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RANDOM MATRIX FORMULATIONS TOWARD QUANTUM INFORMATION THEORY
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H. Hasegawa and T.Takami

Department of Physics, Kyoto University, Kyoto 606

A brief account of the development of energy level statistics is given:
(A) the original random-matrix framework, (B) Berry’s reformulation of the
results of (A) by means of the periodic orbit sums in the trace formula of
Gutzwiller, and (C) dynamical approaches to the matrix ensembles in (A). The
white noise characteristic of the periodic orbit sum for a level density found
by Berry in (B) is discussed to provide a supporting basis of a stochastic
formulation aé extended from the approach in (C). This revises Dyson’ s

Brownian motion model properly. Finally, Yukawa's distribution obtained in (C)

is characterized by the maximum information principle.

1. INTRODUCTION

Studies of energy-level fluctuations for quantum systems can be classified in
their historical development as three phases; the first development around 1960
to form the old random-matrix theory, the second around 1980 in connection with
chaos 1in classical mechanics, and the third since 1985 in terms of level
dynamics which may be called dynamical random-matrix theory. We discuss
some of the above features with concrete example of our computer results on a
circular and a stadium billiard. It will be seen that these three phases
are intimately related to one another, and the last phase (C) seems to yield a

possibility of recapitulating the result as information theory.
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2. THREE ASPECTS OF THE DEVELOPMENT OF LEVEL STATISTICS

(A) the old random matrix theory

Main contributors to this theory are well-knon: Wigner, Porter, Mehta and
Dyson, and a comprehensive review for their studies is given in Porter’s book
[1] (see also Mehta [2]). The theme of this theory is first to construct the
Joint distribution function for N eigenvalues {x,} of an NxN Hamiltonian
(truncated) matrix and on this basis to deduce various ingredients for level
statistics: important ones are the two-level cluster function Y(x, ,x;) and the
nearest-neighbor (NN) spacing distribution function P(S) with S=xh*(xn(~xhsxw+i).

The N-level joint distribution function established is written as

— -1 2
Po(ten)) = Cuw exp (~in @) TT 15,-2nl” (1)

for the ensemble of NXN real symmetric matrices with y=1, complex hermitian
ones with V=2, and, in case N=even, for that of symplectic-invariant hermitian
matrices with Y=4: these are the basic classification of Hamiltonians in terms
of the time-reversal i.e.

Y= time-reversal invariant with even number of spins

noninvariant (1a)

= NN =

invariant with odd number of spins,

for which the ensemble (1) is designated as Gaussian Orthogonal, Gaussian

Unitary and Gaussian Symplectic ensemble (GOE,GUE,GSE), respectively.

The Gaussian-ensemble distribution (1) is the consequence of the three
requirements that
1) every matrix elements of a matrix H belonging to the ensemble specified
are independent random variables,
ii) the function P, ({x,}) is invariant by all the symmetry transformations
proper to each ensemble (O(N) for GOE, U(N) for GUE and S(N/2) for GSE ),

iii) the center of the gravity of {x,} vanishes,i.e. TrH=0.

The last requirement causes an inconvenience that the resulting distribution

function does not satisfy the translational invariance

P({xp*a})= P({xn}) (2)
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and hence the same inconvenience for all the distribution functions deduced by
partial integrations of P({xn}) over several variables ( e.g.ijq({xn})dxz“de

gives Wigner’s semi-circle law [1], and‘va({xﬂ})dxa"de gives Y(xy, Xy ) which
is not a function of the single variable X,-X,, etc.), thus giving rise to
considerable technical difficulties for further development. Dyson’® s

distribution functions for circular ensembles (eigenvalue distributions for

unitary matrices) which go parallel with the three cases y=1, 2 and 4 in (la)

remove the difficulty, but still involve technical complexity for practicali
applications. The two-level cluster function Y(x)(=Y(|xf—xi|) obtained from
the nonuniform one by using some technics involving a (therﬁodynamic limiting
process’ N-200, has achieved a satisfactory description of the correlation
properties of the levels subject to the Gaussian prediction (1) (the so-called

d-statistics: see below, also Bohigas and Giannoni [3]).

