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COMPLETELY INTEGRABLE QUANTUM SYSTEMS
WITH COORDINATE SYMMETRIES AND
HYPERGEOMETRIC EQUATIONS

K HEBE KB #Mif (Tosaio OSHIMA)
Department of Mathematical Sciences, University of Tokyo

1. Introduction

The results in this article are a joint work with Hiroko Sekiguchi (Dept. of
Mathematical Sciences, Univ. of Tokyo) and are given in [OS] with their proofs.

In analytical dynamics the motion of particles is described by Hamilton’s canon-
ical equations

dg; OH dp;  OH
dt — 9pi’ dt ~ Og
Here g; are generalized coordinates and p; are generalized momentums. Hamiltonian
H is the total energy of this system and typically

fori=1,...,n.

1
H(p,q) = 5192 +U(q),

where 2p? = 2(p? + --- + p2) is the energy of motion and U(q) is the potential

energy of the system.
In general any function A(p, ¢) of (p, ¢) satisfies

dh
E = {Hah}

with the Poisson bracket

_ N~[0f 89 0g Of

7=

A function h(p, q) is called an integral of the system if

{H,h} =0.
If there exist n functionally independent integrals h;y = H, ho,... , h, satisfying
{hi,h;} = 0, Hamilton’s canonical equations are transformed into trivial equations
under the canonical coordinate system (h1,...,hpn,g1,...,9n) and we can easily

analyze the motion of articles. The local existence of these functions is reduced to
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classical mechanics. The system or H is called completely integrable if there exist
globally these functions Aq,... , h, in a suitable function space.

Replacing functions by d1fferent1al operators and the Poisson bracket by the
commutator of the operators, we have quantum systems. It is natural to replace
p; and ¢; by 0; = Bixi and «j, respectively, because of the canonical commutation
relations {p;,p;} = {g:,¢;} = 0 and {p;,¢;} = 6;j. We consider the differential
operator

P=0>+---+024+V(z1,...,24)

corresponding to the Hamiltonian. We call the quantum system defined by P is
completely integrable if there exist n algebraically independent differential opera-
tors P, = P and P,,..., P, with [P;, P;] =0for¢,j =1,... ,n. Then our problem
is to determine the potential function V(z) such that the system is completely
integrable. ‘

Many classical completely integrable systems are related to Lie algebras and
the integrability is clarified by the structure of the Lie algebras ([OP]). Because
of this structure the potential function V(z) has some symmetry and in fact V(z)
are usually symmetric functions of (zy,...,z,). Here in some cases the orbits of
motions are described by the Lie group actions on suitable homogeneous spaces.

The systems of differential equations satisfied by zonal spherical functions on
symmetric spaces give examples of completely integrable quantum systems ([HC]).
In this case the potential function V(z) has some parameters m, which take special
integers determined by the dimensions of the root spaces for the symmetric space.
Jiro Sekiguchi [Sj] proved the complete integrability for general complex parameters
me when the root system is of type A, and Heckman-Opdam [H1], [H2], [HO],
[Opl], [Op2] proved it in general case. In these cases the commuting differential
operators P;,... , P, are invariant under the action of the Weyl group W of the
root system. Moreover the principal symbols o(Py),...,0(P,) do not depend on
z and generate W-invariants of C[¢;,... ,£,]. For example, if the root system is of
type An—1, the actions of W are identified with the permutations of the coordinates
Tygeee 3Ty,

Let W be a classical Weyl group naturally acting on R™. In this article we shall
study the potential function V(z) which allows the W-invariant commuting differ-
ential operators Py,..., P, with P, = P such that o(P;),...0(P,) do not depend
on z and generate the W-invariants of C[¢]. We assume that there exist a con-
nected open neighborhood Q of the origin in C" such that V(z) is holomorphically
extended on ', where Q\ Q' is a proper analytic subset of (2.

