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1. Introduction

We consider the initial value problem for the discrete Boltzmann equation in one
space dimension:

(1.1) $c_{i}( \frac{\partial F_{i}}{\partial t}+v_{i}\frac{\partial F_{i}}{\partial x})=Q_{i}[F]$, $i\in\Lambda$ ,

(12) $F_{i}(0, x)=F_{i0}(x)$ , $i\in A$ .

The discrete Boltzmann equation (1.1) describes the evolution of a gas of particles
allowed to move with a finite number of admissible velocities, the x-components of
which are denoted by $v;,$ $i\in\Lambda$ , where $\Lambda=\{1,2, \ldots, m\}$ . Each $F_{:}(t, x)$ denotes the
mass density of gas particles corresponding to $v_{i},$ $Q_{i}[F]$ is the term related to binary
and higher order multiple collisions (we do not exclude the multiple collision case),
and $c_{i}$ is a positive number.

We want to study large-time behaviors of solutions to the problem (1.1), (1.2)
when the initial function $F_{0}(x)=(F_{i0}(x))_{i\in\Lambda}$ satisfies

(1.3) $F_{0}(x)arrow F^{\pm}$ as $xarrow\pm\infty$ ,

where $F^{\pm}=(F_{i}^{\pm})_{i\in\Lambda}$ are constant Maxwellians so that $Q_{i}[F^{\pm}]=0$ for $i\in\Lambda$ . Our
main interest is in the study of wave phenomena arising in the solutions of (1.1),
(1.2) as $tarrow+\infty$ . In this respect, it was observed in [2] that if $F^{+}=F^{-}$ , then the
solution of (1.1), (1.2) behaves, asymptotically as $tarrow+\infty$ , like a local Maxwellian
which is characterized by the superposition of nonlinear diffusion waves given in
terms of the self-similar solution of the Burgers equation. On the other hand, when
$F^{+}\neq F^{-}$ , it is expected that the solution of (1.1), (1.2) approaches, in general, the
superposition of rarefaction waves $and/or$ (smooth) shock waves as $tarrow+\infty$ , and
this combination of waves is determined by the relative position of the end states $F^{\pm}$

in the space of all Maxwellians (see [3]). However, the analysis of wave phenomena
in this general case is so complicated and nothing is known except for the Broadwell

数理解析研究所講究録
第 862巻 1994年 21-28



22

model, the simplest model written in the form of (1.1): For the Broadwell model,
asymptotics toward rarefaction waves and (smooth) shock waves are discussed in [8]
and $[7,1]$ , respectively.

The aim of this paper is to discuss the asymptotic stability of rarefaction waves
for a certain class of models described by (1.1). Our main theorem states that
under suitable assumptions the solution of (1.1), (1.2) behaves, asymptotically as
$tarrow+\infty$ , like a local Maxwellian which is characterized by the superposition of
centered rarefaction waves for the Euler equation associated with (1.1). This is a
generalization of the stability result in [8] for the Broadwell model. The detailed
proof of the main theorem will be given in ajoint paper with Bellomo [6].

2. Assumptions and examples

We denote by $\mathcal{M}_{0}$ the space of collision invariants for (1.1). $\mathcal{M}_{0}$ is a linear subspace
of $IR^{m},$ $m$ being the cardinality of $\Lambda$ , and consists of vectors $\phi=(\phi_{i})_{i\in\Lambda}$ satisfying

(2.1) $\sum_{i\in\Lambda}\phi_{i}Q_{1}[F]=0$ for any $F=(F_{i})_{i\in\Lambda}\in 1R^{m}$ .

Throughout the paper we make the following assumption that characterizes the
models under consideration.

Assumption 2.1. (i) $\dim \mathcal{M}_{0}=2$ , and $\mathcal{M}_{0}$ is spanned by (1) and $(v:)_{\in\Lambda}$ ,
where (1) means the vector with components all equal to one.

(ii) $(v_{t}^{2})_{\in\Lambda}$ is not an element of $\mathcal{M}_{0}$ .

Note that Assumption 2.1 implies the set $\{v_{i}\}_{i\in\Lambda}$ of all x-components of ad-
missible velocities contains at least three different values. The collision invariants
(1) and $(v_{i})_{i\in\Lambda}$ correspond to the conservation of mass and momentum (in the
x-direction), respectively, and we here neglect the conservation of energy. In other
words, we assumed that the collision invariant corresponding to the energy conserva-
tion is linearly dependent to (1) . This is the case where the admissible velocities
have the same modulus.