(B) Berry’s context of introducing classical periodic orbits

The expectation that the results of the old random-matrix theory could be
reformulated in the framework of the semiclassical mechanics (quantizing thé
periodic orbits of a Hamiltonian mechanics) was stated by Berry and Tabor [4]
early in 1977. 1In this paper, it was verified, both logically and in numerical
computations, that an integrable classical system with f degree of freedom
having f constants of motion must be subject, with some reservations, to the
Poisson statistics where the NN spacing distribution function is a simple
exponential: P(s)= e-8. This work gave a considerable impetus to the later
development, and after ten years the expectation was realized as an accepted
form in Table 1, although the actual implication of this requires more refined

~details (such as nongeneric integrable systems of harmonic oscillators, etc.).

Table 1. Accepted understanding of the periodic-orbit sum theory

classical Hamilton system with  level statistics for the corres-
f degrees of freedom (fz2) ponding quantum system
complete integrable system Poissonian (level clustering)
GOE V=1 in (1)
non-integrable system Gaussia§' GUE =2
GSE =4

* with the factor71-]xM-xn]v, which causes the level repulsion.
m<n
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A comprehensive account of Table 1 can be seen in Berry’s semiclassical
theory of spectral rigidity [5] in 1985 (see also [6]): He shows a
periodic-orbit sum version of the statistical quantity A(L) of Dyson and Mehta
in (A) defined as the minimum averaged variance of the level numbers in the

interval L of the unfolded energy scale [3], i.e.
. L/e +o
A(L ad) = My —11:— S / ( N -Ax-B )gdx (3)
A,B -L/2-|-O(

!

12xg _ 2
- d dx (1+ 72 ) (N@) = NGp) ®,

—L/e +x -L[2 +x

(3a)

JL/g-(-o( fl-/z—l-o(

In these expressions, x, y, stand for the energy variables subject to the

unfold mapping:

E—= Ngy (E) = x,

when the level numbers < E, N(E), is decomposed into parts of average and fluc-

tuations such that

N(E) = Nay(E) + Npg (£), )
L/2
the average being specified by <->=L4_/’dE : thus Ng(E) is given by the phase

..le
volume E (the so called Thomas-Fermi value). The other average involved in (3)

indicated by — is the average over the fluctuations of level numbers (in a

specified interval) so that

(NG)-N(Y)T = (x-y ~ Npp(x) N (v))” =(x-y)% + ZXIx-y]), (5)

with }E%S) being the number variance in the interval [0, S] which is related to

the 2-level cluster function Y(S) as

s
}§%3)=S~2.r(s—r)Y(r)dr. (6)
(7]
Expressions (5) and (6) are used in (3a) to compute A(L) in terms of the

cluster function Y (for this version of computing A(L), see [3]).

Berry [5] gave another expression for computing A (L), which reads

i 3%— LT
A(L‘) = E?-_i T2 (T') G(;R‘F)) (K=f:integrable, or 1:chaotic) (7)
o

with the orbit selecting function G(y)=1 ~M%/'y2—3@%‘m'2§/'3)2 (7a)
(independent of the object system),
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and the spectral form factor (depending on the system)

Q1) = KZZA; Ajee{(si-5)/ k) 5 (1= TfT) > (70)

(i,) denote periodic orbits with action S;, Sj and period T;, Tf for a given E),
Expressions (7), (7a, b) stem from the local-energy expansion of the action

funnction
Sj(E+E)=Sj(E)+ T&(E) € (7¢c)

in the periodic-orbit sum
I S ¢S; 8
Bos B) (= Nt (B)) = wimpn ZjA e % /5 ®

which may be understood as a convention for the unfolding of energy scale.
One of the most important findings by Berry [5] is the asymptotic sum rule

satisfied by the form factor <#(T):
K
$(1)=<p >2—§I for T> < P> (9)

so that _};£°¢(T)=constant < o9 valid for any (bound) system. For integrable

systems (K=f) the equality of (9) holds much wider range of T:
T ZTmin(the minimum of all the possible periods of periodic orbits), (9a)

