ACTIONS OF COUNTABLE DISCRETE GROUPS ON THE FERMIONIC FACTOR

東北大 理 斎藤和之(Kazuyuki SAITÔ)

The main theorem of Sullivan-Weiss-Wright shows that when A is the Dixmier algebra, if G_1 and G_2 are arbitrary countably infinite discrete groups and if $\alpha^G 1$, $\alpha^G 2$ are, respectively, outer, ergodic actions on A as *-automorphism groups, then, $(A,G_1,\alpha^G 1)$ is always weakly equivalent to $(A,G_2,\alpha^G 2)$ (see below Definition 2), where the Dixmier algebra is the C*-algebra of all bounded complex Borel functions on the unit interval [0,1], modulo the ideal of functions with meagre supports (This is the regular completion of the C*-algebra C[0,1]. See [1]).

The idea of the proof of this result is to construct an action of the dyadic group \bigoplus Z_2 directly, by gluing together parts of homeomorphisms in G_1 and, at the same time, split the base space into dyadic pieces which can be mapped into the Cantor set in a natural way (see [11]). This means that the classifications modulo meagre sets are very rough. So it seems reasonable to conjecture that an analogous result is true when $A = \widehat{F}$, the regular completion of the Fermion algebra F.

In this report, we would like to give you a negative answer to this conjecture by a concrete construction of an outer, ergodic action β of each countably infinite discrete group G on \hat{F} so that β^G l is weakly equivalent to β^G 2 if, and only if, G_1 is isomorphic to G_2 .

This is a joint work with John D.M. Wright [8], [9] and [10].

We recall that the regular completion \hat{B} of a separable unital C*-algebra B is the unique monotone complete C*-algebra in

which B is canonically embedded in such a way that

- (1) \hat{B} is monotone generated by B,
- (2) for each self-adjoint element b in \hat{B} , the set $(-\infty,b] \cap B_b = \{x \in B_b \mid x \leq b\}$

has b as its supremum in $\, \hat{B}_h^{}, \,$ where $\,$ $\,$ $\,$ $\,$ is the set of all self-adjoint elements of a *-algebra C.

In fact, let \mathcal{B}_{B} be the Borel envelope of B and let \mathcal{M}_{B} be the set of elements in \mathcal{B}_{B} such that

$$\{\phi \in \partial_e X_B | m(\phi) \neq 0\}$$

is a meagre subset of $\partial_e X_B$, where $\partial_e X_B$ is the Baire space of all pure states of B relative to the weak*-topology. Then $\mathcal{B}_B/\mathcal{M}_B$ meets all the requirements of the properties of \hat{B} . When B is simple and infinite dimensional, then \hat{B} is a wild AW*-factor of Type III. In particular, \hat{F} is a monotone complete, wild factor of Type III. (See [14] and [15]. See also [2]). We call this \hat{F} , temporarily, a Fermionic factor.

The Fermion algebra F may be identified with $\bigotimes M_2(\mathfrak{C})$, the infinite tensor product of a countably infinite family of the algebras $M_2(\mathfrak{C})$ of all two by two matrices over the complex numbers field \mathfrak{C} . ([4] and [12]).

Let G be any countably <u>infinite</u> group. We are able to construct an action β^G of G on F called <u>the Bernoulli shift</u> <u>action</u>. We can show that each β_h (h is in G with h \neq e, where e is the neutral element of G) is an outer automorphism of F. (See [8]). The following lemma plays a key role in our discussions:

Lemma 1. Let θ be any *-automorphism of F. Then, there exists a unique extension of θ to a *-automorphism $\hat{\theta}$ of \hat{F} . If θ is an outer automorphism of F, then $\hat{\theta}$ is an outer automorphism of \hat{F} .