The simplest model satisfying Assumption 2.1 is the Broadwell model which is
written in the form

(2.2) $\{\begin{array}{l}\frac{\partial F_{1}}{\partial t}+\frac{\partial F_{1}}{\partial x}4\frac{\partial F_{2}}{\partial t}\frac{\partial F_{3}}{\partial t}-\frac{\partial F_{3}}{\partial x}\end{array}$

$===$ $F_{2}^{2_{2}}-F_{1}^{1}F_{3}^{3}2(F_{1}F_{3}-F_{2}^{2})F^{2}-FF,$

.

For this model, $\mathcal{M}_{0}$ is a two-dimensional subspace spanned by (1, 1, 1) and $(1, 0, -1)$ .
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Another interesting model satisfying Assumption 2.1 is the following one-dimensional
version of the 6-velocity coplanar model with both binary and ternary collisions.

(2.3) $\{\begin{array}{l}\frac{\partial F_{1}}{\partial t}+2\frac{\partial F_{1}}{\partial x}2(\frac{\partial F_{2}}{\partial t}+\frac{\partial F_{2}}{\partial x}I2(\frac{\partial F_{3}}{\partial t}-\frac{\partial F_{3}}{\partial x}I\frac{\partial F_{4}}{\partial t}+2\frac{\partial F_{4}}{\partial x}\end{array}$

$====$ $a_{1}^{1}(F_{1}^{1}F_{3}^{4}-F_{1}^{1}F_{4}^{3})+2a_{2}^{2}(F_{2}F_{4}^{2}-F_{1^{2}}^{2}F_{3}^{2})a_{1}(FF_{3}-F_{2}F)+a_{2}(F_{2}F-FF_{3^{2}})a_{1}(FF_{4}-F_{2}F_{3}^{4})+2a(F_{1_{2}}^{2}F_{3}^{4}-F_{2}F_{4})a(F_{2}^{2}F-FF)+a_{2}(F_{1}F_{3}^{2}-F_{2}^{1}F_{4})$

,

where $a_{I}$ and $a_{2}$ are positive constants. The subspace $\mathcal{M}_{0}$ of this model is two-
dimensional and is spanned by (1, 1, 1, 1) and $(2, 1, -1, -2)$ .

3. Maxwellians and the Euler equation

Consider a vector $F=(F_{i})_{t\in\Lambda}$ with $F_{i}>0$ for $i\in\Lambda$ . Such a vector $F$ is called
Maxwelhan if $Q_{t}[F]=0$ for $i\in$ A. It is known that any Maxwellian $F$ can be
characterized by the corresponding fluid-dynamic variables. Under Assumption 2.1,
there are two independent fluid-dynamic variables which are, for example, the mass
density $\rho$ and the mean velocity $u$ :

(3.1) $\rho=\sum_{i\in\Lambda}c.F_{i}$
,

$\rho u=\sum_{t\in\Lambda}c_{t}v;F;$
,

and any Maxwellian $F$ can be parametrized by $(\rho, u)$ in the form

(3.2) $F=\rho M(u)$ .

Here $M(u)=(M_{i}(u))_{i\in\Lambda}$ is given implicitly by the formula

(3.3) $M_{t}(u)= \frac{e^{\beta v_{l}}}{G(\beta)}$ , $i\in\Lambda$ , $u= \frac{G’(\beta)}{G(\beta)}$ ,

in which $G(\beta)=\Sigma_{i\in\Lambda}c;e^{\beta v;}$ , and $G’(\beta)$ denotes the derivative of $G(\beta)$ with respect
to $\beta\in R$ .

Now, let $F=(F_{l})_{i\in\Lambda}$ be a solution of (1.1) such that $F_{i}>0$ for $i\in\Lambda$ , and let
$(\rho, u)$ be the corresponding fluid-dynamic variables defined by (3.1). From Assump-
tion 2.1 we have two independent conservation laws which are of the form

(3.4) $\{\begin{array}{l}\rho_{t}+(\rho u)_{x}(\rho u)_{t}+S_{x}\end{array}$ $=0=0$
,
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where $S= \sum_{i\in\Lambda}c_{i}v_{i}^{2}F_{i}$ . Obviously, (3.4) is not a closed system of $(\rho, u)$ . To get a
closed system, we apply the Chapman-Enskog expansion

$F=F^{(0)}+F^{(1)}+\cdots$ .

It is known that the first order term $F^{(0)}$ in the expansion is the Maxwellian which
is characterized by the fluid-dynamic variables $(\rho, u)$ of the original $F$ , that is,
$F^{(0)}=\rho M(u)$ . If we neglect the higher order terms in the expansion and use
the approximation $F=F^{(0)}$ , then (3.4) becomes a closed system of the form

(3.5) $\{\rho_{t}+(\rho u)\int_{+(\rho\sigma(u))_{x}=0}^{\rho u)_{x}=0}$

,

where
(3.6) $\sigma(u)=\sum_{i\in\Lambda}c;v^{2}M_{i}(u)$ .