The form factor <#(T) is the Fourier transform of the autocorrelation function

of the level-density function on the local-energy scale i.e.

b= - fw< Pos (nt 8) Pos (%) > 18y (10)

27H 2,

(the power spectrum of the oscillating part level density &ﬁ;(ﬁ)),
where the stationary property <bﬁs(\+8)J%S(K)>:independent of N\ holds by virtue
of the 1linearizing approximation (7c): Thus, the constancy of the power
spectrum of Nﬂs(e) implies that it possesses the characteristic of white noise.
Indeed, the essence of Berry and Tabor’s proof of the Poisson statistics
(P(S)=€s) for integrable systems consists in establishing the general relation
between the autocorrelation function < JiJS) J%40)> and the cluster function

Y(S) as follows (see Appendix B in [4]):

FP8)=1+ £,4(S) (normalization <f>=1 by the unfold map)
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<Po$(s)fos(°)> = 8(3) —“Y(S')»
= 8(5) ""1. + kzi.joPk(S) (11)

where Pg(S) stands for the conditional probability that k-levels are contained
in the interval [0, S] when the end points 0 and S are both filled, and hence

ZPK(S) for the probability that 0 and S are filled irrespective of levels
present or absent inside of the interval. By explicit evaluation of the power

spectrum for integrable systems, they show
<.P0$(.S)~.?03(0)> = 8(9). (12)

Thus, from (11) and Porter’ s relation P(S)=g(S)e"‘So33(r)dr (f[1], under the
assumption of independence between non-overlapping intervals; 3(r):Z B(r))
assures the validity of P(S)=e~3.

Actually, the white noise characteristic (12) must be modified because of
the presence of the minimum period of the periodic orbits (9a): This causes
the saturation of 4 (L) beyond the value Lm,iﬁﬁ/'l‘,m;“[S].

We present in Figs. la~d our numerical examples of the level statistics
for billiards (integrable one for a circle and nonintegrable one for a

st&dium)‘).e

(C) dynamical random-matrix theory

The original idea by Porter [1] to deduce the joint distribution function
(1) for the gaussian ensemble was to introduce a Riemann metric into the
matrix space specified: we show this by way of example for the case of real

symmetric NXN matrices (GOE withy=1).
2 2
(d8)" = Ta(dH) "= Z([@Hnn )* + 2 WH,0)2 (13)
n m<n -
for the N diagonal elements Hpn, and

Z=~‘2-N(N—1) off-diagonal elements Hp,(m<n). (13a)

* Results based on the work of master thesis by T. Takami (1991). The

numerical procedure is given in the Appendix.



7

(a) (b)

[
.

© (d)

Fig.1
(a) Statistical quantity A(L) for a circlular billiard. Eigenvalues (determined from zeros of the
Bessel function J,,) in the intervals (on the unfolded energy scale)
(1) 0-2000, (2) 0-10000, (3) 10000-20000, (4) 20000-30000
are used to compute A(L). Each curve exhibits a behavior of saturation due to the finiteness
of the number of levels. This corresponds to the finiteness of the Planck constant A, and
is expected to vanish in the limit A — 0 corresponding to the ideal Poisson statistics. The
saturation was demonstrated for the first time by Casati et al. for rectangular billiards[19].
(b) A(L) for a studium billiard, which is compared with the theoretical curve for GOE(dotted).
(c) NN spacing distribution for a circular billiard, which is compared with exp(—S).
(d) NN spacing distribution for a stadium billiard, which is compared with Wigner’s distribution.
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In the representation that H is diagonal i.e.