Since F is simple, we can apply Theorem 8 in [1]. So, using Lemma 1, we can extend our Bernoulli shift action β of G on F to an outer action of G, $\hat{\beta}$ on \hat{F} . In fact, if g and h are in G, then for each x in F, we have

 $\hat{\beta}_g(\hat{\beta}_h(x)) = \hat{\beta}_g(\beta_h(x)) = \beta_g(\beta_h(x)) = \beta_{gh}(x) = \hat{\beta}_{gh}(x).$ The uniqueness of the extension of β_{gh} to $\hat{\beta}_{gh}$, now tells us that $\hat{\beta}_{gh} = \hat{\beta}_g \hat{\beta}_h \text{ for each pair g and h in } G. \text{ Moreover, } \hat{\beta}_g \text{ (g \neq e) is outer on } \hat{F}. \text{ We call this action \underline{the} $\underline{Bernoulli}$ \underline{shift} \underline{action} of G on $\hat{F}.}$

Definition 1. Let M be a monotone complete C*-algebra. Let g \rightarrow γ_g be an action of G on M. This action is said to be ergodic if the only projections in M which are invariant under this action are 0 and 1.

It is natural to ask: When is the Bernoulli shift action on $\hat{\mathsf{F}}$ ergodic ?

Theorem 1. $\hat{\beta}$ is ergodic on \hat{F} .

An outline of a proof. We shall assume that $\hat{\beta}$ is not ergodic, that is, there exists a non-zero projection p in \hat{F} such that $p \neq 1$ and $\hat{\beta}_g(p) = p$ for all g in G. Since $p \neq 0$, 1/2 is not

is not an upper bound for $(-\infty,p] \cap (F_0)_h$ (where F_0 is the canonical locally finite dimensional *-subalgebra of F). So, there is an a in $(-\infty,p] \cap (F_0)_h$ such that a $\not\equiv 1/2$. Thus we have $(2\|a^+\|)^{-1} < 1$ (where a^+ is the positive portion of a). Since $1-p \neq 0$, there exists a b in $(-\infty,1-p] \cap (F_0)_h$ such that $\|b^+\| > (2\|a^+\|)^{-1}$. Because our action is asymptotically abelian, there exists g in G such that $\hat{\beta}_g(a)$, $\hat{\beta}_g(a^+)$, b, b^+ all commute with each other and $\|\hat{\beta}_g(a^+)b^+\| = \|\hat{\beta}_g(a^+)\| \|b^+\| = \|a^+\| \|b^+\|$.

Moreover, since p is invariant under $\hat{\beta}$, we can show that

$$0 \leq 2\hat{\beta}_{g}(a^{+})b^{+} \leq 1.$$

So $\|a^{\dagger}\| \|b^{\dagger}\| = \|\hat{\beta}_g(a^{\dagger})b^{\dagger}\| \le 1/2$. This is a contradiction. So, this action $\hat{\beta}$ of G on \hat{F} is ergodic.

Next we shall discuss about weak equivalences of the Bernoulli shift actions. Before going into discussions, we shall prepare monotone complete cross products of C*-dynamical systems. Let (A,G,α) be a discrete C*-dynamical system over a monotone complete C*-algebra A, where G is a countably infinite discrete group. Let $A \otimes \mathcal{L}(1^2(G))$ be the monotone complete tensor product of A by the Type I factor $\mathcal{L}(1^2(G))$ (see [3] for details. See also [7]). We shall explain briefly about this construction. The elements of the monotone complete tensor product $A \otimes \mathcal{L}(1^2(G))$ may be identified with those matrices $(a_{g,h})$ which correspond to elements in $A'' \otimes \mathcal{L}(1^2(G))$ and whose entries are in A, where A'' is the second dual of A and $A'' \otimes \mathcal{L}(1^2(G))$ is the usual von Neumann tensor product. The definition of "addition", "scalar multiplication" and "involution" of those matrices is straightforward and correspond

to these operations in $A'' \otimes \mathcal{L}(l^2(G))$. "Multiplication" is more subtle, because, when multiplication $(a_{g,h})$ by $(b_{g,h})$, we need to be able to assign a value in A to infinite sums such as

"
$$\sum_{k} a_{g,k} b_{k,h}$$
".

