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An Example of the Cauchy Problem with Infinitely
Branching Solutions

Makoto KAMETANI (&% #)
Reserch Institute for Mathematical Sciences, Kyoto University

§1. Result

We consider in this note the following nonlinear first order Cauchy
problem in C?

u ]"+x,°+a(u

P ) =
X 2+Xz)0

X

(1.1)
{ u(0,x2)=¢(x2)

with the following assumptions [A.1]-([A.3]:

[A.1] p,.q €N satisfying p=2, q=2, and p+aq=5.

[A.2] ¢ is an entire function with the following property:
¢'(y)*/y* is not identically constant.

Notation 1.1. Let d be the greatest common divisor of p and q,
and we put p':=p/d, q :=q/d. We denote the least common
multiple by m=dp ' q'. We put ¢Cn.:=exp(2r i/m) and denote the
smallest field containing QU{¢ .} by Q(¢.).

Under this notation our third assumtion is as follows:
[A.3] 4 is a complex constant satisfying

{fa€eC; a™"=(—a)”*" " INQ(¢.)=92.

Note that [A. 3] can be written as (— a )'"**'"" g Q(¢ .).

To state our result we give a remark on local holomorphic
solutions of (1.1). We put

(1.2) F(x;6):=&°+x 1%+ a(€.°4+x:%)
g(x;gz):'—_—qu“a(fzp’*'qu)
p(y)i=¢' (y)e+ye.
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We fix a simply connected domain @ satisfying
(1.3) Q C C\¥ '(0).

Note that v (y )/y *Zconst. by [A. 2], in particular, v (y)Z0,
so there exists such a @ satisfying (1.3). Since

g(0,y;6'(y))=—a y(y)#0 on Q,

we can find a simply connected domain W in C?3 containing the set
{(0,y;6'(y); y€eQ} so that g(W)N{0}=2. Then the equation
f*=g has p holomorphic roots f.€(®(W), 1=k=p, so we get
the following decomposition of F:

P

(1.4) F(x;€)=J] (6.=fu(x:£2)) (£.€C, (x:£.)EW).
By virtue of (1.4) the Cauchy problem (1.1) can be reduced on a
neighborhood Q7 of {0}xQ in C? to '

=fx;u,) x€Q7 (1=k=p)

u
X1 Xz

u(0,x:)=4¢(x.).

Notation 1.2. Since (1.5). has a uniquely determined holomorphic
solution on a neighborhood of {0}xQ in Q7, we denote it by
ui(x;Q). We also denote the maximal analytic continuation of
u(x;Q) to C?* by u.*(x;Q).

(1.5)

Qur main result is the following theorem:

Theorem 1.3. Under [A.1]-[A.3], for any Q and each k,
the function u.*(x;Q) is an infinitely many-valued function.

Now we explain our motivation to consider (1.1). In [2] we
studied first order nonlinear Cauchy problem in a neighborhood M of
x® in C-":

G(x;ux;u)=0 ' X =(x, - , X .)EM
(1'6) 1 [
u(x,% x")=¢(x") on MN{x,=x,°}.

where G(x;¢§:;z) 1is holomorphic in the first order Jjet bundle
J "(M) and where ¢(x') is holomorphic on MN{x.,=x,°. We fix a
a point

e’=(x"¢.% ¢ (x")d(x°))€ ] o(M)

with G(e®)=0, and assume the following [A.4]—[A.6]:
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[A.5] The function ¢, — G(x°€&.,6-(x°);4(x°)) vanishes
at £, with a finite vanishing order‘ p=1.

[A.4] #0 in T ,(M).

[A.6] There exists a holomorphic extension ®(x) of é(x')
with ®.(x°)=(£&,°, ¢ . (x°)) to a neighborhood of x° in
M so that ¢ has several “good” properties.

For the precise meaning of [A.6] see 8§82 in [2].
The main result of [2] was the following theorem. /

Theorem 1.4 ([2], Theorem 4.2). Under [A.4]1—-[A.6], the
Cauchy problem (1.6) has finitely many-valued analytic solutions
around x°. Further, the ramification degrees of such solutions
around x° can be calculable by means of the Newton polygon N(g?*®)
of the function ‘

g% x' ;7)=G(x,%x" ;7dx:1+P.(x.%x" ):d(x')).

It is our motivation to consider (1.1) as an example of the
Cauchy problem (1.6) which do not satisfy the condition [A.4].
Indeed, if we choose ¢(x.) in (1.1) as ¢'(0)=0 then [A.4] at
the point e°=(0;0;46(0))e J '(C?*) is not satisfied We also
note that Theorem 1.3 concerns a global ramification degrees of
the solutions of (1.1).

§2. Characteristic Strips

Our proof of Theorem 1.3 is based on the following three tools:

(1) Classical theory of characteristic strips for first order
nonlinear = Cauchy problems.

(11) Representation of the Hamilton flows associated with (1.1) by
means of a special function s (7).

() Automorphic property of s ,, or its uniformization o .

In this section we give a quick review of (1). For the tools
(I1) and (Il) see §83-5.