2. Type A1
In this section we suppose the Weyl group W is of type A,_1 with n > 2. Then
W is identified with the permutation group of the coordinates zq,...,z, of R™.
Then our problem is to study the following system.
Let Aq,...,A, be W-invariant differential operators of the form

Ay =01+ -+ On,
Ay= ) 80 +R(),

1<i<j<n
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Ay = Z 0i,+++ 0, + Ry(z,0) for3<k<n

1<iy <<ix<n

such that
[Ai,Aj]=0 forl1<i<j<n,

ord Rig(z,0) < k for 3< k < n.

Here the operator P in §1 corresponds to A% — 2A,.
Then we have the following

Theorem 2.1. There exist an even holomorphic function u(t) defined for 0 <
|t| << 1 such that '

(2.1) R(z)= Y u(z;—zj).

1<i<j<n
Theorem 2.2. The commuting algebra C[A.l, ... ,Ay] is uniquely determined by
R(z) if ord R3(z,0) < 2.

Remark. The assumption ord R3(z,d) < 2 is removed by K. Taniguchi in Theo-
rem 2.2 except for the trivial case where R(z) is constant.

Theorem 2.3. Under the notation in Theorem 2.1 there exist complex numbers
Ap, Ay, wy and wy such that

(2.2) u(t) = Avp(t2wr,2z) + Ao,

Here p(t|2w1, 2w, ) is Weierstrass’s p-function with primitive half-periods w; and
wy and has the expansion

p(2|2w1,2wz) = zi'z +2 (5—}5)_2 ) ‘%)

(cf. [Er], [WW]), where the sum ranges over all w = 2mjw; + 2maw, except 0
(m1, my € Z). We allow wy or/and w, to be infinity and

8

.- 1
(2.3) p(z]v/=1m,00) = sinh™% 2 + 3 when gy = % and g3 = — 5
(2.4) p(zloo,00) = 27? when gy = g3 = 0.

Remark. When u(t) = A, sinh™ ¢, the commuting differential operators correspond
to J. Sekiguchi’s operators.
Theorem 2.4. Define
1
. Ay = -
(2:5) SIS W (4, k=79 Fer-2e)

0<e<t geW

by putting
Lij = u(z1 — z2)u(zs — x4) - u(T2i-1 — 22:)02i4102i42 - - - Oainy,
where W(i,5) = {9 € W; g(L;;) = L; ;}.

Then for any complex numbers Ay, A; and any p-function, Ay,... ,A, are
commutative if u is defined by (2.2).



126

2. Type B, and D,

In this section we assume that the Weyl group W is of type B, with n > 2 or
D,, with n > 4 (Dj3 is isomorphic to A3). Our problem is to find the W-invariant
differential operators

Py =0{ +---+ 0, + R(z),

P = Z 51-21---5,2k+Rk(:1:,6) for2<k<n
1<iy < <ix<n

such that
[P;,P;]=0 forl<i<j<n,
ord Rk(x,va) <2k for2<k<n.

When the root system is of type D,, the operator P, in the above is replaced by

P, =08,---0, + R, (z,0) with ordR,(z,0) < n.

n

The W-invariance is equivalent to the A, _;-invariance in §1 with the invariance
by the coordinate transformation z; — —z1 (resp. (z1,z2) — (=21, —z2)) when W
is of type By, (resp. D).

Similarly as in the previous section we have

Theorem 3.1. There exist even holomorphic functions u(t) and v(t) defined for
0 < |t| << 1 such that

(31)  R@)= Y (ulwi-z)+u(mitz)+ Y o).

1<i<j<n 1<k<n

Here v =0 if W is of type D,,.

Theorem 3.2. The commuting algebra C[Py,... ,P,] is uniquely determined by
(u(t),v(t)) if ord Ra2(z,0) < 3.

Remark. Put Q; = 82 + v(z;) for an even function v(t). Then we easily construct
the commuting operators P, ..., P, by polynomials of );. We call this a trivial
case and this corresponds to the condition u' = 0 in Theorem 3.1.

Theorem 3.3. If W is not of type B;, then we have

u(t) = A] p(t[2w1 y 20)2) + Ao,

(3.2) _ Cap(t)* 4 C3p(t)* 4 Cap(t)* + Cip(t) + Cy
w8= p'(t)

or

u(t) = Ar1t? + Axt™% + Ay,

3.3
( ) ’U(t) = Clt?' + Czt—2 + C()
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except for the trivial case. Here Cy = --- = C4 = 0 in the above when W is of type
D,.

