Holomorphic and Singular Solutions of Non Linear Singular Partial Differential Equations

Hidetoshi TAHARA (Sophia University) (田原 秀敏 (上智大 理工))

In this note, I will report some results on holomorphic and singular solutions of singular partial differential equations of the following three cases:

- 1. linear case;
- 2. non linear first order case;
- 3. non linear higher order case.

1 Linear case

First of all, let us survey my result in the case of linear Fuchsian case. Let $(t,x) = (t,x_1,\dots,x_n) \in C_t \times C_x^n$ and let us consider

(E₁)
$$(t\frac{\partial}{\partial t})^m u = \sum_{\substack{j+|\alpha| \leq m \\ j < m}} a_{j,\alpha}(t,x) (t\frac{\partial}{\partial t})^j (\frac{\partial}{\partial x})^\alpha u + f(t,x),$$

where $m \in N^* (= \{1, 2, \dots\}), \ \alpha = (\alpha_1, \dots, \alpha_n) \in N^n (= \{0, 1, 2, \dots\}^n), \ |\alpha| = |\alpha_1| + \dots + |\alpha_n| \text{ and}$

$$\left(\frac{\partial}{\partial x}\right)^{\alpha} = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\alpha_n}.$$

Assume the following conditions:

- A_1) $a_{j,\alpha}(t,x)$ and f(t,x) are holomorphic near the origin;
- A_2) $a_{j,\alpha}(0,x) \equiv 0$, if $|\alpha| > 0$.

Then, (E_1) is called a Fuchsian type equation with respect to t. The indicial polynomial $C(\rho, x)$ is defined by

$$C(\rho, x) = \rho^m - \sum_{j < m} a_{j,0}(0, x) \rho^j$$

and the characteristic exponents $\rho_1(x), \dots, \rho_m(x)$ are defined by the roots of $C(\rho, x) = 0$.

Definition of $\widetilde{\mathcal{O}}$. $\widetilde{\mathcal{O}}$ is the set of all functions u(t,x) satisfying the following: there are $\varepsilon > 0$ and r > 0 such that u(t,x) is holomorphic in $\{(t,x) \in \mathcal{R}(\mathbb{C} \setminus \{0\}) \times \mathbb{C}^n : 0 < |t| < \varepsilon \text{ and } |x| \le r\}$, where $\mathcal{R}(\mathbb{C} \setminus \{0\})$ is the universal covering space of $\mathbb{C} \setminus \{0\}$.

THEOREM 1 (Tahara [1]). Denote by S the set of all $\widetilde{\mathcal{O}}$ -solutions of (E_1) . Then, if $\rho_i(0) \notin \mathbb{N}$ $(1 \leq i \leq m)$ and $\rho_i(0) - \rho_j(0) \notin \mathbb{Z}$ $(1 \leq i \neq j \leq m)$ hold, we have

$$S = \{U(\varphi_1, \dots, \varphi_m) ; (\varphi_1, \dots, \varphi_m) \in (\mathbf{C}\{x\})^m\},\$$

where $U(\varphi_1, \dots, \varphi_m)$ is an $\widetilde{\mathcal{O}}$ -solution of (E_1) depending on $(\varphi_1, \dots, \varphi_m) \in (C\{x\})^m$ which can be taken arbitrarily and having an expansion of the following form:

$$U(\varphi_1, \dots, \varphi_m) = \sum_{i=0}^{\infty} u_i(x)t^i + \sum_{i=1}^{m} \sum_{j=0}^{\infty} \sum_{k=0}^{mj} \phi_{i,j,k}(x)t^{\rho_i(x)+j}(\log t)^k$$

with $\phi_{i,0,0}(x) = \varphi_i(x)$ $(i = 1, \dots, m)$.

