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ACTIONS OF COUNTABLE DISCRETE GROUPS ON THE FERMIONIC FACTOR

WibA B EBf2(Kazuyuki SAITO )

The main theorem of Sullivan-Weiss-Wright shows that when
A is the Dixmier algebra, if Gl and G2 are arbitrary countably
infinite discrete groups and if aGl, aG2 are, respectively, outer,
ergodic actions on A as ¥*-automorphism groups,»then, (A,Gl,aGl)
is always weakly equivalent to (A,G2,aG2) (see below Definition 2),
where the Dixmier algebra is the C¥-algebra of all bounded complex
Borel functions on the unit interval [0,1], modulo the ideal of
functions with meagre supports (This is the regular completion of
the C¥-algebra C[0,1]. See [1]).

The idea of the proof of this result is to construct an action
of the dyadic.group (:) Z2 directly, by gluing together parts of .
homeomorphisms 1in Gl and, at the same time, split the base space
into dyadic pieces which can be mapped into the Cantor set in a
natural way (see [11]). This means that the classificationsrmodulo
meagre sets are very rough. So 1t seems reasonable to conjecture
that an analogous result is true when A = ﬁ, the regular
completion of the Fermion algebra ‘F.

In this report, we would like to give you a negative answer to
this conjecture by a concrete construction of an outer, ergbdic
action B of each countably infinite discrete group G on ﬁ S0
that 891 is weakly equivalent to 872 if, and only if, G, is
isomorphic to G2.
This is a joint work with John D.M. Wright [8], [9] and [10].

A\
We recall that the regular completion B of a separable

unital C¥-algebra B is the unique monotone complete C¥-algebra in
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which B 1is canonically embedded in such a way that
(1) B is monotone generated by B,

(2) for each self-adjoint element b in B, the set

(~=,0]JNB, = {xeB x < b}

nl
has b as its supremum in ﬁh, where Ch is the set of all self-
adjoint elements of a ¥-algebra C.

In fact, 1et‘13B ‘be the Borel envelope of B and let %QB

be the set of elements in 13B suéh that
{oed xg| m(e) # 0}

is a meagre subset of anB’ where an is the Baire space of all

B
pure states of B relative to the weak¥-topology. Then 13B/%NB
meets all the requirements of the properties of g. When B 1is
simple and infinite dimensional, then % is a wild AW¥-factor of
Type III. 1In particular, ﬁ is a monotone complete, wild factor
of Type III. (See [14] and [15]. See also [2]). We call this ﬁ,

temporarily, a Fermionic factor.

The Fermion algebré F may be identified with (EDM2(@), the
infinite tensor product of a countably infinite family of the
algebras MZ(G) of all two by two matrices over the complex numbers
field €. ([4] and [12]).

Let G Dbe any countably infinite group. We are able to

construct an action BG of G on F called the Bernoulli éhift
action. We can show that each Bh (h is in G with h # e, where €
is the neutral element of G) is an outer automorphism of F. (See

[8]). The following lemma plays a key role in our discussions
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Lemma 1. Let 6 be any ¥-automorphism of F. Then, there
exists a unique extension of 8 to a *—autombrphism § of ﬁ. If
A
6 is an outer automorphism of F, then 6 is an outer automorphism

A
of F.

Since F is simple, we can apply Theorem 8 in [1]. So,

using Lemma 1, we can extend our Bernoulll shift action B of G

A

on F to an outer action of G, % on F. In fact, if g and h are

in G, then for each x in P, we have
A A N A
B (BL(x)) = B (B (x)) = B (B (x)) = B, (x) = B (x).

The uniqueness of the extension of th to E now tells us that

gh’
A A

égh = BgBh for each pair g and h in G. Moreover, ég (g # e) is

A
outer on F. We call this action the Bernoulli shift action of G

A
on F.

Definition 1. Let M be a monotone complete C¥-algebra.
Let g =~ yg be an action of G on M. This action is said to be
ergodic if the only projections in M which are invariant under

this action are 0 and 1.

It is natural to ask: When is the Bernoulli shift action

A

on F ergodic ?

>

A
Theorem 1. B is ergodic on

An outline of a proof. We shall assume that é is not ergodic,

A
that is, there exists a non-zero projection p in F such that

p # 1 and @g(p) = p for all g in G. Since p # 0, 1/2 is not
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is not an upper bound for (—w,p]f\(FO)h (where ~F0 is the canonical
locally finite dimensional ¥-subalgebra of F). So, there is an

a in (-=,pIN(F such that a * 1/2. Thus we have (2|Ia+l|)_l <1

O)h
(where a¥ is the positive portion of a). Since 1 - p # 0, there

exists a b in (-»,1 - p]IN(F such that Hb+H > (2na+ﬂ)—l-

O)h

Because our action is asymptotically abelian, there exists g in G

such that ég(a), ég(a+), b, b’ all commute with each other and
1A + . F
llﬁ (a+)b+" “P (a+)WHb+||= Ha -tb 0.
g g
Moreover, since p is invariant under é, we can show that

0

A

2§g(a+)b+ < 1.

So na+wub+u = Hég(a+)b+n

A

1/2. This is a contradiction. So, this

action @ of G on ﬁ is ergodic.

Next we shall discuss about weak equivalences of the Bernoulli
shift actions. Before going into discussions, we shall prepare
monotone complete cross products of C¥-dynamical systems. Let
(A,G, o) be a discrete C¥-dynamical system over a monotone complete
C¥-algebra A, where G 1is a countably infinite discrete group.

