ (p-1)q' \mathbb{Z} . Thus we get $\nu = \min[(p-1)q'] \mathbb{N} = (p-1)q'$

Further, a vertex x_h $(1 \le h \le \nu = (p-1)q')$ in C(x) coincides with $\rho^k(\lambda_{pq}^*)$ for some $k \in \{0,1,\dots,q-1\}$ if and only if h satisfies $n+hp \in (p-1)\mathbb{Z}$, which is equivalent to

(5.15)
$$j + h \in (p-1) \mathbb{Z}$$

where n = (p-1)k + j. Since (5.15) has q'-solutions h, we have $\{x_h; \theta_h = 4 \text{ m}^{-1} \pi\} = q'$ and

$$\#\{x_h; \theta_h = 2 m^{-1} \pi\} = \nu - q' = (p-2) q'.$$

Thus we deduce in the case 1 that

$$\sum_{j=0}^{p-1} \theta_{j} = (4 \text{ m}^{-1} \pi) q' + (2 \text{ m}^{-1} \pi) (p-2) q'$$

$$= 2 \pi \text{ m}^{-1} p q' = 2 \pi.$$

In the case 2, Claim 5.12 shows that $\nu = \#C(x)$ is the minimum of $\mu \in \mathbb{N}$ satisfying

(5.16)
$$n + \mu (p-1) \equiv n \mod (p-1)q$$
.

Then it is trivial that $\nu = q$, so we deduce in the case 2 that

$$\sum_{j=0}^{r-1} \theta_{j} = (2 q^{-1} \pi) q = 2 \pi.$$

It completes the proof of Lemma 5.11.

By virtue of Lemma 5.11 we can apply Theorem 5.10 (Poincaré's theorem) to the polygon F_{Pq} with the side-pairing maps (5.7), and have the following proposition.

Proposition 5.13. The polygon F_{pq} defined by (5.4) is a locally finite fundamental domain for the group generated by the side-pairing maps (5.7).

Notation 5.14. We denote by G_{pq} the group generated by the side-pairing maps (5.7).

As a consequence of Proposition 5.13 we have the following uniformization of s_{PQ} .

Corollary 5.15. The following (i)~(iv) hold: (i) σ_{pq} is meromorphic on \mathbb{D} , and is G_{pq} -invariant.

- (ii) π_{pq} is holomorphic on \mathbb{D} , and for any g in G_{pq} the function $c(g)(z) := \pi_{pq}(gz) \pi_{pq}(z)$ is constant on \mathbb{D} .
- (iii) The map $g \to c(g)$ is a group homomorphism from G_{pq} into the additive group $(\mathbb{C},+)$.
- (iv) $\sigma_{pq}(z) = s_{pq}(\pi_{pq}(z))$ on \mathbb{D} , that is, the following diagram is commutative:

§ 6. A Picard Type Theorem

In this section we give a Picard type theorem for a uniformization of the equation (6.2) below.

Let $\Phi_k = (X; \Xi)$ be the Hamilton flow, and we consider the following equation in $(t,y) \in \mathbb{C} \times \Omega_1$:

(6.1)
$$X_{j}(t,y) = x_{j} (j = 1,2)$$

where Ω_1 is the domain chosen as in Lemma 4.1. By Proposition 4.2, putting $\tau = pA_k(y)^{m-p'-q'}t$, (6.1) can be written as

(6.2)
$$X_1^{\sim}(\tau, y) = A_k(y)^{p'} s_{pq}(\tau) = x_1$$

 $X_2^{\sim}(\tau, y) = B(y)^{p'} s_{pq}(-\alpha_k \tau + E(y)) = x_2$

Since in the case $p+q \ge 7$ the function s_{pq} is multi-valued, we introduce the following uniformization of the map X^{\sim} .