2 Non linear first order case

Next, I will report a result for non linear first order equation of the following form:

$$t rac{\partial u}{\partial t} = F(t, x, u, rac{\partial u}{\partial x}),$$

where $(t,x) \in C_t \times C_x^n$ and $\frac{\partial u}{\partial x} = (\frac{\partial u}{\partial x_1}, \dots, \frac{\partial u}{\partial x_n})$. Put $v = (v_1, \dots, v_n)$ and assume the following:

 B_1) F(t,x,u,v) is holomorphic near the origin;

$$B_2$$
) $F(0, x, 0, 0) \equiv 0 \text{ near } x = 0;$

B₃)
$$\frac{\partial F}{\partial v_i}(0, x, 0, 0) \equiv 0 \text{ for } i = 1, \dots, n.$$

Then, (E_2) is called an equation of Briot-Bouquet type with respect to t (in [3]). Put

$$\rho(x) = \frac{\partial F}{\partial u}(0, x, 0, 0).$$

Definition of $\widetilde{\mathcal{O}}_+$. We denote by $\widetilde{\mathcal{O}}_+$ the set of all u(t,x) satisfying the following i) and ii):

i) There are r > 0 and a positive-valued continuous function $\varepsilon(s)$ on \mathbf{R}_s such that u(t,x) is a holomorphic function on

$$\{(t,x) \in \mathcal{R}(C \setminus \{0\}) \times C^n ; 0 < |t| < \varepsilon(\arg t), |x| \le r\};$$

ii) There is an a > 0 such that for any $\theta > 0$ we have

$$\max_{|x| \le r} \mid u(t, x) \mid = O(\mid t \mid^a)$$

as $t \longrightarrow 0$ under the condition $|\arg t| < \theta$.

THEOREM 2 (Gérard-Tahara [4]). Denote by S_+ the set of all $\widetilde{\mathcal{O}}_+$ -solutions of (E_2) . Then, if $\rho(0) \notin \mathbb{N}^*$ holds, we have:

$$S_{+} = \begin{cases} \{u_{0}\}, & when \operatorname{Re}\rho(0) \leq 0, \\ \{u_{0}\} \cup \{U(\varphi); \ 0 \neq \varphi(x) \in \mathbb{C}\{x\}\}, & when \operatorname{Re}\rho(0) > 0, \end{cases}$$

where u_0 is the unique holomorphic solution of (E_2) and $U(\varphi)$ is an $\widetilde{\mathcal{O}}_+$ -solution of (E_2) having an expansion of the following form:

$$U(\varphi) = \sum_{i \ge 1} u_i(x)t^i + \sum_{\substack{i+2j \ge k+2\\j \ge 1}} \varphi_{i,j,k}(x)t^{i+j\rho(x)}(\log t)$$

with $\varphi_{0,1,0}(x) = \varphi(x)$ which can be taken arbitrarily.

3 Non linear higher order case

Lastly, I will report a generalization of the result in section 2 to higher order case.

Let us consider

(E₃)
$$(t\frac{\partial}{\partial t})^m u = F(t, x, \{(t\frac{\partial}{\partial t})^j (\frac{\partial}{\partial x})^\alpha u\}_{\substack{j+|\alpha| \leq m \\ i \leq m}}),$$

where $(t, x) \in C_t \times C_x^n$ and $m \in N^*$. Put

$$z = \{z_{j,\alpha}\}_{\substack{j+|\alpha| \le m \\ j < m}}$$

and assume the following conditions:

- C_1) F(t,x,z) is holomorphic near the origin;
- C_2) $F(0, x, 0) \equiv 0$ near x = 0;

C₃)
$$\frac{\partial F}{\partial z_{j,\alpha}}(0,x,0) \equiv 0 \text{ near } x=0, \text{ if } |\alpha| > 0.$$

Note the following: 1) if m = 1, (E_3) is nothing but (E_2) ; 2) if (E_3) is linear, (E_3) is nothing but (E_1) . Thus, (E_3) includes both cases (E_1) and (E_2) .