Let us consider the following Cauchy problem in C":
G(x;ux;u)=0 XEC"

(2.1) u(olx’)=¢(x') X'Es={XI=O}



and assume that G(x;€;z) and é(x') are holomorphic. We also
assume that there exists a domain @ in S so that the equation

(2.2) G(O,y;61,.6(y);6(y))=0
has a holomorphic root £é:=f(y) on Q. We put
p(y)=(0,y;f(y),d(y);d(y))

and denote the characteristic strip associated with G issuing from
{p(y);veER} by D(t,y)=(X;E;Z)(t,y):

(23)  8.X;=0(8/0 &,)G)(®) (1=j<n)
8.8,=-1(0/0x,)GI(®)-E,[(8/82)G)(®) (1<j=n)
0.2=2, 5,(8/8&,)GI(D) |

i=1

(2.4) P(0,y)=p(y).

Proposition 2.1. If there exists a neighborhood V of (0,y.)
in C" so that the restriction X|v is biholomorphic, then the
function u(x)=Z{(Xlv)"(x)), x€X{(V), is a holomorphic
solution of (2.1) satisfying

uxl(O,y)=f(Y).
Further, the derivatives of u are given by

(2.5) qu(x)= Ei((Xv)™(x)), 1£j=n

Proposition 2.1 follows from G(®(t,y))=0 and from ®*a =0

where a =dz — Z ¢ ;dx; is the fundamental 1-formon J '(C").

i=1

§3. The Function s

In this section we  define and study ‘a special function s (7))
which represents the Hamilton flow associated with (1.1).

We first define a function 7 .(s), and next define s ,, as the
inverse function of it.

Definition 3.1. For p,q€N satisfying [A.1] we define an open
sector S. and a function 7 ,(s ) by

(3.1) S.:={s €C; 0<arg(s )<n/q},

(3.2) rpq(s)=gr‘( )(1—z°>-(p—l)/odz,
S
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where T'(s):[0,1] - S.,U{0) be a path Jjoinning O to s €S..
Choosing the branch of (1—2z9)"'" at z=0 as 17'°=1, (3.2)
determines a function 7,,€0(S.)NC(S,.") independently of the
choice of a path I'(s ), where S.”~ denotes the closure of S, in
the extended complex plane C:=CU{oo}.

Notation 3.2. We put w,:=7,(1)€(0,0), and define an open
triangle T, by
O<arg(r)<=x/q, and }

(3.3) Tvn3={fec; r(p-1)/p<arglz —w,)< =

We denote the closure of T,, in € by T, , and the vertex of T,
distinct from 0 and w, by A 5. :

Proposition 3.3. The function 1, maps S. conformally onto
T, [resp. maps S.~ homeomorphically onto T, ], with

(3.4) (750(0),75a(1),7 p(00))=(0,w pq, 4 5a).

Proof. We wuse ‘the formula of Schwarz-Christoffel, which asserts
that the conformal map V¥ from the upper half plane H onto T,
with the property (P(0),¥(1),¥(00))=(0,w pg, A pq) can be
written as the following form: '

' z
(3.5) W(z)=A[ t-unsg o -eengr 4B
Zo
where z,€H and where A and B are constants. Substituting z=
(s )=s* into (3.5), we have the composition ¥,=¥ o ¢ given by

(3.6) \Px(s)?quzo(o“—1)"’“”/"d0+B

which maps S. conformally onto T,  with

(3.7) (¥1(0),%:(1),¥1(00))=(0,0 pe, A pa).

Evaluating the constants A and B by (3.7), we can deduce ¥ ,=71,,
SO 7, has the desired property. O
Definition 3.4. We  define $ pa: Toa = Sa by S pai= T '. By

Proposition 3.3 and (3.2), s ,. maps T, conformally onto S. with
S vq' (7 )= [l - 8 pq( r )e] eV /e

(3.8) { s.e(0)=0



The following proposition is the key result in this section.

Proposition 3.5. For P,a €N satisfying [A.1], let m e
the least common multiple of them (Notation 1.1). Then ‘it
follows that pP'+q '+m ' 1. MHoreover, the  following
conditions (a )—(d) are equivalent:

(a) s, is an elliptic function on C.

(b) s, is single-valued around the vertex A ,. of T,.

(c¢) The -equality p'+q'+m'=1 holds.

(d) (p,a)€{(2,3),(3,2),(2,4),(3,3),(4,2)}.

Proof. By [A.1], we have 1-p-'-q”'>0, so 1-p'—q7'e
m™'N. Thus we get p'+q'+m'<1. Since (a)=(b) is
trivial, we only have to show (b) = (c) = (d) = (a).

To show (b) = (c) we apply the Schwarz's reflection principle
to s, around 7 =A,. Let T,* be the reflection of T,, with
the segment [w e, A4, and let S.* be the reflection of S, with
the half line (1,00). Since s p(Tp*)=S.* by the principle, if
7 rotates 2(1—-p-'—q ') around A,, then the value s ,(7)
rotates 2aq7'r around oo. Thus the single-valuedness of s
yields that there exists a n' €N so that

pq

2(1—-p'—q VY n'=2mn.

