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THE POINT SPECTRUM OF THE LINEARIZED BOLTZMANN OPERATOR
WITH AN EXTERNAL-FORCE POTENTIAL IN AN UNBOUNDED DOMAIN

MPAKZITHE HM £  (Minoru Tabata)

ABSTRACT. We will investigate the point spectrum on the
imaginary axis and the corresponding eigenspaces of the linearized
Boltzmann operator with an external-force potential in an unbounded
domain C RR?®. The boundary condition is the perfectly reflective
boundary condition. We suppose that the boundary is a piecewise C*-
class surface, but we do not assume the convexity of the complement
of the domain. The point spectrum and the corresponding eigenspaces
vary considerably not only with geometrical properties of the
external-force potential but also with those of the boundary surface.
Therefore we need to classify external-force potentials and domains

appropriately.

§1 INTRODUCTION

The nonlinear Boltzmann equation with an external potential ¢ =

¢ (x),
f. + Af = Q(f, 1), ‘ (1.1

describes the time evolution of rarefied gas which is acted upon by
the force IF =-Vé¢. f = f(t,x, £€) 1is an unknown function
denoting the density of gas particles at time t = 0, at a point x
€ Q, and with a velocity &€ € R®. Q 1is a domain € R?® in
which the rarefied gas is confined. A and Q(-,:) are the

following operators:
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A = G.VX_ Vx¢.V€7

W) = /D)1 , BB, €-2 DX

€R?,sES
X{g(n)h(7n " )+g(n Ih(5)-g(£€)h(€ )-g(&€ Hh(€)}d¢ 'ds,

where g(7) = g(t,x, 7), etc., 7 = £€-((§-§')-s)s, 7' = §'+
((€-€')'s)s, and cosO = (€-€¢')-s/|&-€']. B(H,V) is a
nonnegative given function of (0,V) € [0, x1X[0,+00). We will
impose the following:* |

Assumption 1.1. B(8O,V)/|sinBcosB| = c;.,(V+V¢'), for any
(0,V), where c;., and &< are positive constants independent
of (06,V).

Under this assumption we can linearize (1.1) around the absolute
Maxwellian state M = exp(-¢ (x)-| € |%2/2). Substituting f =M +
M'“2y in (1.1), and dropping the nonlinear term, we obtain the

linearized Boltzmann equation,
Uy = Bu, (1.2)

where B=A+ 1L, A= -Atlexp(-9))(-v), and L = (exp(-9))K.
v = v(€) is a multiplication operator, and K is an integration
operator with a symmetric kernel; v and K act on § only.

These operators satisfy the following:*'?

Lemma 1.2. (i) There exists a positive constant c;.. such
that for any &€ 0 < v(&) = c;..(1+] € 1).

(ii) K 1is a self-adjoint compact operator on L*(IR:*).

(iii) (-v+K) 1is a self-adjoint nonpositive operator on
L2(R ). '
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(iv) (-v+K)f = 0 iff f is a linear combination of & ;w'”2,
51,23 7%, and |€|*w'’?, where €, is the j-th
component of &, j=1,2,8, i.e., & =(£&,,£&,, &3);0 =
exp(-| € [2/2).

It is important to investigate the asymptotic behavior of
solutions of (1.2). In order to study this subject, we need to
inspect the point spectrum of B and the corresponding eigenspaces.
In {6] we have already investigated this subject when € =IR?*, and
by making use of the result in [6], we have obtained decay estimates
for solutions to the Cauchy problem for (1.2) (see [3-5]). In the
present paper, we will study that subject when € is an unbounded
domain C IR®. The main result is Theorem 4.1. Our boundary
condition is the perfectly reflective boundary condition.

In [6] we are confronted with the difficulties arising from the
fact that the point spectrum of B and the corresponding eigenspaces
exhibit a complicated structure which varies with geometrical
properties of the external-force potential. For this reason, it is
necessary to classify the external-force potentials (see [6, pp. 185,
189]). However, in studying the subject of the present paper, we
find the difficulty caused by the fact that the point spectrum of B
and the corresponding eigenspaces vary considerably not only with
geometrical properties of the external-force potential but also with
those of the boundary surface. Hence, we need to classify both the
external-force potentials and the boundary surfaces.

In this paper, we suppose that the boundary 0 Q is a
piecewise C*-class surface, but we do not assume the convexity of the

complement of the domain.
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§ 2 ASSUMPTIONS
We impose the following on the domain Q:

Assumption 2.1. (i) Q 1is an unbounded domain C IR?®.