Notation 6.1. Let us put

(6.3)
$$\Sigma_{pq} := \begin{cases} \mathbb{D} & \text{if } p+q \ge 7 \\ \mathbb{C} & \text{if } 5 \le p+q \le 6. \end{cases}$$

In the case $\Sigma_{pq} = \mathbb{D}$, the maps π_{pq} and σ_{pq} are already defined in Notation 5.3. In the case $\Sigma_{pq} = \mathbb{C}$, we denote the identity map on \mathbb{C} by π_{pq} , and we put $\sigma_{pq} = s_{pq}$.

Using this notation, we have $\pi_{pq} \in \mathcal{O}(\Sigma_{pq})$ and $\sigma_{pq} \in \mathrm{Mero}(\Sigma_{pq})$ so that

(6.4)
$$\sigma_{pq}(z) = S_{pq}(\pi_{pq}(z)) \quad \text{on } \Sigma_{pq}.$$

Definition 6.2. For the constant α_k and $E \in \mathcal{O}(\Omega_1)$ in (6.2), we define a surface $M_{pq}(\alpha_k)$ by

(6.5) $M_{pq}(\alpha_k) := \{(z_1, z_2; y) \in \sum_{pq} x \times \Omega_1 : x \in \{(z_1, z_2; y) \in \sum_{pq} x \times \Omega_1 : x \in \{(z_1, z_2; y) \in \{(z_1, z_$

$$-\alpha_k \pi_{pq}(z_1) + E(y) = \pi_{pq}(z_2)$$
.

We also define a map $X^{\#}: M_{pq}(\alpha_k) \to \mathbb{C}^2$ by

(6.6)
$$X^{\#}(z_1, z_2; y) = (A_k(y)^{p'} \sigma_{pq}(z_1), B(y)^{p'} \sigma_{pq}(z_2)).$$

Finally we define a map $P: M_{pq}(\alpha_k) \to \mathbb{C} \times \Omega_1$ by

(6.7)
$$P(z_1, z_2; y) = (\pi_{pq}(z_1), y).$$

Remark 6.3. The identity (6.4) implies the following identity:

(6.8)
$$X^{*}(z_{1}, z_{2}; y) = X^{\sim}(P(z_{1}, z_{2}; y)).$$

Proof. Indeed, it follows from (6.4) and (6.5) that

$$X_{1}^{\sim}(P(z_{1},z_{2};y)) = A_{k}(y)^{p'} s_{pq}(\pi_{pq}(z_{1}))$$

$$= A_{k}(y)^{p'} \sigma_{pq}(z_{1}) = X_{1}^{*}(z_{1},z_{2};y),$$

$$X_{2}^{\sim}(P(z_{1},z_{2};y)) = B(y)^{p'} s_{pq}(-\alpha_{k}\pi_{pq}(z_{1}) + E(y))$$

$$= B(y)^{p'} s_{pq}(\pi_{pq}(z_{2})) = B(y)^{p'} \sigma_{pq}(z_{2})$$

$$= X_{2}^{*}(z_{1},z_{2};y)$$

By virtue of Remark 6.3, the equation (6.2) also has the following uniformization

(6.9)
$$X_{1}^{*}(z_{1}, z_{2}; y) = A_{k}(y)^{p'} \sigma_{pq}(z_{1}) = x_{1}$$
$$X_{2}^{*}(z_{1}, z_{2}; y) = B(y)^{p'} \sigma_{pq}(z_{2}) = x_{2}.$$

Notation 6.4. We put $(G_{pq})_* = \{c(g) \in \mathbb{C} : g \in G_{pq}\}, \text{ where } c(g)$

is the constant defined by $c(g) = \pi_{pq}(gz) - \pi_{pq}(z)$, $z \in \Sigma_{pq}$.

By Corollary 5.15 (iii) (G_{pq}), forms an additive subgroup of $\mathbb C$.

The following lemma is fundamental to solve (6.9).

Lemma 6.5. The vector sum

$$\alpha_{k}(G_{pq})_{*}+(G_{pq})_{*}=\{\alpha_{k}x+y;x,y\in(G_{pq})_{*}\}$$

is dense in \mathbb{C} .