So, if 7 rotates 2rx around A,, then s ,(7) rotates 2q 'z n’
around oo, which deduces q 'n' €N. Thus, there exists a né€N
satisfying (1 -p-'—q~')gqn=1. Then we  deduce an/p €N,
which implies n€p'Z. Thus we get qn€mZ, so we conclude that
(1—-p~'—q”")m is a divisor of 1, which shows (c).

To show (c) = (d) we remark that (c) is equivalent to
(3.9) dp' @' =m=m(p~'+q '+mt)=q +p +1.

If p'a'=1 then p'=q =1, so (3.9) implies d=3, thus we
get (p,q)=(3,3). If p'q"=2 then (p',q')=(1,2) or
(2,1), so (3.9) implies d=2, thus we get (p,q)=(2.,4) or
(4,2). In the case p'q' =3, we use the inequality

(3.10) dp'q'=q' +p'+1=2+p' q'

which is a consequence of (p'—1)(q'—1)=0. By (3.10) we have
0=d-1=2/(p'q')=2/3, so we get d=1. Then (3.9 means
pa=q+p+1, which is equivalent to (p—1)(q—1) =2. Thus
we deduce (p,q)=(2,3) or (3,2).
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To show (d) = (a ), we need the following notation.

Notation 3.6. let Q be the closure of the union of T,, and its
reflection with the real axis. let r. [resp. o] be the 2nx/p
(2 7/q] rotation in C€ with center ¢ .‘w,. [the origin]. We put

p~1 q-1

(3.11) F,.:=the interior of [ U U r . (0*(Q))],

i=0 k=0

which is an open 2(p—1)qg-gon in C. For each n € Z satisfying
0=n=(p—-1)q-1, dividing n by (p—1), we write n as
(3.12) n=(p—1)k+j (0=k,0=j=p—2),

and we define sides s . and s . of F,, and side-pairing maps

{gSEAut(C); SE{s., s, ;0=n=(p-1)q—-11}}

as follows:

(3.13) s .=r"" o ([0,A,0)), so =1 (o ([0,14,4]))

(3.14) g47 Fresr'*tor "' if s =s,, and
gs=rkj+l° I'k+1_j—I if s=s.".

We illustrate the polygon F,, in the case (p,q)=(3,3):

Figure 3.7. F,; with the side-pairing maps.
)
5’0.//%50(5"

Let G,, be the group generated by the side-pairing maps (3.14).
Since any g € G,, is a translation in C, there exists a constant
c(g)eC so that g(z)=z+c(g) for z€C. For all (p,q)



satisfying the condition (d), it can be verified that G, is
generated by g, and g. which are independent over R. Further,
F. is a fundamental domain for the 'group G, that 1is, the
following conditions hold:

(3.15) c= U g(F,.)
g€ G,
(3.16) gE€G, {1} implies g(F,)NF, =2.

Since s ,¢ is invariant under the action of G,, and is single-
valued on €, s, 1is an elliptic function. ‘ |

§4. Representation of Hamilton Flows

In this section we give the representation of the Hamilton flows
associated with (1.1) by means of s (7). Let us recall the simply
connected domain Q in C\ % '(0) and the decomposition (1.4) of
F(x;€é). We put '

(4.1) p(y)=(0,y;f:(0,y;6"(y)),é"(y))
which lies in T*(C*)NF~'(0).
Lemma 4.1. [et Q, be a simply connected subdomain of Q@ so that
{y /v (y);yeQ,}CC\[1,0), Then there exist  A.,B,E€
O(Q,) such that ‘
Ad(y)Y =1f(0,y;6" (y))
B(y)” s sW(E(y))=y
B(y)¥ [1—s sW(E(y))]""=¢"(y).

‘Moreover, the  function a{y)=—a (B(y)/A.(y))"*® -« is
constant on Q, so that a,"=(—a )" *v, '

Proof.  Since  f.(0,y:4'(y))’=—a p(y)=0 on Q.  the

existence of A. 1is obvious. To show the existence of B, we put
q-1

(4.2) Ve=CN |J ¢.v01,00).

k=0

Let B(y) be a holomorphic root of B™=¢ on Q,. Then, y€Q,
implies (y/BP )i=y/y(y)eC\[1,°), so y/B*” € V,. Since
T 5qlVe 1is single~valued, we can define Es€0(Q.,) by

Es(y)=(z pqlvq)(Y/B( y)P ).
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By S pa® T ope=1d, we get B(Y)p' S pq(E(Y))=y on Q.. Let wus
put B*(y):=¢.B(y). Then :

S s Ege(¥))=y/(uB(y))” =s wW(Esly))/{.

so we get S po( Egs)o= s‘pq(EB)“= y/¢$(y)ECN\I[1,00). Since
(1—2z)'"" 1is single-valued on C\/[1,%°), we deduce that

[1—=s p(Ess)®]'""=[1—5s wW(Es)*]'".
Since B"=y% implies
(BY [1 =5 5(Es)*]'"")*=B™(1—s 5(Es)°)
='/1[1—(y“/r/1)]=¢'(y)",

we can find some jé{O, ----- ,m— 1} ) that B*W=¢ B
satisfies ’