-4 _ N -
0'HO = d*“g($1,$2,"‘$n)= Hx (13b)
the metric is rewritten as

ds® = Twr(dHp)® + T (tHo, 52 I Hs, 221)

= %(dwn)z + 22 (w,,rxn)zﬂ,f,,, (14)

m<n

where () is the matrix one-form
‘ -1 -
S = (‘Qmm) = 0 dQ (0 = 0") (14a)

which is not closed (i.e. d(L{O) but can be regarded as constituting, together

with N-infinitesimals (dx, ,dxg ., dxy), a proper transformation
(dHmn Y=y (48 dxp -dwy 5 Oy, (m=n)) (15)

to satisfy the relation of measures in the both representations

meas (dH ) = TT den = denﬂnlxm"xhlﬂmn (16)

m=n

where the (level repulsion factor?’, TTnlx"ran arises from the metric (14) i.e.
me<

as the square-root of the metric coefficient determinant

!
VT = (deb(gma) Y2 = T lon=2n| (16a)
(the factor Zzwhich arises from (14) is omitted).

Note that the GOE distribution function (1) with ¥=1 can be regarded as the
expression after integrated out over the partial measure;IEginn,for the space
of N-dimensional rotations which should yield a finite value (see RIMS preprint
by Hasegawa and Ojima [7]).

The two representations of the Riemann metric (13) and (14) should yield a

system of classical mechanics through the kinetic energy

T = () = £ Rl an
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= L (dHo/dN)* + L To(2aA2n), (17a)
where the time variable is denoted by )\ and in the representation (17a),

JZ)\ = (H%O' )d,o " and from (14) (18)

ALl = — [Hp, LHo, 23], (18a)

The mechanics is Lagrangian with the Lagrangian x:(i” i,)=T to vyield a free
motion; in the first representation, a Newtonian mechanics governed by d?ﬂ/dx?
=0 whose solution must be given in terms of two (real symmetric) matrices H°

and V as
H=H°+ A\V. (19)

Then, in the second representation the motion should yield the N eigenvalues of
H°+AV for the first subset {xn(N)} and a trajectory for the second subset which
must be a geodesic in the Z-dimensional rotation space O(N); an analogy in the
N-dimensional Euclidean space to Euler’s motion of a rigid body in 3-dimension.
The free motion (19) can be regarded as a change of the Hamiltonian H by
a perturbation V in the ensemble of all the real symmetric NxN matrices: this
consideration would yield a new framework of finding the distributions for H
via the standard statistical mechanical treatment, the idea first proposed by
Yukawa [8] and followed by several authors [9]~[11]. The framework can be
constructed naturally from the Lagrangian formulation to the Hamiltonian one
where the canonical variables should be set for<%N(N+1) coordinates X, n chosen
by Hy, and their conjugate momenta PB,, by 2Vmn in the first represeatation. To
go over to the second representation, one should investigate the transformation

of the variables in the phase space

(an, -me)—_)(xn,Fn)x(thmn: an) (20)

”n<n

such that > Pon den = % P.nd:xn + 2. Mmn Sy (20a)
m=n

This 1is not a canonical tranformation: the fundamental Poisson bracket
relations {Xpmn, Psg })=8ms Snpvalid in the left-hand side cannot be preserved in
the right-hand side. . For the four sets of the variables in the right-hand side

of (20), however, the necessary Poisson bracket relations can be deduced by
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taking the exterier derivative [12] of the one-form present in the

representation (20a) and by noting the so-called Maurer-Cartan equation [13]:

d.0) = LA L) (matrix two-form) (21)

A more detailed discussion of deducing the brackets is given in [7]}, where one

finds

o (T, (U )ie

F.f, ‘—(Zlmn
® % , pa} = Omn (22)

(c) 1 Mmn , Msy } = Ont Msn+ dns Myt dmsMp + 8ot Mimss
(the angular mnomentum relations in the N-dimensional space).