We omit the proof of Lemma 6.5, which is obtained by the fact that α_k lies in $\mathbb{C} \setminus \mathbb{Q}(\zeta_m)$ (see Lemma 4.1 and [A.3]), and that $c(g)/\omega_{pq}$ lies in $\mathbb{Z}[\zeta_m]$.

Using Lemma 6.5, we can show the following Picard type theorem for the map $X^*: M_{pq}(\alpha_k) \to \mathbb{C}^2$.

Proposition 6.6. There exists a relatively compact subdomain Ω_2 of Ω_1 such that the following (i) and (ii) hold:

(i) There exists an open neighborhood V of the origin in $\mathbb{C}^{\,2}$ such that for any $x\in V$ we can find a distinct sequence

$$\{(z_{1\nu}, z_{2\nu}; y_{\nu}); \nu \in \mathbb{N}\}\ in\ M_{pq}(\alpha_{k}) \cap [\sum_{pq} \times \Omega_{2}]\ satisfying$$

(6.10)
$$X^{*}(z_{1\nu}, z_{2\nu}; y_{\nu}) = x \quad \text{for any } \nu \in \mathbb{N}.$$

(ii) Moreover, if $x \in V \setminus \{0\}$ then $\{(z_{1\nu}, z_{2\nu}; y_{\nu})\}$ has the following property: for any $\mu \neq \nu$,

(6.11)
$$z_{1\mu} \in G_{pq}(z_{1\nu}) \text{ and } z_{2\mu} \in G_{pq}(z_{2\nu})$$

are not compatible, where $G_{pq}(z)$ denotes the G_{pq} -orbit containing $z \in \Sigma_{pq}$.

Proof of (i). Let us reall the facts shown in § 4:

(6.12)
$$A_k(y)^m = -a \psi(y) \neq 0$$
, $B(y)^m = \psi(y) \neq 0$ on Ω_1 ,

(6.13)
$$E(y) = (\tau_{pq} | V_q)(y/B(y)^{p'}),$$

where V_q is the simply connected domain given by (4.2). Since $\{y/B(y)^p'\}^q = y^q/\psi(y)$ is not constant by [A.2], we get

(6.14) E(y) is not constant on Ω_1 .

We also remark that

(6.15) $\psi(y)$ is not constant on Ω_1 .

Indeed, if we assume $\psi(y) \equiv c$ then $c \neq 0$, because $\psi(y) \equiv 0$ implies $\phi'(y)^p/y^q \equiv -1$ which violates [A.2]. On the other hand, $\psi(y) \equiv c \neq 0$ implies $\phi'(y) \equiv [c - y^q]^{1/p}$ which contradicts $\phi'(y) \in \mathcal{O}(\mathbb{C})$. Thus we get (6.15).

By (6.14) and (6.15), there exists a relatively compact subdomain Ω_z of Ω_1 so that

Since $\psi(y) \neq 0$ on Ω_1 , we also have

$$\min_{\mathbf{y}\in\ \Omega_{2}}^{-}|\psi\left(\mathbf{y}\right)|>0.$$

Thus (6.12) yields

Then, by (6.17) and the former of (6.16), we get

(6.18)
$$\min \{ \min_{y \in \Omega_z} |A_k(y)|, \min_{y \in \Omega_z} |B(y)|, \min_{y \in \Omega_z} |E'(y)| \} > 0.$$

We denote the left hand side of (6.18) by ε . We consider the following function H:

(6.19)
$$H(y; x_1, x_2) := -\alpha_k(\tau_{pq}|V_q)(x_1/A_k(y)^{p'}) + E(y) + (\tau_{pq}|V_q)(x_2/B(y)^{p'})$$

Since $y \in \Omega_2$ and $|x_j| < \epsilon^{p'}$ yield $|x_1/A_k(y)^{p'}|$, $|x_2/B(y)^{p'}| < 1$, we have $x_1/A_k(y)^{p'}$, $x_2/B(y)^{p'} \in V_q$, so $H(y;x_1,x_2)$ is well-defined. Moreover, since

for $y \in \Omega_2$ and $|x_j| < \varepsilon^{p'}$ (j = 1, 2).