(B*W ) [1 =5 o Eze(n)®]'P=9¢"(y).
The last assertion on a. easily follows from (A.,/B)"=—a . O
The representation of the Hamilton flows is as follows:

Proposition 4.2. [et <I>k=(‘X;E)( t,y) be the Hamilton fFflows
associated with F(x;€):=&.,°+x,%+a(&.°+x.9), issuing
from po.(y) at t=0. Let Q. and A,B,E€E®O(Q,) and
a€ C be chosen as in Lemma 4.1. Then ®. can be represented as

Xi=Au(y)” s pl7)
X:=B(y)” s po(—avr+E(y))
Er=Ad(y) " [1=5 ()]
E:=B(y)¥[1—-5 o(—avr+E(y))]'"
where we  put t=7(t,y)=pA(y)™ " ¥ t,

Proposision 4.2 follows from a direct computation with Lemma 4.1
and with the differential equation (3.8).

§5. Uniformization of s

We will treat the case p+q=7 and construct a uniformization of
the multi-valued function s ,, on C€C. In the case p+q=7, note
that Proposition 3.5 implies

(5.1) p'+q'+tm'<1.
Notation 5.1 Let D ‘be the the unit open disk in C. We regard D



as a hyperbolic plane with the Poincaré metric
ds*=(1—1z1%)"*(dx*+dy?).

It is well-known that geodesics in D with respect to this metric
consist of all (Euclidean) circles which are orthogonal to the
circle at infinity {lz|=1}.

Definition 6.2. By (5.1) there exists a hyperbolic triangle with
inner angles p-'wm, q 'm and m'w. We denote by T,* the
uniquely determined triangle with vertices 0, ®*, A, so that

(5.2) wwWt€(0,1) and A,*€DN{Im(z)>0}
(5.3) L0=q 'r, Lwyt=p ', and LAtf=mlnrn.

By Riemann's mapping theorem, there exists a map n which maps
T,* conformally onto the triangle T,. defined by (3.3) [resp.
maps (T,*)” homeomorphically onto T,. ], where =~ denotes the
closure in D.

Notation 5.3. We denote by 7, the conformal map 7 (Tt —
qu with (71'(0),71'((1-’;”1“)’71'(/{bpq‘t))—:‘(0.(‘)9«:,/1 pq)-» We denote
the composition s pq° wpe by 0 pe.

We consider the analytic [resp. meromorphic] continuation of
Tpe [04] to D. To do this we need to construct a polygon F,, in

D, which is obtained by similar way of the construction (3.11) of
F,. in the case p+q=6.

Definition 56.4. Let (T,.*)’ be the reflection of T,* with the
geodesic (—1,1), and we put Q:=[T,*U(T,*)]". We denote

by r.« [resp. p] the elliptic 2x/p [2r/q] rotation in D with
center ¢ . *w,* [the origin]. We define F,, by

p-1 q-1
(5.4) F,.:=the interior of [ U U r . (p*(Q))].

=0 k=0

Note that F,, is a 2(p—1)g-gon in D. For each n€Z
satisfying: 0=n=(p—1)q—1, dividing n by (p—1), we write

(55) n=(p—-1)k+j (0=2k,0=5j<p—2).

Definition 5.5. We define sides s. and s. of F, and side-
pairing maps

{gSGAut(ID); sé{sn;sn';Oéné(p—l)q—1}}

as follows:
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(56) s .=r"(p*[0,45%)), and
S n‘=rk+|j+‘(pk([0;/\pq“]))
(57) g.7 rk+li+l° r k_j—] if s=s., and

1

g =_'1"kj+1"1’k+1_i“1 if s=s.,

where [0,A ».*] denotes the geodesic segment Jjoining 0 to A ;°.

We illustrate the polygon F,, in the case (p,q)=(3,4):

Figure 5.6. F;. with the side-pairing maps.

We vrecall the following general definition.

Definition 5.7. Let G be a subgroup of Aut(D). A subset Q
called a fundamental domain for G if

(i) Q 1is a domain.

(i) The hyperbolic area of 9 is O.

(iii) D= U g (27 ) (where = denotes the closure in D).
g €EG

(iv) g2€G\{1} implies g(Q)NQ=2.

is



Definition 5.8. A fundamental domain @ for G is called locally
finite if for any compact K in D only finitely many g in G
satisfy g(Q 7 )NK+#g.

We now use the Poincaré’s theorem originated by [3], which
gives a sufficient condition for a polygon P with side-pairing maps

(5.8) {gs; s € {sides of P }}

to be a locally finite fundamental domain for the group generated by
the side-pairing maps. To state the Poincaré’s theorem we need a
notion of a cycle of a vertex of P.

Definition 5.9. Let x be a vertex of P. We «call a finite
sequence {Xo,X1,-,X.-1} a cycle of x if

(i) xo=x.=x, and Xx:¥x; for 0=i<j=n-1.

(ii) For any 1=j=n there exist sides s; and t; of P so that

(5.9) {x;t=s;Nt;, gS(S;)=t,-_, and g _ (x;)=x;-1.
i S;

We note that if C(x)={x.,X1,,Xa-1} is a cycle of x then

every x; is a vertex of P, and that C " x)={X.,Xac1, X1}

is also a cycle of x. Further, there is no cycle of x Adifferent
from C(x) and C '(x).

