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Entropy Densities for Gibbs States and Algebraic States
(A joint work with D. Petz)

KRB Haxi (Fumio Hial)

1. Entropy densities for Gibbs states

First we briefly survey Gibbs states of quantum spin systems. See [4] for more details.
A quantum spin system over v-dimensional cubic lattice Z” is described as the infinite
tensor product C*-algebra A = @ ¢z Az, Az = Ma(C) being the d x d matrix algebra;
namely A is the norm completion of [ J, A4, the union of all local algebras Ay = @ ¢ Ax
for finite regions A C Z”. The space-translation on A is denoted by v, (z € Z”), which
satisfies 7,(AA) = Ap+, and the asymptotic abelianness property. A translation-invariant
interaction ® is a function from the finite X C Z” into the selfadjoint elements of A such
-that ®(X) € Ax and 7,(®(X)) = ®(X + z) for all X C Z¥ and z € Z”. Then for each
finite region A the local Hamiltonian H(A) and the surface energy W(A) are given as

HA) =) o(X), W)= > &X).
XCA XnA#D
XNA<#9

We assume in the following that an interaction @® is of relatively short range and of finite
body; namely 3,54 ||®(A)||/|A] < 400 and there exists No such that ®(A) = 0if |A| > No.
This is the case if  is of finite range, i.e. there exists dp such that ®(A) = 0 if d(A) > do
(d(A) denotes the diameter of A).

Given an interaction ® and an inverse temperature 3 (> 0) the local Gibbs state ¢ on

a local algebra A, is the canonical state:

c Trpae FHA)

pila) = Trpe-PHA) a € Ay,

where Trp is the canonical trace on A,. In order to state the Gibbs condition we recall
the inner perturbation of a state. For a state ¢ on A and h = h* € A the perturbed
state [p"] is defined as the unique minimizer of the weakly* lower semicontinuous strictly
convex functional w — S(w,) + w(h) on the state space of A, where S(w,¢) is the
relative entropy. Then ¢ is said to satisfy the Gibbs condition (with respect to ® and )
if [p=PW(A)]| Ax = ¢ for any finite A C Z”. This definition of the Gibbs condition is a

bit weaker than the usual one, but both are equivalent under the above assumption of ®.
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As thermodynamic limit A — oo we consider the limit along the parallelepipeds; namely
A={2€Z":0<z;<a; i =1,...,v} tends to infinity with a; - co for i =1,...,v.
(Indeed, most results below hold true in a more general limit of van Hove.)

In the above situation we state the central result concerning Gibbs states as follows.
For a translation-invariant state ¢ of A the following three conditions are equivalent:

(i) ¢ satisfies the Gibbs condition with respect to ® and g;

(ii) ¢ satisfies the KMS condition with respect to ; and 3 where

oi(a) = ]ijI\Il ' tH(A) g=itH(A) a €A
(iii) ¢ satisfies the variational principle:
s(¢) = Be(Aa) + p(8, @),

where

() = fim TS(en) (on = elAa),

®(A)
A= LT
A30
p(B,®) = hm |A| log Trpe™ FH(A),

(s(¢) is called the mean entropy and p(8, ®) the pressure or the free energy.)

Via the GNS representation m, of A induced by the Gibbs state ¢, we have a von
Neumann algebra M = 7,(A)" and a faithful normal state ¢ so that ¢ = go m,. A net
{2;} in M is said to converge almost uniformly to ¢ € M if for every € > 0 there exists
a projection ¢ € M such that ¢(¢q) > 1 — ¢ and ||(z; — z)g|| — 0. The following result

resembles the McMillan theorem form information theory.

Theorem 1.1. Assume that ¢ is an ergodic Gibbs state for ®.

(1)
11m IAIWV,( log D) = s(p)I strongly.

(2) If v =1 and ® is of finite range, then

1
—,(—log D) = s(¢)I almost uniformly.

hm
oo |A|
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(Indeed the almost uniform convergence holds true also when v > 1 but B < Bo for
some fy > 0 determined by &.)

The above (2) was proved in [6] by using the noncommutative ergodic theorem [10] and
Araki’s deep analysis on Gibbs states [2, 3].
We define for 0 <e <1

Be(pn) = min{log Trpq : ¢ € A, is a projection with ¢(q) > 1 —¢€}.

If Ay > Az > ... is the eigenvalue list of the density matrix of ¢, then 8.(¢4) is given by

N
Be(pn) = log <min{N : Zx\,‘ >1- a})
=1
The following illustrates the macroscopic uniformity which is a basic feature of statistical

mechanical systems, and it resebles the asymptotic equipartition property of information

theory.

Theorem 1.2. Assume that ¢ is an ergodic Gibbs state for ®.
(1) Forevery 0 <e <1

Jlim Ll\—lﬂe(m) = s(¢).

(2) If the surface energies W(A) are uniformly bounded, then for every 0 < ¢ < 1

1 1
l‘m —_— = l' —_— ¢ = .
(Note in this case that the Gibbs state is unique, i.e. the phase transition does not

occur.)