$$(\partial/\partial y) H = -\alpha_{k} (\tau_{pq} | V_{q})' (x_{1}/A_{k}(y)^{p'}) x_{1} (d/dy) [A_{k}^{-p'}]$$

$$+ E'(y) + (\tau_{pq} | V_{q})' (x_{2}/B(y)^{p'}) x_{2} (d/dy) [B^{-p'}],$$

we can find a small $\delta \in (0, \varepsilon^p)$ such that $|x_i| < \delta$ yield

(6.20)
$$|(\partial/\partial y)H(y;x_1,x_2)|$$

$$\geq \min_{\mathbf{y} \in \Omega_{2}} |\mathbf{E}'(\mathbf{y})| - \delta \left(\max_{\mathbf{z} \in S} |(\tau_{pq} | V_{q})'(\mathbf{z})| \right)$$

$$\times \max_{\mathbf{y} \in \Omega_{2}} (|\alpha_{k}| |(\mathbf{d}/\mathbf{d}\mathbf{y})[\mathbf{A}_{k}^{-p'}]| + |(\mathbf{d}/\mathbf{d}\mathbf{y})[\mathbf{B}^{-p'}]|)$$

 $\geq \varepsilon/2$.

We put $V := \{ x \in \mathbb{C}^z ; |x_j| < \delta \}.$

For any $x \in V$ we constract a sequence $\{(z_1, z_2, y_r); \nu \in \mathbb{N}\}$ of solutions of (6.10) as follows. Since (6.20) implies that, for any fixed $x \in V$, the function $y \to H(y; x)$ is not constant on Ω_2 , the image $W(x) = \{H(y; x); y \in \Omega_2\}$ is a non-empty open set in \mathbb{C} . Then, by Lemma 6.5, $W(x) \cap [\alpha_k(G_{pq})_* + (G_{pq})_*]$ contains infinitely many elements, so we can choose sequences $\{y_r\}$ in Ω_2 , and $\{g_r\}$, $\{h_r\}$ in G_{pq} such that

(6.21)
$$H(y_{\nu}; x) = -\alpha_{\nu} c(g_{\nu}) + c(h_{\nu})$$
 with the property $H(y_{\nu}; x) \neq H(y_{\mu}; x)$ for any $\nu \neq \mu$.

Taking subsequences if necessary, we may assume that there is a $y_0 \in \Omega_2^-$ so that $y_\nu \to y_0$ ($\nu \to \infty$). Now we define a sequence

$$\{(z_{1\nu}, z_{2\nu}); \nu \in \mathbb{N}\}$$
 in \sum_{pq}^{2} by

(6.22)
$$z_{1\nu} := g_{\nu}((\sigma_{pq}|F_{pq}^*)^{-1}(x_1/A_k(y_{\nu})^{p'}))$$

$$z_{2\nu} := h_{\nu}((\sigma_{pq}|F_{pq}^*)^{-1}(x_2/B(y_{\nu})^{p'})),$$

where F_{pq}^* is, using Q and ρ in Definition 5.4, defined by

(6.23)
$$F_{pq}^* := \text{the interior of } \left[\bigcup_{k=0}^{q-1} \rho^k(Q) \right].$$

We note that $F_{pq}^* \subset F_{pq}$ and the following diagram commutes:

$$(6.24) \qquad F_{pq}^* \xrightarrow{\sigma_{pq} | F_{pq}^*} V_q$$

$$\pi_{pq} | F_{pq}^* | S$$

$$\tau_{pq} | V_q$$

Then the G_{pq} -invariance of σ_{pq} yields

$$X_{1}^{\sharp}(z_{1\nu},z_{2\nu};y_{\nu}) = A_{k}(y_{\nu})^{p'} \sigma_{pq}(z_{1\nu})$$

$$= A_{k}(y_{\nu})^{p'} \sigma_{pq}((\sigma_{pq}|F_{pq}^{*})^{-1}(x_{1}/A_{k}(y_{\nu})^{p'})) = x_{1},$$

$$X_{2}^{\sharp}(z_{1\nu},z_{2\nu};y_{\nu}) = B(y_{\nu})^{p'} \sigma_{pq}(z_{2\nu})$$

$$= B(y_{\nu})^{p'} \sigma_{pq}((\sigma_{pq}|F_{pq}^{*})^{-1}(x_{2}/B(y_{\nu})^{p'})) = x_{2}.$$