Theorem 5.10 (Poincaré’s theorem of a restricted type). Let P
be a relatively compact polygon in D with side-pairing maps (5.8).
Assume the following condition (angle condition) (5.10) for any
vertex x: let C(x)={xo,Xx1,,%X.-1} be a cycle of x, and
let §; be the inner angle of P at the vertex x; In this
situation, there exists a N=N(C(x))eEN so that

(5.10) > 6,=2x/N.

j=0
Then P is a locally ‘finite fundamental domain for the group which
ts generated by the collection (5.8).
For the proof of Theorem 5.10 see [1] or [3].

We want now to apply Theorem 5.10 to our Fse with the side-
pairing maps (5.7). To do this we must verify the following lemma.

Lemma\'5.11. The polygon F,, with the side-pairing maps (5.7)
satisfies the angle condition (5.10) with N(C(x))=1 for
all vertices x of Fi.
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Proof. Let x be a vertex of F,. Then there exists a uniquely

determined n€{0,1,--(p—1)gq—1} such that x lies

There are two cases which can occur:

Case 1. X =10 (0 (A 5),

Case 2. x=1 " (p(0))=r."""(0),
where j and k are related with n by (55).

We will first show the following claim:

1n S a.

Claim 5.12. et n' be the uniquely determined integer by

(5.11) x':=gs“(X)€sn'.

Then it follows that

(5.12) n"=n+p mod (p—1)q in the case
(5.13) n=n+p—1 mod (p—1)q in the case

i 1 ’

2.

Proof of Claim 5.12. We first show (5.12). By the definition (5.7)

of the side-pairing maps, we have

X'=raa T T T (e (A ) = raad T e KA P)).

Since 2 *(An*)=riaa(p T (A%)), we get
X =0 (A ),
Thus, by (5.6), x' €s . is equivalent to
n"=(p—1k+1)+j+1 mod (p—1)q,

which implies

n—n=(p—1)(k+1)+j+1—-[(p—1)k+jl=p.
Next we show (5.13). By (5.7) we also have

X' = e T T(0)) = ren (e KT0)).

So we get by (5.6) that n'=(p—1)(k+1)+j mod
which implies

n—n=(p—1)(k+1)+j-[p—1)k+jl=p—1.
This completes the proof of Claim 5.12.

We continue the proof of Lemma 5.111. Let C(x)={

(p—1)aq,

O

Xo, = Xy-1}

be the cycle of x=x,. In the case 1, Claim 5.12 shows that v =

#C(x) is the minimum of u €N satisfying

(5.14) n+up=n mod (p—1)q.



Since (5.14) is equivalent to up'e(p—l‘)q'Z, the coprimeness

of p' and (p—1)q  implies wpx€(p—1)q' Z. Thus we get
v =min[(p—1)q'N]=(p—-1)q’

Further, a vertex x» (1=h=v=(p—-1)q') in C(x) coincides

with o*(A,*) for some ke{0,1,--,q-—1} if and only if h
satisfies n+hp€(p—-1)Z, which 1is equivalent to

(5.15) j+he(p-1)Z
where n=(p-1)k+j. Since (5.15) has q'-solutions- h, we have
#H{xn; 8v=4m 'z}=q' and
#lxn;, €s=2m 'm}=v—-q =(p-2)q'.

Thus we deduce in the case 1 that

v=-1

i=(dm'rm)g'+(2m~ "z )(p—-2)q’

=2rm~'pq' =2 .

In the case 2, Claim 5.12 shows that v =#C(x) is the minimum of
uEN satisfying
(5.16) n+u(p—1)=n mod (p—1)q.
Then it is trivial that v =q, so we deduce in the case 2 that

v=-1

> 6,=(z2q'z)q=2n.

i=0
It- completes the proof of Lemma 5.11. ‘ d

By virtue of Lemma 5.11 we can apply. Theorem 5.10 (Poincaré’s
theorem) to the polygon F,, with the side-pairing maps (5.7), and
have the following proposition.

Proposition 5.13. The polygon F,. defined by (54) is a
locally finite fundamental domain for the group generated by the
side-pairing maps (5.7).

fotation b.14. We denote by G,  the group generated by the
side-pairing maps (5.7).

As a consequence of Proposition 5.13 we have the following
uniformization of s ;.

Corollary 5.15. The following (i1)~C(iv) hold:
(1) o, is meromorphic on D, and is G,.~invariant.
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() me LS holomorphic on D, and for any g in G, the function
clgiz)i=mplgz)—molz) is constant on D.

(i) The map g — c(g) is a group homomorphism from G, into
the additive group (C,+).

(iv) ool z)=s salmwlz)) on D, that is, the following diagram
is commutative:

T paq
D - C
/ﬂ
(5.17) T paq .7
I -7 Sea
cr

§6. A Picard Type Theorem

In this section we give a Picard type theorem for a uniformization
of the equation (6.2) below.