The notion of the order convergence in A by Kadison and Pedersen is used to define

$$0-\sum_{k} a_{g,k} b_{k,h}$$

in such a way that $A \otimes \mathcal{L}(1^2(G))$ is a monotone complete C*-algebra. Hamana ([3], see also [5] and [13]) defines the monotone complete cross product associated with (A,G α) to be the subalgebra of $A \otimes \mathcal{L}(1^2(G))$ corresponding to the algebra of all matrices such that

$$a_{hg,kg} = \alpha_g - 1(a_{h,k})$$

for each g, h and k in G. We write $M(A,G,\alpha)$ to denote this algebra. We know that $M(A,G,\alpha)$ is a monotone closed *-subalgebra of $A \boxtimes \mathcal{L}(1^2(G))$. Let

$$\pi : A \rightarrow M(A,G,\alpha)$$

be defined by

$$\pi(a) = (\delta_{h,k} \alpha_h - 1(a))$$

for any a in A. Then π is a *-isomorphism from A onto $D \cap M(A,G,\alpha)$, where D is the diagonal subalgebra of $A \otimes \mathcal{L}(1^2(G))$, corresponding to those matrices which vanish off the diagonal. Let

$$E^{\#}: A \otimes \mathcal{L}(1^{2}(G)) \rightarrow D$$

be defined by $E^{\#}((a_{g,h})) = (\delta_{g,h}a_{g,h})$. It is straightforward to verify that $E = E^{\#}|M(A,G,\alpha)$ is a <u>normal</u> conditional expectation from $M(A,G,\alpha)$ onto $\pi(A)$. For each g in G, let

and

$$U_g = (\delta_{h,gk})_{h,k}$$
 in G.

Then U_g is a unitary in $M(A,G,\alpha)$ such that

- (1) $U_g\pi(a)U_g^*=\pi(\alpha_g(a))$ for all a in A and g in G. Straightforward calculations show that $g\to U_g$ is a group isomorphism of G into the unitary group $U(M(A,G,\alpha))$ such that
- (2) $E(U_g x U_g^*) = U_g E(x) U_g^* = \alpha_g(E(x))$ for all a in A and g in G.

Moreover, it follows that, for any x in $M(A,G,\alpha)$,

(3) $E(xU_g) = 0$ for each g in G, then x = 0,

(4) $E(U_g) = 0 \text{ if } g \neq e.$

Definition 2. Let (A,G_1,α_1) and (A,G_2,α_2) be C*-dynamical systems over the same monotone complete C*-algebra A. If, there exists an isomorphism θ from $M(A,G_1,\alpha_1)$ onto $M(A,G_2,\alpha_2)$ such that θ maps $\pi_1(A)$ onto $\pi_2(A)$, then, (A,G_1,α_1) and (A,G_2,α_2) are said to be <u>weakly equivalent</u>. (See [7]).

The main purpose of the rest of this report is to outline a proof of the following:

Theorem 2. Let G_1 and G_2 be discrete countably infinite groups. For each j, let $\hat{\beta}^j$ be the Bernoulli shift action of G_j on \hat{F} . Let $(\hat{F}, G_1, \hat{\beta}^1)$ and $(\hat{F}, G_2, \hat{\beta}^2)$ be weakly equivalent. Then G_1 is isomorphic to G_2 .

If A is a monotone complete factor and α is an outer action of G on A. Then, M(A,G, α) is a factor. In particular, M(\hat{F} ,G, $\hat{\beta}$) is a wild, monotone complete factor of Type III. ([3], see also [5] and [13]).