This closed system is called the Euler equation associated with (1.1). It was ob-
served in $[5,4]$ that our Euler equation (3.5) forms a strictly hyperbolic system with
genuinely nonlinear characteristic fields. This is the same property as the classical
Euler equation in fluid mechanics has.

We give some details about this property. Let us rewrite (3.5) as

(3.7) $(\begin{array}{l}\rho u\end{array})+((\sigma(u)-u^{2})/\rho u$ $\sigma’(u^{\rho})-u)(\begin{array}{l}\rho u\end{array})=0$ .

We can verify that the coefficient matrix in (3.7) has real and distinct eigenvalues
$\lambda_{j},j=1,2$ , which depend only on $u$ (independent of $\rho$ ). More precisely, we see that

(3.8) $\lambda_{1}(u)<u<\lambda_{2}(u)$ ,

which implies the strict hyperbolicity of (3.5). The right eigenvectors $r_{j}(\rho, u)$ corre-
sponding to $\lambda_{j}(u)$ are

(3.9) $r_{j}(\rho, u)=(\lambda_{j}(u^{\rho})-u)$ $j=1,2$ ,

for which we can check that $\nabla\lambda_{j}\cdot r_{j}\neq 0,j=1,2$ , where the gradient $\nabla$ is with respect
to $(\rho, u)$ . This last property means the genuine nonlinearity of both characteristic
fields.



25

4. Rarefaction waves for the Euler equation

Let $F^{\pm}$ be the Maxwellians appearing in (1.3) and let $(\rho\pm, u_{\pm})$ be the corresponding
fluid-dynamic variables, that is,

(4.1) $F^{\pm}=\rho_{\pm}M(u_{\pm})$ .

We consider the initial value problem for the Euler equation (3.5) with the step
initial data
(4.2) $(\rho, u)(0, x)=(\rho_{\pm}, u_{\pm})$ , $x\gtrless 0$ .

This kind of initial value problem, called the Riemann problem, admits a weak
solution which is, in general, expressed as the superposition of centered rarefaction
waves $and/or$ centered (discontinuous) shock waves, and this combination of waves
is completely determined by the relative position of the end states $(\rho_{\pm}, u_{\pm})$ in the
state space. This weak solution depends on $(t, x)$ only through the variable $\xi=x/t$

so that we may write it by $(\rho^{R}, u^{R})(x/t)$ .
In this paper we discuss the case where $(\rho^{R}, u^{R})(x/t)$ is the superposition of

centered rarefaction waves only. This is the case where the end states $(\rho_{\pm}, u_{\pm})$

satisfy
(4.3) $(\rho_{+}, u_{+})\in RR(\rho-, u_{-})$ .
Here $RR(\rho-, u_{-})$ is the sector between the two rarefaction curves $R_{j}(\rho-, u_{-}),$ $j=$

$1,2$ , in the state space. $R_{j}(\rho-, u_{-})$ is the integral curve of the right eigenvector
$r_{\dot{J}}(\rho, u)$ in (3.9), that passes through the point $(\rho-, u_{-})$ and has the property that
$\lambda_{j}(u)\geq\lambda_{j}(u_{-})$ for $(\rho, u)\in R_{j}(\rho-, u_{-})$ . This curve is represented in the form

(4.4) $R_{j}(\rho-, u_{-})=\{(\rho, u);\rho/\rho_{-}=f_{\dot{J}}(u;u_{-}), u\geq u_{-}\}$,

where
(4.5) $f_{j}(u;u_{-})= \exp(\int_{u}^{u_{-}}\frac{ds}{\lambda_{j}(s)-s}I,$ $j=1,2$.

Therefore, the region $RR(\rho-, u)$ is given explicitly as

(4.6) $RR(\rho-, u_{-})=\{(\rho, u);f_{1}(u;u_{-})\leq\rho/\rho_{-}\leq f_{2}(u;u_{-}), u\geq u_{-}\}$ .

Now we suppose that (4.3) holds, and we give a precise expression of the weak
solution $(\rho^{R}, u^{R})(x/t)$ to the Riemann problem (3.5), (4.2). We see that if (4.3)
holds, then there exists uniquely an intermediate state $(\rho_{*}, u_{*})$ such that

(4.7) $(\rho_{*}, u_{*})\in R_{1}(\rho-, u_{-})$ and $(\rho_{+}, u_{+})\in R_{2}(\rho_{*}, u_{*})$ .
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The weak solution $(\rho^{R}, u^{R})(x/t)$ is then decomposed into