This is in agreement with the relations set up without reasoning by Gaspard et
al [11] (the factor 1/2 present in their relations for {M,,, Mgt} is due to the
difference in defining M from the present one).

The Lagrangian mechanics of the free matrix motion (19) can now be put in

the Hamiltonian form with Hamiltonian

2
= L3 2 _ T _Mmn_
H = _{gfanw B ?Z”:Fn + Z

[+ <M (a.m_'\lan )2 » (23)

and Yukawa [8] put this form together with another constant of motion &= —TrM=
into the partition function (partial integrations of the Boltzmann factor
e‘f’(’fg over the irrelevant p and M-variables) to get a new distribution

function for {xp}.

3. THE TWO TEMPERATURE DISTRIBUTION FUNCTION PROPOSED BY YUKAWA

One of the most fruitful results of the dynamical random-matrix theory is the
distribution function obtained by Yukawa [8] to replace the Gaussian-ensemble
one (1). (Another important study that has been made recently [11] i.e. the

curvature distribution shall be in a separate discussion [223)

Yukawa’s distribution function reads

T | Zom = o |
Sl = Gy L g G )2 172

v =0, (24)
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A summary of this function (derivation, its advantage over (1) and a practical

use) is given below.

1) This function 1is deduced from the partial integrations (what 1is called

‘coarse-graining’ in statistical mechanics) of the Boltzmann factor of the
X

level-dynamical system whose Hamiltonian is given by (23) over the phase space

variables other than {xqn}:

Py ({1} 5 y) =fddedM%;‘”‘9’Q (zy=5’dré"’f“m) (25)
N Z 2
1 2 _1‘ | Mwmn | -
" = ?§=1 F”” * ‘F;a»z (Zn— )2 (25a)
y4
Q=2 Mo | = (25b)

Note that the volume element of the phase space of the system yields two ways
of the representation associated with the transformation (18), although it is

noncanonical, given by

dr = TT d¥, @R = Tdx, do, TT QuedMmn (25¢)
m=n n m<n

2) It does not satisfy the three requirements for the Gaussian ensembles, 1)
ii), that fix the expression (1). Instead, it satisfies the translational

invariance (2): Therefore,

Pv({xn}; q/)d;i-de const. (independent of xl) (26a)

Py({xn}; 9 )dxa"de = R(x1—x2)7 (26b)

and, by taking the constant value of (26a) as unity, the uniformity of the

cluster function holds automatically, thus (see [3])

Y(xy, xz) = Y(xi-xz) =1 - R(x£~x2). (26¢)
The translational invariance is expected to assure straightforwardly Berry’s
relation (11).
¥

Mm;s are complex ( ¥V=2) or quarternion (VY =4) for which IMmﬂlz stands for the

sum of Y square terms [11].
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3) For 7’=0, it reduces to the level repulsion facter (the expression (1)
without the Gaussian exponent), and for 7’——>+oo to a constant value almost
everywhere 1in the x-space: this latter situation represents the Poisson
statistics (no correlations between different levels) as noted by Yukawa [8].

He also noted that, instead of just setting 7:0, the process of two limits
>0, N —>o00 with YN = const (=1/jua}) (27)
yields a distribution consistent with (1), if the third requirement of

vanishing center-of-gravity, = x,=0, is further imposed: the above limiting

procedure is analogous to that in the central limit theorem, thus the distribut-

ion (1) can be looked upon as the asymptote of the Yukawa distribution’ (24)
(together with the condition ~Z xn=0) for N»1.