Let A® EC(lg(G)) be t‘he monotone complete tensor product of A

by the Type I factor Ji(l2(G)) (see [3] for details. See also [T7]).
We shall explain briefly about this construction. The elements of
the monotone complete tensor product ’A@?i(lz(G)) may be identified
with those matrices (ag,h) which correspond to elements in
A"@)i(l?(G)) and whose entries are in A, where A" 1is the second
dual of A and A"Q® £(12(G)) is the usual von Neumann tensor

product. The definition of "addition", "scalar multiplication”

and "involution" of those matrices is straightforward and correspond
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to these operations in A" ® :f(lz(G)). "Multiplication" is more
subtle, because, when multiplication (a ) by (b ), we need
g,h g,h

to be able to assign a value in A to infinite sums such as

1

1
zzkag,kbk,h

The notion of the order convergence in A by Kadison and Pedersen

is used to define

O"Zkag,kbk,h
in such a way that A@;’,’(lg(G)) is a monotone complete C¥-algebra.
Hamana ([3], see also [5] and [13]) defines the monotone complete
cross product associated with (A,G a) to be the subalgebra of

Aéagf(lg(G)) cofresponding to the algebra of all matrices such that

he, kg ~ % (% x

)
for each g, h and k in G. We write M(A,G,a) to denote this

algebra. We know that M(A,G,a) is a monotone closed ¥-subalgebra

of A®ZL(1%(e)). Let
™ : A -+ M(A,G,a)
be defined by

m(a) = (sh,kah—l(a))

for any a in A. Then 7w is a ¥-isomorphism from A onto
' ~ S 2
DNM(A,G,a), where D is the diagonal subalgebra of A®@ L(1°(G)),

corresponding to those matrices which vanish off the diagonal. Let
B : A®L(1%(@) » D

be defined by E#((ag )) = (68 Y. It is straightforward to

a
»h g,h'g,h
verify that E = E#[M(A,G,a) is a normal conditional expectation

from M(A,G,a) onto m(A). For each g in G, let
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Ug = (Gh,gk)h;k in G*
Then Ug is a unitary in M(A,G,0) such that
(1) Ugﬂ(a)Ug* = n(ag(a)) for all a in A and g in G.

Straightforward calculations show that g - Ug is a group isomorphism

of G 1into the unitary group U(M(A,G,a)) such that

(2) E(ngUg*) = UgE(X)Ug* = ag(E(x)) for all a in A

and g in G.
Moreover, it follows that, for any x in M(A,G,a),
(3) E(ng) = 0 for each g in G, then x = 0,

and

(4) E(U) =0if g # e.

Definition 2. Let (A,Gl,al) and (A,G2,a2) be C¥-~dynamical
systems over the same monotone complete C¥-algebra A. If, there
exists an isomorphism 6 from M(A,Gl,al) onto M(A,Gz,ag) such
that 6 maps ﬂl(A) onto ﬂ2(A), then, (A,Gl,al) and (A,Gg,u2)

are said to be weakly equivalent. (See [T7]).

The main purpose of the rest of this report is to outline

a proof of the following:

Theorem 2. Let Gl and G2 be discrete countably infinite

groups. For each j, let 89 be the Bernoulli shift action of c,
A a Al A A2 .
on F. Let (F,Gl,B ) and (F,G2,B ) be weakly equivalent. Then

Gl is isomorphic to G2.
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If A 1is a monotone complete factor and o is an outer action
of G on A, Then, M(A,G,4) is a factor. 1In particular,.
M(%,G,g) is a wild, monotone complete factor of Type III. ([3],
see also [5] and [13])..

Let us simplify the notations. Let B be any unital C¥-
algebra and let U(B) be the group of all unitaries in B. Let
A be a unital ¥-subalgebra of B. We define an A-normalizing
unitary to be any u in U(B) such that uAu¥ = A. We denote the
group of all A-normalizing unitaries in B by N(B:A). Let G
be a group. We define a G system to be an ordered quadruple
(B,A,UG,E) where E 1is a conditional expectation from B onto A
ahd UG is an isomorphic image of G. in N(B:A) such that the

following conditilons are satisfied:

(a) Let u be in UG' If the automorphism Adu 1is also

implemented by some unitary in A, then u = 1.

(b) For each u in UG and each b in B,

E(ubu¥*) = uE(b)u¥.

(¢) Let b be in B. If E(ubv) = 0 for each pair u and v

in UG’ then b = 0.

(d) Whenever u in Ua satisfies that u # 1, then E(u) = 0.
n _
It is easy to check that (M(%,G,B),ﬂ(ﬁ),UG,E) satisfies the
above properties because of (1), (2), (3) and (4). Moreover, we

can show the following:

Lemma 2. Let (B,A,UG,E) be any G system and let the centre

ZA of A be one dimensional. Let x be in BMNA'. Then x is a

scalar multiple of 1.
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Using this lemma and analysing carefully the structufe of

N(B:A), we have the following:

Theorem 3. Let G, and G, be discrete groups. Let

(Bl,Al,UG ’El) and (B2,A2,UG ,Eg) be, respectively, a G1 system

1 2

and a G2 system. Let 6 be a ¥-isomorphism of B2 onto Bl such

that 6 maps A2 onto Al' Let Al have one dimensional centre.

Then UG and U are isomorphic.

1 G,

Theorem 2 is an easy consequence of Theorem 3.
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