Let ®.=(X;Z) be the Hamilton flow, and we consider the
following equation in (t,y)eCXQ,:

(6.1) X(t.y)=x; (j=1,2)

where Q, is the domain chosen as in Lemma 4.1. By Proposition 4.2,
putting 7 =pA«(y)™" "¢ t, (6.1) can be written as

(6.2) Xi (z,y)=Ady)" s pol7) =X
X2~(TaY)=B<Y)p' S pq(—vakt'*'E(Y)):XZ

Since in the case p+q=7 the function s , is multi-valued, we
introduce the following uniformization of the map X .

Notation 6.1. Let us put
D if p+ragq=7
. 24t = .
(6.3) { C if 5=p+aqg=6.

In the case Z,,=D, the maps =n,, and ¢, are already defined in
Notation 5.3. In the case X ,,=C, we denote the identity map on ‘C
by 7w, and we put ¢ .= S 4.

Using this notation, we have 7,,€®(Z,) and o, EMero(= )
so that :

(6.4) O'pq(Z):S pq(”pq(Z)) on qu.



Definition 6.2. For the constant o. and E€®(Q,) in (6.2), we

define a surface M, (@) by

(65) Mpal @s):={(z1,22;¥) €I ,?xQ,:
—a.mp(z1)+E(y)=melz2)}.

We also define a map X*:M,(a:) > C? by

(6.6) X¥zr,22;9)={A(y)” 0,(z1), B{y)” orlz2)).

Finally we define a map P:M,(a.) = CXQ, by

(67) P(ZX,ZZ;Y)=(7FPQ(ZI), y). )
Remark 6.3. Tbe identity (6.4) implies the following identity:
(6.8) X" (z1,22;9)=X(P(z:,2z2;y)).

Proof. Indeed, it follows from (6.4) and (6.5) that
Xi (P(z1,22;9))=A(Y)" s s mplzy))
=A(y)" ool z:)=X1¥2z1,22;Y),
X (P(z1,22;9))=B(y)” s pol—awmplz)+E(Y))
=B(y)" s s 7w z2))=B(y)" 04lz2)
=X:*(z1,22;y) ’ O

By virtue of Remark 6.3, the equation (6.2) also has the following
uniformization

(6.9) Xi*'(zi,z2;9y)=Ay)” golzi)=x,
X:*(z1,22;y)=B(y)” 04lz2) =x..
Notation 6.4. We put (G,i)+={c(g)EC;g € Gy}, where c(g)
is the constant defined by clgl=n,lgz)—mulz), z €2 ..
By Corollary 5.15 (iii) (G)« forms an additive subgroup of C.
The following lemma is fundamental to solve (6.9).
Lemma 6.5. The wvector sum
2 (Goa)et (Goa)e={aix+yix,y E(Gpa)e)
is dense in C.

We omit the proof of Lemma 6.5, which is obtained by the fact
that e, lies in C\Q(¢.) (see Lemma 4.1 and [A.3]), and that
c(g)/we lies in Z[¢a.).
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Using Lemma 6.5, we can show the following Picard type theorem
for the map X*:M,{a.,) —. C:2.

Proposition 6.6. There exists a relatively compact subdomain Q.
of Q. such that the following (i) and (ii) hold:

(i) There exists an open neighborhood V of the origin in C? such
that for any x €V we can find a distinct sequence
{(z1,,22,;9.);v EN} in Mu(a )N [Z,2X Q] satisfying

(6.10) X*z1,,22,:Y.,)=x for any v €N.

(ii) Moreover, if x€VN\{0} then {(z..,z:.;y.)} has the

following property: for any u¥v,
(6.11) 21,€Gu(z1,) and z:,€Gu(2z2.)

are not compatible, where G, (z) denotes  the G ,.-orbit
containing z €2 .

Proof of (i ). Let us reall the facts shown in §4:
(6.12) Aly)"=—a y(y)#0, B(y)"=¢(y)+0 on Q,,
(6.13)  E(y)=(7,lV)(y/B(y)®),

where V., is the simply connected domain given by (4.2). Since
{y/B(y)” 1*=y*%/%(y) is not constant by [A.2], we get

(6.14) E(y) is not ~constant on Q..
We also remark  that
(6.15) $(y) 1is not constant on Q..

Indeed, if we assume ¢¥(y)=c then c#0, because ¥(y)=0
implies ¢'(y)*/y°=-1 which violates [A.2]. On the other
hand, ¥ (y)=c+#0 implies ¢'(y)=[c—y*]'’® which contradicts
' (y)eEO(C). Thus we get (6.15).

By (6.14) and (6.15), there exists a relatively compact
subdomain . of 9, so that

(6.16) min [E'(y)/>0 and min ¢ ' (y)|>0.
ye Q. yeQz_

Since ¥ (y)#¥0 on Q,, we also have

min |y (y)|>0.
YE Q.

Thus  (6.12) vyields



(6.17) min |A.(y)|>0 and min |[B(y)|>0.
YyE Q 5, yE Q .,

Then, by (6.17) and the former of (6.16), we get

(6.18) min{ min |A.(y)l, min |B(y)|, min |E'(y)i}>0.
YE Q. YE Q.  yeQ,”

We denote the left hand side of (6.18) by e. We consider the
following function H:

(6.19) H(y:x1,X2):=—au(7 wlV)(x:/Au(y)* Y+ E(y)
+ (75l Va)(x2/B(y)*)
for yeEQ, and [x;l<e™ (j=1,2).