4) The actual computation of the cluster function (26c) for arbitrary positive
values of ?’ is difficult. At present, only the approximate form of Y(x; 7 )
with > 1 (i.e. for those systems in near ‘integrable situation) is available:

this is given by

a:‘ﬂ
Y(x: ) =1 _..EF%;?%EEETV2 » =1 orthogonal (28)
2 unitary

in analogy to the second virial coefficient of the virial expansion for

incomplete classical gases. (See [14])

5) An important remark about the derivation of Yukawa s distribution function
(24), namely the coarse-graining integration (25), is the ergodic property of
the underlying level dynamics: The canonical distribution e-’f'yézwith two
inverse-temperature parameters (one is unity, the other is Q’) looks as if }43

and 62 were the only two constants of motion. But this is not the case,
becbecause, as Yukawa [8] noted, the level dynamics formulated in (C) is
completely integrable. Yukawa and Ishikawa [9] investigated the reason of
destruction of most of the constants of motion other than fﬁ and 62 by the
inference that confinement of the level motions in a finite range would make
the dynamics ergodic. We will try a formulation of statistical mechanics of
open systems, where in the representation of the system-rT(xn,pn)QQ’rf(JZmn’an)

the latter subsystem is regarded as a kind of heat reservoir.
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4. STATISTICAL MECHANICS OF LEVELS AS AN OPEN DYNAMICAL SYSTEM

4.1 the Poisson white noise Wp(t) and its simulation.

Wp®)y =1, wpt) —11[Wp(ts) —1])> = 5(t,-t2) (29)
Or, in terms of the integrated expression ft< WP (T)-1 )0‘1’ = D(t)
]

{DW)y =0, [DW;)-D(t)]12>=1t-1,] }
(30)

C[DW)=DUID(ts) - D)1 > =0 A b, LI lty, t,1=¢

Thus, the level density on the unfolded energy scale (denoted by t here) f(t)==
1_+‘jzstt) for Berry’s generic integrable systems satisfying the ® -correlation
(12) meets the condition (29) (or, the level number N(¥) = ¢ +'h#3(t) meets
the condition (30)).

More in general, the expression N(t) and that “P(t) for a (random) guantum
system as a sum of step (or J-) functions satisfying <N(t)> = t (<pt)>=1)
defines a stochastic process with a set of random jump points called Poisson

random points. An inspection of Berry’s proof [5] of the asymptotic sum rule

(9) for the spectral form factor (the power spectrum) assures the validity of
the expression (11) with |[Y(t)] < 0o everywhere. It implies that, under the
assumption of non-overlapping of any pair of different random points, the
- correlation holds for <P¢Jt)J$4°)> near the origin (i.e. the point where
a level is present).

Now, in order to be able to proceed further presently, we introduce a
hypothesis that the white noise (29) could be simulated well by another
familiar white noise, namely the Géussian white noise, or for the integrated

object D(t) by the Brownian motion. At present, we do not know how serious

this approximation would be, which we hope to study: See Fig.2 of the actual

motion of N+Q(x) produced by our computation on the billiard systems.

4.2 a Brownian motion model in the dynamical approach

The idea goes back to Dyson’s work [15] in the old random matrix theory:
He imaginéd that the ‘level repulsion factor’ TT 1%y~ £n1” in the distribution
function (1) is a consequence of zig-zag motions of each level in a potential
field produced by perturbation change of the assumed Hamiltonian matrix, where
the perturbing matrix elements are so random that it can be regarded as white

noise. 1In spite of the attractiveness of the idea, however, Dyson’s
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Fig.2

2 L |
200
Unfolded Energy

Fig.2 Fluctuation of eigenvalues. The horizontal axis is the unfolded energy and the
vertical axis is the difference from the Weyl’s formula.
a) Integrable case (circular billiard).

b) Nonintegrable case (stadium billiard).
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formulation, being viewed as improperly formed, should be put in a more natural
framework that the diffusion coefficient be identified with the inverse of the
metric tensor in a Riemannian geometry applied to Brownian motions [16],[17].