The above result corresponds to the necessary and sufficient condition for the
existence of P, with [Py, P,] = 0. ‘
If the periods 2wy and 2w of p(t) are generic, v(t) in (3.2) can be written as

(34) o) =) Clp(t+wi)+ Cipt) + Co

1<i<3

with w3 = —(w; + wy). We remark that v(t) = C{'p(t) + C3 p(2t) + Cy is a special
case of (3.4), which corresponds to a non-reduced root system of type BCh,.

In general, we have not yet constructed the commuting differential operators for
the potentials defined in Theorem 3.3. If the elliptic functions are degenerated to
trigonometric functions (cf. (2.3)) and moreover if |

u(t) = Ay sinh™2 M\t + Ay,
v(t) = Cy sinh™? M + Cy sinh ™2 22t + Cy,

then the potential function coincides with the one studied by Heckman-Opdam and
therefore the existence of the commuting differential operators is known.

Proposition 3.4. Suppose W is of type By. Then we can explicitly construct the
commuting differential operators Py and P, for (u,v) given by (3.2) or (3.3) but
Theorem 3.3 is not true. In fact the functions

u(t) = Ay sinh™2 M + A, cosh 2Xt + Ao,

(3.5) o Ly
v(t) = Cysinh™ " At + Cy sinh™* 2At + C
allows the commuting differential operators.,

The complete integrability is equivalent to the existence of a symmetric function

T(z,y) of (z,y) which satisfies

(3:6) 5 T(w) = 30'E) (e +y) — ule ~ 1) + o) (ue +) = (e = ).

If there exist a pair of even functions (u(t),v(t)) and a symmetric function T(z,y)
satisfying (3.6), the following differential operators are commutative:

Pi= o+ gz Hule +) +ule —3) +o(e) +0(o),
67 _ (af;y , ulz+) - u(z — y)) o) a_i; N v(x)gy_z + o(z)o(y)

+ T(z,y).
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4. Examples

First consider the function v(t) given by (3.3) and consider the ordinary differ-
ential equation
d*y

(4.1) .

+o(t)y = 0.

Note that [p']? = 4p% — g2 — g3 = 4(p — €1)(p — €2)(p — e3) with some complex
numbers g, g3, €1, €2 and ez and therefore

p"_1(1+1+1)
[@']2#29—61 0 — €2 @—63'

Putting = = p(t), we have £ = p'(t)-L and

2 2
%= [p']z{%+%(p»_1 —+ p_lez + p_leg))}/

and hence (4.1) is transformed into

(4.2)
d2y l( 1 1 n 1 )@ C4$4 + 03273 + 02262 + C]$ + Cy 0
dz?  2\z—e; T —ey T—e3/dx 16(z — e1)%(z — €2)?(z — e3)? '

Suppose €1 # ez # e3 # e1. Then (4.2) can be written as

(4.3) _
d’y 1 1 1 1 dy
o tratraa

A A A B B B
_|_( 1 2 3 1 2 3 ) -0

(z—e1)?  (z—e€)? (z—e3)? + T—e +.’E—\62 T —e3

with some complex numbers Ay, Ay, A3, By, B; and Bj satisfying

Equation (4.3) is a Fuchsian equation on P!(C) which has the four regular singular
points ey, e, e3 and oo. The indicial equations for the singular points are

1 . :
P§—§P1+Aj:0 at z=¢; forj=1, 2and3,
(4.4) 1 :
plo = 3P0+ D (Aj+¢;Bj) =0 atz=oco.