Let us simplify the notations. Let B be any unital C*-algebra and let U(B) be the group of all unitaries in B. Let A be a unital *-subalgebra of B. We define an A-normalizing unitary to be any u in U(B) such that $uAu^* = A$. We denote the group of all A-normalizing unitaries in B by N(B:A). Let G be a group. We define a <u>G system</u> to be an ordered quadruple (B,A,U_G,E) where E is a conditional expectation from B onto A and U_G is an isomorphic image of G in N(B:A) such that the following conditions are satisfied:

- (a) Let u be in U_G . If the automorphism Adu is also implemented by some unitary in A, then u = 1.
 - (b) For each u in U_G and each b in B, $E(ubu^*) = uE(b)u^*.$
- (c) Let b be in B. If E(ubv) = 0 for each pair u and v in $U_{\rm C}$, then b = 0.
 - (d) Whenever u in U_C satisfies that $u \neq 1$, then E(u) = 0.

It is easy to check that $(M(\hat{F},G,\hat{\beta}),\pi(\hat{F}),U_G,E)$ satisfies the above properties because of (1), (2), (3) and (4). Moreover, we can show the following:

Lemma 2. Let (B,A,U_G,E) be any G system and let the centre Z_A of A be one dimensional. Let x be in $B \cap A'$. Then x is a scalar multiple of 1.

Using this lemma and analysing carefully the structure of N(B:A), we have the following:

Theorem 3. Let G_1 and G_2 be discrete groups. Let (B_1,A_1,U_{G_1},E_1) and (B_2,A_2,U_{G_2},E_2) be, respectively, a G_1 system and a G_2 system. Let θ be a *-isomorphism of B_2 onto B_1 such that θ maps A_2 onto A_1 . Let A_1 have one dimensional centre. Then U_{G_1} and U_{G_2} are isomorphic.

Theorem 2 is an easy consequence of Theorem 3.

References

- [1] J. Dixmier, Sur certains espaces consideres par M.H. Stone, Summa Math. Brasil., 11(1951), 151-182.
- [2] G.A. Elliott, K. Saitô and J.D.M. Wright, Embedding AW*-algebras as double commutants in Type I algebras, J. London Math. Soc., 28(1983), 376-384.
- [3] M. Hamana, Tensor products for monotone complete C*-algebras, I, II, Japan. J. Math., 8(1982), 261-295.
- [4] R.V. Kadison and J.R. Ringrose, Fundamentals of the theory of operator algebras, vol. II, Academic Press(1986).
- [5] K. Saitô, AW*-algebras with monotone convergence property and examples by Takenouchi and Dyer, Tôhoku Math. J., 31(1979), 31-40.

- [6] K. Saitô and J.D.M. Wright, Outer automorphisms of regular completions, J. London Math. Soc., 27(1983), 150-156.
- [7] K. Saitô and J.D.M. Wright, On tensor products of monotone complete algebras, Quart. J. Math. Oxford, 35(1984), 209-221.
- [8] K. Saitô, Dynamic actions on monotone complete factors, Quart. J. Math. Oxford, 44(1993), 239-247.
- [9] K. Saitô and J.D.M. Wright, A continuum of discrete group actions on a Fermionic factor, To appear in Quart. J. Math. Oxford, 1993.
- [10] K. Saito and J.D.M. Wright, Ergodic actions on the Fermionic factor, To appear in Quart. J. Math. Oxford, 1993.
- [11] D. Sullivan, B. Weiss and J.D.M. Wright, Generic dynamics and monotone complete C*-algebras, Trans. Amer. Math. Soc., 395(1986), 795-809.
- [12] Z. Takeda, Inductive limit and infinite direct product of operator algebras, Tôhoku Math. J., 7(1955), 67-86.
- [13] O. Takenouchi, A non W*, AW*-factor, C*-algebras and applications to Physics (Proc. Second Japan-U.S.A. Seminar, Los Angeles (1977)), Lecture Notes in Math., 650(1978), 135-139.
- [14] J.D.M. Wright, Regular σ -completion of C*-algebras, J. London Math. Soc., 12(1976), 299-309.
- [15] J.D.M. Wright, Wild AW*-factors and Kaplansky-Rickart C*-algebras, J. London Math. Soc., 13(1976), 83-89.

Mathematical Institute Tôhoku University Sendai, Japan