We apply the standard theory of Brownian motions in a compact Riemann
manifold to the subsystem R/:TT([Z,.,,,M,“”) of the level dynamics in the phase

space

N z
3®‘R/ = TT(mn, F-n,) ® ‘]_I- ('an,an). (3])
n m<an

Then, the phase space variables for this subsystem (it is possible to choose a
canonical set for these) become stochastic variables to describe the heat
reservoir against the genuine dynamical subsystem Sz]T(il‘n,f,,) of the total 5’@
R . The equations of motion for the latter, §, are thus expected to become

stochastic differential equations. We outline the result as follows:

1) s. d. e. for (2, or for ﬁff s Sn =Z}A(y):;’nod/gi’
v

_ Ly ey A

The diffusion coefficient matrix for the y-coordinates is given by
- -1 t_-l . d.l) _( _ 2 .
Dy = A 8 A where 3 = ag 3,,‘”— Tm—Ln ) ) (metric tensor)

Hence, the inverse square-root of the determinant of DY which plays the role of

the stationary distribution for~0? is identified as:

ok Dy % = [4bA|VG = [debA] TT |52

so that

-y,
|deb Dy| gt dy® = TT 1%0=Tnl Qmn (33)

m<an

(The argument allows a straightforward extension to the case P = 2, 4.)

2) s. d. e. for x, and the spacing

n Ly — Ty = Snm

dXn = —;:—(Kdt + adw, ) (34)

Y _
6£531vnzfz _f?_g'o dBmn + irké61‘46427b

Snm - (35)
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derivation The deterministic equations of motion [8]~[11] are:
dLn _Mmn -
- dbn = 2. mY =95 (T T ) S (36)
dt P a7 ;nzcz#n) (mn’mm)s m{#n) £ mm

The resulting Newtonian equation yields the curvature K [11]. The angular

velocity‘fltis decomposed, by recalling Ei.(sz) and szt }“)] =V
where V is defined in H = H® + tV (17),
such that Qt, mn = <ﬂt, m,,,) + .jlﬁg/ ma

- {Vmn) i o d13 dt;
Z, — Lm + th‘ﬂgn 7071// .

By averaging the right hand side of (36),

m(#n)
These averages, being with distribution over N-1 variables {x,) excepting x,,

yvield constant values by virtue of the +translational invariance (2).

Therefore,
K= < 2<V”"’> ) = 2(N—1)<Vn§,><'—!"“> (38a).
ften) X~ Lm ‘mEm
= 2(N- i)z( Vmﬂ><{£n_ >m={='n, : ~ (38b)

To get the spacing distribution for a pair (m,n), the averaging procedure in
36) is modified such that excepting the particular term - the
(36) pting p 2({(,7 frﬂ,)ﬂtmn

same average is made to write

Vinn
dp, = Kdt L;:_xm)odan + odw, .
Similarly,
dpn= Kdt Lf(——%/fﬁodam + AWy (Bume= Bmn ).

Thus, we obtain

d’( Pn— Pm- )

g<Vmn)
Ty~ Lo

il

0 dBn + TdWom ( Wim=Wn=Wa ).
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Note that the two Brownian motions By, and Wp, so introduced are stochastically

independent of each other:

We further modify the deduced s.d.e's for the momentum variables by adding a
proper linear-damping term so as to be consistent with the canonical

equilibrium .e”ﬁfﬁ (the so called fluctuation-dissipation theorem)

oLF,n = (-rf’n+|<)°l17 + T dWa (40)

— . _ 9<an?°

with the damping constant related to & through T = CBP)‘JOJ. Stochastic diff.

eqs.(34) and (35) are the consequence of the dynamical coarse-graining Tt>»>1.

remark Yukawa’ s distribution function (24) can be regarded as the stationary
distribution for the process (35) of all the spacings, provided 2Z Brownian
motions {an] and {W,n)] are mutually independent. Obviously, this is not true
in the above argument. If, however, each Wyparises from external origins, the

independence could be recovered.