=1

By the transformation y + (z — e;)*(z — e3)*?(z — e3)**y with complex numbers
A1, Az and A3, the equation is transformed into Huen’s equation (cf. [WW]) and
moreover we obtain any Fuchsian equation on P!(C) of order 2 which has the four
regular singular points.
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On the other hand, if

(4.5) v(t) = Cysinh ™ ¢ 4 Cy sinh ™2 2t + C
or

(4.6) v(t) = A; cosh2t + As + 4

or

(4.7) v(t) = Ayt? + At + A

J
(cf. Theorem 3.3 and Proposition 3.4), (4.1) is isomorphic to the Gauss hypergeo-
metric equation or the modified Mathieu equation or the equation of the paraboloid
of revolution which is equivalent to the equation of the Whittaker functions, respec-
tively.

If we put v = u for the function u in §1, Theorem 2.3 says v = C;p + Cy and the
corresponding equation (4.1) is the Weierstrassian form of Lamé’s equation, which
corresponds to A; = Ay = A3 = 0 in (4.3). In particular if v(¢) = Cy sinh™2¢ + C,
or v(t) = C1t7% + Cy, the equation reduces to the Legendre equation or the Bessel
equation, respectively. _

Thus the system Py¢ = - -+ = P,¢ = 0 with our commuting differential operators
Py,..., P, isageneralization of these hypergeometric equations to several variables.

We shall give here some examples of type Bz. Let (s,t) be the natural coordinate
system of RZ.

When
(4.8) | (u(t),v(t)) = (at™% + Bt2,7t—2 + 6t%),
we have
Pz gt gt B (54 6 1) £ (s 417,
(49) P, = 8%287 - 2a(82—itt252— + 28st 2 + (vt + 6t2)aa—; + (572 + 532)(%22—
4 (ys~? 4 857) (4172 + 6t2) + 40‘(6:2%_2 :;;av + 4885%42.
If

(4.10) (u(t), v(t)) = (asinh™ ¢t + B cosh2t, vsinh™%¢ + §sinh ™% 2¢),
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we have
(4.11)
. ? ?
P, = 16z(1+ x)a >+ 8(1+ 2m)—— + 16y(1 + y)a >+ 8(1+ 2y)—
2
+ QaW +28(1 + 22)(1 + 2y)

+7<5€1— * 5) * 6<4«'c(11+ )" 4y(11+ y))’

P, = [16\/30(1 +a)y(1 —{—y)af;y + <( —2a e +4ﬂ) Ve + )y +y)

§ N 5\ &
+ (% T 4a +y)) 522+ (3 + 421 +:,:)> 32

2

Y v ) 202+ +y)+ &b
ot (:1: +4w(1+x))(y +4y(1+y)) (z —y)? +46v(z +y).
by putting z = sinh® s and y = sinh? ¢.
If
u(t) = Ap(t),
(4.12) o(t) = Cap(t)! + C3p(t)’ + Cap(t)? + Cip(t) + Co
@' (1)? ’
we obtain
(4.13)
62 a 2

:(4x3—g2$—g3)62+(62 2 32 + (4y® — gay — 93)(92
A(622 + 6y* — g2)

6y? — 92y L —2Az — 24
+ (& 2)0y+ (z —y)? e
n Cyz* + C32° + Caz® + Ciz + Cy n Cay* + Cs3y® + Coy* + Cry + Co
413 — gox — g3 4y3 — g2y — g3
) 2
= | /(423 — gaz — g3) (493 — goy — 93)83:03/
N AV/(A23 = goz — 93)(4y° — 9oy — 93) |
2(z — y)?
Cyy* + Csy® + Coy? + Cry + C ( 02 2 92,0 )
+ 423 — gyz — > + (62 Sl
4y® — goy — g3 ( 922 = 93) 5 7 +( 2’ 0z
C4CC4 + 03373 + 02332 + Clﬂf + C() 3 gJo -0
4y — goy — g3)——= + (6y2 — 22y —
* 4z3 — g — g3 (( v 93)8 7 +(6y 2 8y>

(04* + Csz® 4+ C22® + Crz + C)(Cay* + C3y® 4+ Cay? + Cry + Ch)
(423 — goz — g3)(4y® — g2y — 93)
+ 2AC2%y? + ACszy(z +y) + 2AC2zy + AC1(z + y) + 2ACO
2z —y)?
by putting z = p(s) and y = p(t).
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