Moreover, (6.24) and the property $\pi_{pq}(gz) = \pi_{pq}(z) + c(g)$ imply $-\alpha_k \pi_{pq}(z_{1\nu}) + E(y_{\nu}) - \pi_{pq}(z_{2\nu})$ $= -\alpha_k [\pi_{pq}((\sigma_{pq}|F_{pq}^*)^{-1}(x_1/A_k(y_{\nu})^{p'})) + c(g_{\nu})] + E(y_{\nu})$

$$- \left[\pi_{pq} ((\sigma_{pq} | F_{pq}^*)^{-1} (x_2/B(y_{\nu})^{p'})) + c(h_{\nu}) \right]$$

=
$$H(y_{,;x}) - [\alpha_{k}c(g_{,}) + c(h_{,})]$$

= 0.

Thus, the assertion (i) is proved.

Proof of (ii). It suffices to show that if there exist ν and μ with $\nu \neq \mu$ so that (6.11) are compatible, then x=0. Since $z_{1\mu} \in G_{pq}(z_{1\nu})$, there exists a $g \in G_{pq}$ so that $z_{1\mu} = g(z_{1\nu})$, so (6.22) yields

$$g_{\mu}((\sigma_{pq}|F_{pq}^*)^{-1}(x_1/A_k(y_{\mu})^{p'}))$$

$$= gg_{\nu}((\sigma_{pq}|F_{pq}^*)^{-1}(x_1/A_k(y_{\nu})^{p'})).$$

Since the image of $(\sigma_{pq}|F_{pq}^*)^{-1}$ lies in F_{pq} which is a fundamental

domain for G_{pq} by Proposition 5.13, we get $g_{\mu} = g g_{\nu}$ and

$$(\sigma_{pq}|F_{pq}^*)^{-1}(x_1/A_k(y_\mu)^{p'}) = (\sigma_{pq}|F_{pq}^*)^{-1}(x_1/A_k(y_\nu)^{p'}).$$

Then the injectivity of $(\sigma_{pq}|F_{pq}^*)^{-1}$ implies

(6.25)
$$x_1/A_k(y_\mu)^p = x_1/A_k(y_\nu)^p.$$

If we assume $x_1 \neq 0$ then $A_k(y_\mu)^{p'} = A_k(y_\nu)^{p'}$. Since we get $(d/dy)[A_k(y)^{p'}] = p'A_k(y)^{p'-1}A_k'(y) \neq 0$

on Ω_2 , which is a consequence of (6.12),(6.17) and the latter of (6.16), there exists an open neighborhood U of $y_0 = \lim y_{\nu}$ so that $y \to A_{\kappa}(y)^{p'}$ is injective on U. Thus, taking a subsequence if necessary, we may assume that $y_{\nu} \in U$ for all ν . Then we have $A_{\kappa}(y_{\mu})^{p'} \neq A_{\kappa}(y_{\nu})^{p'}$, so $x_1 \neq 0$ is impossible. Hence we get $x_1 = 0$. Since the similar argument also yields $x_2 = 0$, we get the assertion (ii). It completes the proof.

§ 7. Proof of Theorem 1.3

Now we give a proof of our main result (Theorem 1.3) in this last section. The Picard type theorem (Proposition 6.6) shows that the fiber $(X^{\sharp})^{-1}(x)$ is an infinite set in $M_{pq}(\alpha_k)$ for $x \in V$.

On the other hand, we can show the following fact.