Put

$$C(\rho, x) = \rho^m - \sum_{j \le m} \frac{\partial F}{\partial z_{j,0}}(0, x, 0)\rho^j$$

and denote by $\rho_1(x), \dots, \rho_m(x)$ the roots of $C(\rho, x) = 0$ in ρ . Set

$$\mu = \text{the cardinal of } \{i; \text{Re}\rho_i(0) > 0\}.$$

If $\mu = 0$, this implies that $\operatorname{Re} \rho_i(0) \leq 0$ for all $i = 1, \dots, m$. When $\mu \geq 1$, by a renumeration we may assume

$$\begin{cases} \operatorname{Re}\rho_i(0) > 0, & \text{for } 1 \le i \le \mu, \\ \operatorname{Re}\rho_i(0) \le 0, & \text{for } \mu + 1 \le i \le m. \end{cases}$$

Then we have:

THEOREM 3 (Gérard-Tahara [5]). Denote by S_+ the set of all $\widetilde{\mathcal{O}}_+$ -solutions of (E_3) . Then we have:

(I) If $\mu = 0$, we have

$$\mathcal{S}_+ = \{u_0\},\,$$

where u_0 is the unique holomorphic solution of (E_3) .

- (II) If $\mu \geq 1$, under the additional conditions:
 - 1) $\rho_i(0) \neq \rho_j(0)$ for $1 \leq i \neq j \leq \mu$,
 - 2) $C(1,0) \neq 0$,
 - 3) $C(i+j_1\rho_1(0)+\cdots+j_{\mu}\rho_{\mu}(0),0)\neq 0$ for any $(i,j)\in \mathbb{N}\times\mathbb{N}^{\mu}$ satisfying $i+\mid j\mid\geq 2$,

we have

$$\mathcal{S}_{+} = \{ U(\varphi_1, \dots, \varphi_{\mu}) ; (\varphi_1, \dots, \varphi_{\mu}) \in (\mathbf{C}\{x\})^{\mu} \},$$

where $U(\varphi_1, \dots, \varphi_{\mu})$ is an $\widetilde{\mathcal{O}}_+$ -solution of (E_3) depending on $(\varphi_1, \dots, \varphi_{\mu}) \in (C\{x\})^{\mu}$ which can be taken arbitrarily and having an expansion of the following form:

$$U(\varphi_1,\cdots,\varphi_{\mu}) = \sum_{i\geq 1} u_i(x)t^i$$

$$+ \sum_{\substack{i+2m|j| \geq k+2m \\ |j| \geq 1}} \phi_{i,j,k}(x) t^{i+j_1\rho_1(x)+\cdots+j_{\mu}\rho_{\mu}(x)} (\log t)^k$$

with $\phi_{0,e_p,0}(x) = \varphi_p(x)$ $(p = 1, \dots, \mu)$ where $e_1 = (1,0,\dots,0),\dots, e_{\mu} = (0,\dots,0,1) \in \mathbb{N}^{\mu}$.

参考文献

- [1] H. Tahara: Fuchsian type equations and Fuchsian hyperbolic equations, Japan. J. Math., 5 (1979), 245-347.
- [2] H. Tahara: Fundamental systems of analytic solutions of Fuchsian type partial differential equations, Funkcialaj Ekvacioj, 24 (1981), 135-140.
- [3] R. Gérard and H. Tahara: Nonlinear singular first order partial differential equations of Briot-Bouquet type, Proc. Japan Acad., 66 (1990), 72-74.
- [4] R. Gérard and H. Tahara: Holomorphic and singular solutions of nonlinear singular first order partial differential equations, Publ. RIMS, Kyoto Univ. 26 (1990), 979-1000.
- [5] R. Gérard and H. Tahara: Solutions holomorphes et singulières d'équations aux dérivées partielles singulières non linéaires, Publ. RIMS, Kyoto Univ. 29 (1993), 121-151.
- [6] R. Gérard and H. Tahara: Formal, holomorphic and singular solutions of non linear singular partial differential equations, Lecture Note in Strasbourg, 1993.