4.3 the maximum information principle for Yukawa's distribution

A Gaussian distribution can be characterized by it_s entropy that, of all
possible probability distributions represented in the Euclidian space with
densities having a fixed mean vector and a fixed variance matrix , it has the
maximum of entropy, H[p] = -—fp(x)logp(x)dx, [18]. This fact can be used to
make a similar characterization of Yukawa's distribution (24). This is
meaningful, since as already discussed in Sec. 3 the canonical distribution
e’p%" YQ from which the expression (24) is deduced by partial integrations must
have no obvious reason by itself because of the complete integrability of our
level dynamics. We can state as follows.

Let us modify the decomposition of the total system into the system 3 and
the reservoir R , (31), such that

y4
g = {'xn} 5 K = {F,n} @H<n(ﬂmn , Mmn ). (42)

Then, of all possible canonical distributions of the form .:,%-é—Z,BuQu ({Qy) is
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the set of all the constants of the level motion) defined in the phase space S @
&{ with only the two fixed variances (besides <p>=<M>=0)

<p2s= Bl (=1 in Ep ew) omd <Man>= g

the specific form éﬂfﬂ’f‘WQ has the maximum of conditional entropy

HCp| iz31 = —f P(*Jlm)iagPCglm)dgz h(m)’ dy = T[dp, TTdMpmn

and in terms of its maximum value, . (£), P({xn}, T) = C/%P (-‘hm(w)).
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Appendix A

Eigenvalues of a Circular Billiard

Every eigenvalues of a circular billiard (the boundary-value problem for a two
dimmentional wave equation with the Dirichlet condition, 1 = 0 on a circle) can be
calculated from the zeros of the Bessel function. The stationary Shrodinger equation,

written in the polar coordinate, is (in the unit of £2/2m = 1)

2 18 182
(57 + 25 + 3 552)%(n0) + Ep(r,0) = 0. (A1)
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An eigen function v¥(r, 6) of (A1) is represented by the Bessel function in the following
form

P(r,0) =c Jzn(%jzn’k) sin 2n6, (for n=1,2,...) (A2)
0

where jy, p means the k-th zero of the 2n-th Bessel function, Ry is the radius of

the circle, and c is the normalization constant. (We concentrate here on the anti-
symmetric states to x and y axis.) It is easy to verify that the wave function (A2)
satisfies (A1), and then

B=(lZky (A3)

The caleulation of the zeros j, j is easy, because the zeros of (n 4 1)-th Bessel
function is always sandwiched between two adjacent zeros of n-th Bessel function,
such that

Ink < Jnt1,k < Jnk+1- (A4)

Therefore, if we know the zeros of n-th Bessel function, we can get (n + 1)-th one by
the bisection method. All the eigenvalues necessary for plotting Fig.2(a) have been
obtained by applying this method.

Appendix B

Eigenvalues of a Stadium Billiard

The standard numerical method to calculate eigenvalues of the nonintegrable
billiard system is the Green’s function method[20], which is known as Boundary
Element method (BEM) in the field of engineering. But we use another method (the
plane wave method[21]) here to calculate the eigenvalues of a stadium billiard.

Eigen equation of a billiard system is

0? o? -
(—:—c—i + 25 )¥(2,y) + E¥(z,y) =0 (inside of the boundary)

) oz (B1)

Y(z,y) =0  (outside of the boundary).

In many cases, the eigen-functions for the anti-symmetric subspace are represented
in the following form,

x/
Yo(z,y) = c/o ’ df ¢,(6) sin(zkcosf) sin(yksin@), (B2)

where k? = E. To calculate eigenvalues, we have only to search for the values of
the wave number k and the coeflicients ¢,(8) so that ¥»(z,y) = 0 on the boundary.
This is done numerically by calculating the zeros of the determinant of the following
matrix,

A = (aij)  aij = sin(kz; cos ;) cos(ky; sin ;), (B3)
where (z;,y;) is the points on the boundary and 8; = (25 + 1)x/4N for i,5 =
-1

’ ’Aiizl,lough this method is not supported mathematically, we know that it works
well for a stadium billiard from the experience. If we apply this method to other
systems, it is necessary to check by Weyl’s formula that no eigenvalue is missing.