Theorem 7.1. Let Ω_2 be the relatively compact subdomain chosen as in Proposition 6.6. We put $M_{pq}^*(\alpha_k) := M_{pq}(\alpha_k) \cap (\sum_{pq} {}^2 \times \Omega_2)$. Then, for any $k=1,2,\cdots,p$, the surface $M_{pq}^*(\alpha_k)$ is a non-singular connected surface.

Partial proof. The non-singularity follows from the former of (6.16). The connectivity of $M_{pq}^*(\alpha_k)$ in the case $p+q \leq 6$ is easily verified, because $\pi_{pq}=\mathrm{id}$ on $\Sigma_{pq}=\mathbb{C}$ implies that the surface $M_{pq}^*(\alpha_k)=\{(z_1,z_2;y)\in\mathbb{C}^2\times\Omega_2;-\alpha_kz_1+\mathrm{E}(y)=z_2\}$ is a continuous image of the connected set $\mathbb{C}\times\Omega_2$. But in the case $p+q\geq 7$ it needs a long proof with full use of $\alpha_k\in\mathbb{C}\setminus\mathbb{Q}(\zeta_m)$ to show that $M_{pq}^*(\alpha_k)$ is connected. So, we omit it here.

To show Theorem 1.3, we recall the following diagram, which is introduced in Definition 6.2 and Remark 6.3.

Let $(X^*)^{-1}$ be the multi-valued analytic inverse of X^* , and let V be the open neighborhood of the origin in \mathbb{C}^2 chosen as in Proposition 6.6. For any fixed $x \in V$ and for two points $(z_{\nu}; y_{\nu})$ and $(z_{\mu}; y_{\mu})$ in the fiber $(X^*)^{-1}(x)$, by Theorem 7.1, there exists a path $\Gamma_{\nu\mu}$ in $M_{pq}^*(\alpha_k)$ which joins $(z_{\nu}; y_{\nu})$ to $(z_{\mu}; y_{\mu})$. Since the 2-form $\beta:=dX_1^*\wedge dX_2^*$ does not vanish identically on $M_{pq}^*(\alpha_k)$, the complement of $\beta^{-1}(0)$ is open dense and connected in $M_{pq}^*(\alpha_k)$. Thus we can choose $\Gamma_{\nu\mu}\setminus\{(z_{\nu}; y_{\nu}), (z_{\mu}; y_{\mu})\}$ in the complement of $\beta^{-1}(0)$. So, the two germs ρ_{ν} and ρ_{μ} of $(X^*)^{-1}$ at x with $\rho_{\nu}(x)=(z_{\nu}; y_{\nu}), \quad \rho_{\mu}(x)=(z_{\mu}; y_{\mu})$ can be continued analytically each other along the path $X^*(\Gamma_{\nu\mu})$ in \mathbb{C}^2 . We put

(7.2)
$$(X^{*})^{-1}(x) = (z(x); y(x))$$
$$X^{-1}(x) = (t(x), y(x))$$

where t(x) is given by

(7.3)
$$t(x) = \pi_{pq}(z_1(x))/[pA_k(y(x))^{m-p'-q'}].$$

Note that, if we restrict analytic continuations of $(X^*)^{-1}$ to the continuations along paths of the type $X^*(\Gamma_{\mu})$, then $y(x) \in \Omega_2$, so t(x) is well-defind by (7.3).

Let $Z_k(t,y)$ be the solution of

(7.4)
$$(\partial/\partial t)Z = \Xi_1[(\partial/\partial \xi_1)F](\Phi_k) + \Xi_2[(\partial/\partial \xi_2)F](\Phi_k)$$

= $p\Xi_1^p + ap\Xi_2^p$

$$Z(0,y) = \phi(y)$$

where $\Phi_k(t,y)=(X(t,y);\Xi(t,y))$ is the Hamilton flow issuing from $\rho_k(y)$ at t=0. We put

(7.5)
$$W_k(x) := Z_k(X^{-1}(x)).$$

By the theory of characteristic strips in §2, $w_k(x)$ is an

analytic continuation of the solution $u_k(x;\Omega)$ of the Cauchy problem (1.1), so all germs of w_k are contained in germs of the maximal continuation $u_k^*(x;\Omega)$.