Since y€Q., and |x;|<e? yield |x./A(y)” |, |x2/B(y)*|
<1, we have x:;/A(y)>, x/B(y)” €V, so H(y:xix.) Iis
well-defined. Moreover, since '

(8/8 Y)H=—an(ququ)'(X:/Au(y)"')Xx(d/dY)[Akf°']

+E (y)+(75lVd)' (x2/B(y)* )x.(d/dy)[B~" 1],
we can find a small & €(0,e”) such that |x;|<& vyield
(6.20) 1(8/8 y)H(y;x1,x2)]

= min |E'(y)l—6(  max (1 ,alVa) (2)])
yE Q. |zisd /e ™
X max (la«ll(d/dy)(A " 1]+ 1(d/dy)[B" 1|)
YE Q.
=c/2.

We put Vi={x€e€C?;|x;[<d}.

For any x€V we constract a sequence {(z,.,z:.;y.);v €N}
of solutions of (6.10) as follows. Since (6.20) implies that, for
any fixed x€V, the function y — H(y;x) is not constant on
Q,, the image W(x)={H(y;x);y€Q.} is a non-empty open set
in €. Then, by -lemma 65  W(x)N[ai(Gu)set(Gu).] contains
infinitely many elements, so we can choose sequences {y.} in 9.,
and {g.}, {h.} in G,, such that

(6.21) H(y.;x)=—@a.c(g.)+c(h,) with the property
H(y.;x)#+H(y.;x) for any v +u.

Taking subsequences if necessary, we may assume that there is a vy
€EQ, so that y, — yo (v — o0). Now we define a sequence
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{(zy,,22,);v €EN} in 2, by
(622) Zlv:=gv((opq|qu‘)_l(xl/Ak(Yu)p'))
sz:=hv((UWH‘-M*)-‘(XZ/B(yv)pl))v

where F,.* is, using Q and p in Definition 5.4, defined by

q-1

(6.23) F,.*:=the interior of [ |‘U=o‘0 “(Q)].

We note that F,,*CF,, and the following diagram commutes:

g quFpu‘

(6.24) Foo®

”PQ|FPQ‘S ~, 1V
T pa q
v
T Dq(vq)

Then the Gg-invariance of o, vyields
X0z, 2203y ) =A(y.)" 04l z1))
=A(Y.)? 0p((0plFo®) " (x/A(Y., )" ))=x,
X:*(z10,22,;9.)=B(y.,)” 0plz2)
=B(y.)% 0pl(0palFp®) " (x2/B(y.)" ))=x..
Moreover, (6.24) and the property mu(gz)=m,l(z)+c(g) imply
— @iz )FE(y) = 7wl z2))
== @[ pe(( 0 pa|Foa®) "(x:1/A(y.)" ))+c(g)]+E(y.)
= [75a(( 0 palFpa®) " (x2/B(y.)" ))+ c(h,)]
=H(y.;x)—[avc(g.)+ c(h,)]
=0.
Thus, the assertion (i) is proved.

Proof of (ii). It suffices to show that if there exist v and
i with v #u so that (6.11) are compatible, then x=0. Since
21,€Gulzy,), there exists a g€G,, so that z..=g(z.,.,), so
(6.22) yields

gy(( g pq|qu‘)_]( X I/A k( .y u)p‘ ))
=gg v((Upq|qu‘)_l(Xl/Ak(Yv)p' ))

Since the image of (oqu{,,q‘)“ lies in F,, which is a fundamental



domain for G.. by Proposition 5.13, we get g.=gg. and
(0 palFoa®) 7 H{x /A Y)Y )=(0 5alFe®) " (x1/A(y.)" ).

Then the injectivity of (o ,lF,®*)"" implies

(6.25) 1 /A y)Y =x1/A(y))7 .

If we assume x:#0 then Au(y.)” =A.(y.)”. Since we get
(d/dy)[A(y)” I=p " Aly)® TTA(y)#0

on Q. , which is a consequence of (6.12),(6.17) and the latter of
(6.16), there exists an open neighborhood U of yo.=limy. so that
y — A.y)” is injective on U. Thus, taking a subsequence if
necessary, we may assume that y,€U for all v. Then we have
Adly.)” #A(y.)”, so x:#0 is impossible. Hence we get
x:= 0. Since the similar argument also vyields x:=0, we get the
assertion (ii). It completes the proof. O

§7. Proof of Theorem 1.3

Now we give a proof of our main result (Theorem 1.3) in this last
section. The Picard type theorem (Proposition 6.6) shows ‘that the
fiber (X*)"'(x) 1is an infinite set in My(a,) for x€V.

On the other hand, we can show the following fact.

Theorem 7.1. Let Q. be the relatively compact subdomain chosen
as in Proposition 6.6. We put My *(ai):=Mp(a)N(Z,2X Q).
Then, for any k=1,2,-,p, the surface M,*(a.) is a non-
singular connected surface.