(3) If v =1 and ® is of finite range, then

€ n IBS 2 n S n S e n
n—+0o n n— 00 n n—00 n n —o00 n
For a translation-invariant state w, the limit
h(w|8,®) = lim —S(wa, ¢5)
’ - A—oo |Al “A SOA

exists due to the existence of the mean entropy and the pressure. In fact, we have

h(wl|B,®) = —s(w) + fw(As) + p(8, D),
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and w is a Gibbs state for ® if and only of h(w|3,®) = 0.

For states 11, 12 on a matrix algebra B, a variant of the relative entropy is defined as

Sco("pla ¢2) = ma,X{Z ¢1(Qi) log z:gj

= max{S(¥1|C,¥2|C) : C is a commutative C*-subalgebra of B}.

: ¢; are projections in B, Z ¢ = I}
i

The monotonicity of relative entropy implies Sco(1,%2) < S(¥1,%2) and this inequality
is strict except for the case of 91, ¥ having the commuting densities. S¢, may be related

to measurements described by projection-valued measures.

Theorem 1.3. Let w be a translation-invariant state on A.
(1)

. 1
lim —

A a7 Seolwn, #h) = h(wlf, ).

(2) If v = 1, ® is of finite range, and ¢ is the Gibbs state for ®, then

1 .1 .1
apoeo(wn #h) = lim roSeo(ws, ga) = lim rS(wa, oa) = hw]f, @).

;
Aroo JA]

(Indeed this is true also when v > 1 but < fp for some g > 0.)

In the case (2), the mean relative entropy

.1
Sm(w,p) = lim mS(wA,m)

exists, and the relative entropy S and its variant S¢, have the same asymptotic limit. The
particular case when ¢ is a product state was shown in [7].

The results in Section 1 were given in [8] except Theorem 1.1(2) in [6].

2. Entropy densities for algebraic states

‘ An algebraic state is a translation-invariant state on one-dimensional quantum spin
system A = @),z Az, Az = My(C), which is a slight generalization of “quantum Markov
states” [1] and identical to “C*-finitely correlated states” introduced in [5]. The definition
is as follows: Let B be a finite-dimensional C*-algebra, and let a completely positive unital
map & : M4(C)® B — B and a state p on B be given so that

pE(IT @) =p(b), bEB.
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For any a € M;(C) define &, : B— B by &,(b) = £E(a®b), b € B. Then the algebraic state
¢ generated by (B, &, p) is given as

cp(a0®a1®"'®an)=P(5ao°<€a1 o---oSan(I))

for ag,...,a, € My(C). Here the complete positivity of £ ensures the positivity of .
The ergodicity and the strong mixing for algebraic states are characterized in several

ways as follows. (1) was shown in [5].

Proposition 2.1. Let ¢ be an algebraic state generated by (B, &, p).
(1) The following conditions are equivalent:
(i) ¢ is ergodic;
(ii) &1 is irreducible, i.e. I is the only eigenvector of £y with respect to the eigenvalue
1.
(2) The following conditions are equivalent:
(i) ¢ is strongly mixing;
(ii) ¢ is weakly mixing;
(iii) ¢ is completely ergodic;
(iv) &1 is primitive, i.e. £} is irreducible for all n € N;
(v) lim,—o EF(2) = p(z)I for all z € B.

Let 11,1, be states on a matrix algebra B. For 0 < ¢ < 1 we define another type of

relative entropy quantity as follows:

Be (Y1, ¥2) = inf{log ¥2(q) : q is a projection in B, ¢1(¢) > 1 —¢}.

This quantity has a natural meaning from the viewpoint of quantum hypothesis testing

(see [7]).

The following are our main results in [9].

Theorem 2.2. Assume that ¢ be a strongly mixing algebraic state on A. Let ¢, =

Pl Af,n)-
(1) For every 0 < e < 1

lim =6, (¢n) = 5(¢).

n—o00o n
(2) For every translation-invariant state w on A, the mean relative entropy Sy(w, ¢)
exists and

.1
Hm —Sco(wn, ¢n) = Sm(w, ).

n—oco N



86

(3) For every completely ergodic state w on A and 0 < e <1
| 1
lim sup ;ﬂe(wn, on) < =Sm(w, ),
liminf B (wn, @) > ~ = Sha(w ¢)
—Me ny¥n) = — w, .
1 1n n Wn, @ 1 _e°M ¥
The above (3) shows that we obtain exp{18.(wn,¢n)} = exp{—Sm(w,p)} for large
n and small €. To prove the theorem, we need the next result which says that strongly

mixing algebraic states have a certain property of approximately product type.

Proposition 2.3. Let ¢ be the algebraic state generated by (B, &, p). Then ¢ is strongly
mixing if and only if for any a > 1 there exists [ € N such that for all m € N

o™ (ol A(=o0,m]) ® (PMApm+141,00)) < PIA(=c0,m]ufm+1+1,00)
< O*’(()(’I'A(-—oo,rn]) 0 (?lA[m+I+1,oo))‘
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