Now we assume that the conclusion of Theorem 1.3 is false, that is, $u_k^*(x;\Omega)$ is finitely many-valued. Then w_k is also finitely many-valued, so are $(\partial/\partial x_1)w_k$ and $(\partial/\partial x_2)w_k$. By (2.5) in Proposition 2.1 and by the uniqueness of continuations, we have

(7.6)
$$(\partial/\partial x_j)w_k(x) = \Xi_j(X^{-1}(x))$$
 for $j = 1, 2$.

Since

$$\Xi_1(t,y)^p + X_1(t,y)^q = \Xi_1(0,y)^p + X_1(0,y)^q = -a \psi(y),$$

we have $[(\partial/\partial x_1)w_k(x)]^p + x_1^q = -a \psi(y(x))$, which implies that $\psi(y(x))$ is finitely many-valued. Then the relations

$$A_k(y)^m = -a \psi(y)$$
 and $B(y)^m = \psi(y)$

yield that both $A_k(y(x))$ and B(y(x)) are finitely many-valued functions. Then, by the equations

$$x_1 = X_1^{\#}(z(x); y(x)) = A_k(y(x))^p \sigma_{pq}(z_1(x))$$

 $x_2 = X_2^{\#}(z(x); y(x)) = B(y(x))^p \sigma_{pq}(z_2(x)),$

we deduce

(7.7) $\sigma_{pq}(z_1(x))$ and $\sigma_{pq}(z_2(x))$ are finitely many-valued.

From now on we fix $x \in V \setminus \{0\}$, and let $\{(z_{1\nu}, z_{2\nu}; y_{\nu})\}$ be the sequence in Proposition 6.6. Then (7.7) yields that the set

(7.8)
$$\{\sigma_{pq}(z_{j\nu}); \nu \in \mathbb{N}\}\$$
 is finite for $j = 1, 2$.

By (7.8), taking a subsequences of $\{z_{1\nu}\}$ and $\{z_{2\nu}\}$ if necessary, we may assume that there exist constants c_{j} (j=1,2) so that

(7.9)
$$\sigma_{pq}(z_{j\nu}) = c_j \quad (j = 1, 2).$$

Since the restriction $\sigma_{pq}|F_{pq}:F_{pq}\to\mathbb{C}$ is a p-to-1 map, and since σ_{pq} is G_{pq} -invariant, we deduce from (7.9) the following inequality:

$$(7.10) #[{z_{1\nu}}/G_{pq}] \leq p.$$

Then, taking a subsequences of $\{z_{1\nu}\}$ if necessary, we may assume that $\{z_{1\nu}\}$ is contained in the same G_{pq} -orbit $G_{pq}(z_{11})$.

Finally we consider the finite sequence $\{z_2, ; 1 \le \nu \le p+1\}$. Since (7.9) implies the inequality

$$\#[\{z_{2\nu}; 1 \le \nu \le p+1\}/G_{pq}] \le p$$

as similar as (7.10), there exist ν , $\mu \in \{1, 2, \cdots, p+1\}$ with $\nu \neq \mu$ such that $z_{2\mu} \in G_{pq}(z_{2\nu})$. Thus we conclude that there exist ν and μ with $\nu \neq \mu$ such that

$$z_{1\mu} \in G_{pq}(z_{1\nu})$$
 and $z_{2\mu} \in G_{pq}(z_{2\nu})$

are compatible. This contradicts the assertion (ii) of Proposition 6.6. Thus the maximal analytic continuation $u_k^*(x;\Omega)$ is an infinitely many-valued function. It completes the proof of Theorem 1.3.

References

- [1] Beardon, A.F., *The geometry of discrete groups*, Graduate Text in Math. 91, Springer-Verlag, 1983.
- [2] Kametani, M., On multi-valued analytic solutions of first order non-linear Cauchy problems, Publ. R.I.M.S. 27 (1991) 1-131.
- [3] Poincaré, H., Théorie des groupes fuchsiens, Acta Math. 1 (1882), 1-62.