Partial proof. The non-singularity follows from the former  of
(6.16). The connectivity of My *(a.) in the case p+q=6 Iis
easily verified, because 7, =id on 2,=C implies that the
surface Mp*(a)={(z1,22;y)EC*XQ,; —aiz,+E(y)=1z,}

is a continuous image of the connected set C X Q.. But in the case
p+q=7 it needs a long proof with full use of a.€C\Q({.)
to show that M,.*(a.) is connected. So, we omit it here. ]

To show Theorem 1.3, we recall the following diagram, which is
introduced in Definition 6.2 and Remark 6.3.
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X ¢
(7.1) (z;y)€ My*(ay) ———— C°
e

I P l X"

J LT

(nPQ(Z|)1Y)E¢:1XQz’ L’
T | X
v l

”pq(zl)

—,y)EC . X Q ’
pA.y)"® ¢ ’

Let (X*)"' be the multi-valued analytic inverse of X*, and let V
be the open neighborhood . of the origin in C? chosen as in
Proposition 6.6. For any fixed x€V and for two points (z,;y.)
and (z,;y,.) in the fiber (X*) '(x), by Theorem 7.1, there exists
a path TI',, in My *(a) which Jjoins (z.;y.,) to (z.;y.). Since
the 2-form B :=dX,*AdX.* does not vanish identically on
M,.*( @), the complement of A~'(0) is open dense and connected
in M,.*(a«). Thus we can choose I',,\{(z.;y.),(z.;y.)} in the
complement of A7'(0). So, the two germs p. and p. of (X*)™' at

x  with o.(x)=(z,:y.), pu{x)=(z,;y.) can be continued
analytically each other along the path X*(I',.) in CZ*. We put
(7.2) (X*)""(x)=(z(x);y(x))

X "(x)=(t(x),y(x))
where t(x) 1is given by
(7.3) t(x)=molz (x))/[PA(y(x))"" " ].

Note that, if we restrict anélytic continuations of (X*)™' to the
continuations along paths of the type X*(I',,), then y(x)e€Q.,
so t(x) is well-defind by (7.3).

Let Z.(t,y) be the solution of
(7.4) (0/9t)Z=E,[(3/0 &£ )FIHPI)+E.[(F/F E:)F](D)
=p=E,"+tapz.,®
Z(0,y)=¢(y)

where @.(t,y)=(X(t,y);2(t,y)) 1is the Hamilton flow issuing
from p.(y) at t=0. We put

(7.5) wi(x):=Z. (X '(x)).

By the theory of characteristic strips in 8§ 2, w.(x) 1is an



analytic continuation of the solution wui(x;2) of the Cauchy

problem (1.1), so all germs of w. are contained in germs of the

maximal continuation u {(x;Q).

Now we assume that the conclusion of Theorem 1.3 is false, that
is, u.*(x;Q) 1is finitely many-valued. Then w. is also finitely
many-valued, so are (8/8x:)wi and (8/8 xz)w.. By (25) in
Proposition 2.1 and by the uniqueness of continuations, we have

(7.6) (0/8 xi)wi(x)=E(X"(x)) for j=1,2.
Since
E(t,y)P+Xu(t,y)*=2:(0,y)"+X:(0,y)=—ay(y),

we  have [(8/8 x1)wu(x)]P+x:1°=—a p(y(x)), which implies
that ¢ (y(x)) 1is finitely many-valued. Then the relations

Aly)"=—ay(y) and B(y)"=v(y)

yield that both A.(y(x)) and B(y(x)) are finitely many-valued
functions. Then, by the equations

x1=X1Mz(x);y(x))=A(y(x))" 0mlz:(x))
x2=X2*(z(x);y(x))=B(y(x))” 0,(z:(x)),

we deduce

(7.7) dwlzi(x)) and o,(z2(x)) are finitely many-valued.

From  now on we fix x€VX\{0}, and let {(z..,z2.;y.,)} be
the sequence in Proposition 6.6. Then (7.7) vyields that the set

(7.8) {d,(z;.);v ENY} is finite  for i=1,2.

By (7.8), taking a subsequences of ({z,,} and {z..,} if necessary,
we may assume that there exist constants c¢; (j=1,2) so that
(7.9) ()'pq(Z,',)=Cj (J=1,2)

Since the restriction 0 4lFp:Fww = € is a p-to-1 map, and
since ¢, is G.-invariant, we deduce from (7.9) the following
inequality:

(7.10) #[{Zlv}/qu]ép.

Then, taking a subsequences of {z,.} if necessary, we may assume
that {z..} is contained in the same G,,~orbit G,(z.:).

Finally we consider the finite sequence {z..;1=v=p+1}.
Since (7.9) implies the inequality
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${z..;1=v=p+1}/G,)=p

as similar as (7.10), there exist v,u€{1,2,--.p+1} with v =+
p# such that z.,€Gu(z2,). Thus we conclude that there exist v

and u« with v #u such that

Z!uerq(Zlv) and ZZuerq(22v>

are compatible. This contradicts the assertion (i) of Proposition
6.6. Thus the maximal analytic continuation u.*(x;Q) is an

infinitely many-valued function. It completes the proof of Theorem
1.3.
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