(4.8) $( \rho^{R}, u^{R})(x/t)=\sum_{j=1}^{2}(\rho_{j}^{R}, u_{j}^{R})(x/t)-(\rho_{*}, u_{*})$ ,

where $(\rho_{j}^{R}, u_{j}^{R})(x/t)$ is the centered rarefaction wave in the $\lambda_{j}$-characteristic field
and connects two constant states $(\rho-, u_{-})$ and $(\rho_{*}, u_{*})$ for $j=1$ , and $(\rho_{*}, u_{*})$ and
$(\rho_{+}, u_{+})$ for $j=2$ . These centered rarefaction waves are the weak solutions to the
Riemann problem for (3.5) with the corresponding step initial data and are given
by the formulas

$\lambda_{1}(u_{1}^{R}(\xi))$ $=w^{R}(\xi;\lambda_{1}(u_{-}), \lambda_{1}(u_{*})),$ $(\rho_{1}^{R}, u_{1}^{R})(\xi)\in R_{1}(\rho-, u_{-})$ ,
(4.9)

$\lambda_{2}(u_{2}^{R}(\xi))$ $=w^{R}(\xi;\lambda_{2}(u_{*}), \lambda_{2}(u_{+})),$ $(\rho_{2}^{R}, u_{2}^{R})(\xi)\in R_{2}(\rho_{*}, u_{*})$ .

Here $w^{R}(x/t;w_{-}, w_{+})$ with $w_{-}<w_{+}$ is a weak solution to the Riemann problem for
the inviscid Burgers equation $w_{t}+ww_{x}=0$ with the step initial function $w(0, x)=$

$w_{\pm},$ $x>0<$ ’ which is the simplest centered rarefaction

(4.10) $w^{R}(\xi;w_{-}, w_{+})=\{\begin{array}{l}w_{-},\xi<w_{-}\xi,w_{-}\leq\xi\leq w_{+}w_{+},w_{+}<\xi\end{array}$

The formula (4.8) together with (4.9) and (4.10) gives a precise expression of the
weak solution $(\rho^{R}, u^{R})(x/t)$ to the Riemann problem (3.5), (4.2) under the condition
(4.3).

5. Rarefaction waves for the discrete Boltzmann equation

Let $(\rho^{R}, u^{R})(x/t)$ be the superposition of two centered rarefaction waves for the
Euler equation (3.5), which is constructed in the previous section. We now define

(5.1) $F^{R}(x/t)=\rho^{R}(x/t)M(u^{R}(x/t))$ .

This is the Maxwellian with $(\rho^{R}, u^{R})(x/t)$ as its fluid-dynamic variables and is called
simply the rarefaction wave for the discrete Boltzmann equation (1.1). It has es-
sentially the same structure as that of $(\rho^{R}, u^{R})(x/t)$ and tends to the following step
function as $t\downarrow 0$ .
(5.2) $F_{0}^{R}(x)=F^{\pm}$ , $x\gtrless 0$ .

The $F=F^{R}(x/t)$ thus defined is not an exact solution of (1.1) but it can be proved
to be an asymptotic solution as $tarrow+\infty$ to the initial value problem (1.1), (1.2)
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when $(\rho_{\pm}, u_{\pm})$ corresponding to $F^{\pm}$ satisfy (4.3). This is the main result of this
paper and can be stated more precisely as follows.

Main theorem. Suppose that Assumption 2.1 is satisfied and that the end states
$F^{\pm}$ are Maxwellians whose fluid-dynamic parameters $(\rho_{\pm}, u_{\pm})$ satisfy $(4\cdot 3)$ . Assume
in addition that
(5.3) $F_{0}-F_{0}^{R}\in L^{2}$ (It), $\partial_{x}F_{0}\in L^{2}(R)$ .

Then there is a positive constant $\epsilon_{0}$ such that if $||F_{0}-F_{0}^{R}||+||\partial_{x}F_{0}||+|F^{+}-F^{-}|\leq\epsilon_{0_{f}}$

then the initial value problem (1.1), (1.2) has a unique global solution $F=(F_{i})_{i\in\Lambda}$

satisfying

(5.4) $F-F_{0}^{R}\in C^{0}([0, \infty);L^{2}(R))$ , $\partial_{x}F\in C^{0}([0, \infty);L^{2}(R))$ .

Moreover, the solution approaches the rarefaction wave $F^{R}(x/t)$ , which is defined in
$(5.1)_{f}$ as $tarrow+\infty$ . That is,

(5.5) $\sup_{x\in R}|F(t, x)-F^{R}(x/t)|arrow 0$ as $tarrow+\infty$ .

This is a generalization of the stability result by Matsumura [8] for the Broadwell
model (2.2). Our stability result shows that the solution of the discrete Boltzmann
equation (1.1) can be approximated, as $tarrow+\infty$ , by the superposition of rarefaction
waves of the Euler equation (3.5), and this can be considered as a mathematical
justification (in some sense) of the Euler level approximation of the Chapman-Enskog
expansion applied to the discrete Boltzmann equation (1.1).

The proof of the above main result requires several technicalities and will be
given in a joint paper with Bellomo [6].
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