(ii) There exist a family of bounded domains {O;};ew and a
family of functions {¢;(x)};e~ which satisfy the following (1-4):

(1) {O;};en is a covering of 9 Q, and J(p) = {j € N;
O;(p) = O;N{x; Ix] = p} 1is not empty} 1is a finite set for
any p > 1.

(2) For each j € IN there exists an orthogonal coordinate
system in terms of which 9 QMNO; and QMNO; are represented as

follows:

dQN0O; ={x = (X1,%2,%) € R?; x5 = ¢j(§),
X = (%1,%2) € p; (03;)},

QNO; € {x = (Xx,%2,%:) € R?; x5 < ¢;(x),
X = (X1,Xz) © pj(oj)},

where p;(+) is the orthogonal projection operator from IR*® to the
X; Xz ~plane.
(3) For each j € N, ¢ ;(x) 1is a piecewise C*-class function
of x € p;(0;).
(4) {¢;(x)};en satisfies that forany p > 1-and k, £= 1,2,
sup 102¢;(x)/0x0%:] = c2.1(p), (2.1
xEM(, 00, JEI(p) #L % ) 2itf :
where M(j, p) denotes the set of all points of p;(O;(p)) at which
¢;(x) is 2-times partially differentiable; cz.: = cz2..(p) isa

monotone increasing, positive-valued function of o > 1.

We make the following assumption on ¢ = @ (x):
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Assumption 2.2. (i) ¢ = ¢(x) 1is a real-valued function of
X € Q.
(ii) ¢ = ¢(x) belongs to C'(Q,), and for any p > 1,

su Vo ()| = ca.2(p), (2.2)
= e ik
where cC,.» = C,.2(p) 1is a monotone increasing, positive-valued
function of p > 1.

(iii) L?*(Q,) contains exp(-9 (x)/2), ¢ (x)exp(-¢ (x)/2), and
|x|lexp(- ¢ (x)/2). |

(iv) There exists a constant c,.s such that for any x €Q ¢ (x)

v

Cz2.3.

We define B(A) = {(v=v(x, €) € 1?2 = L2(Q:XR*);: Av €
[2, and v = v(x, €) satisfies the perfectly reflective boundary

condition,

(v av(e, N &) = (Yav(e, N E-20)- £)nkx),  (2.3)

for any (x,€) € S;}. 7v;, J=1,2, denote the trace operators

along the characteristic curves defined by the following:
dx/dt = &, d&/dt = -Vé(x); (2.4)

Y;, J=1,2, make functions defined in Q,XR.*® correspond to
those defined in S;, j = 1,2, respectively. We can define <(B)
= ().

For a differentiable real-valued function f = f(x), x € R?,

we define

() = {(6:,0:,0,5,0,) ER*; Z,;2,0;0f(x)/9x; = 04
for any x = (x:,%2,X3) € R3}.



§3 CLASSIFICATIONS OF P AND DD
Denote by I[P, the set of all potentials of the form

$(x) = m|x|* + Zdn;x; + e, 8.1)

where m >0 and n; € R, j=1,---,4, are constants. By IP,’
we denote the set of all potentials ¢ = ¢(x) € P such that c(¢)
= {m>0; 2(¢®mlx|?) # {(0,0,0,0)}} is not empty; we easily
see that [P, C IP,’. Set P, = P,'\IP,, P; = P\P,". We

will decompose P as follows:

Ip = Uj:ilﬂ.)j. (3- 2)

Llet ¢ € IP,. Let us classify ID. By E,;, Jj=1,...,4,
we denote the sets of all domains @ & ID whose boundaries d Q
satisfy the following (1-4), respectively:

(1) 0Q is cylindrical, but is not a bent plane whose edge
contains the vertex of ¢ = ¢ (x).

(2) 0Q is a conical surface whose vertex is equal to that of
¢ = ¢(x), but 0 Q 1is not a bent plane.

(83) 0Q is a bent plane whose edge includes the vertex of ¢ =
¢ (x).

(4) 0 Q is neither a cylindrical surface nor a conical
surface whose vertex is equal to that of ¢ = ¢ (x).

We see that E,;, J=1,...,4, are disjoint, and that
ID = szlElj. (3.3)
If ¢ = ¢(x) € P, and if 0 Q 1is cylindrical, we define

c(p,3Q) = {m > 0; there exists (0., 02, 03, 04) # (0,0,0,0)
satisfying (0i, 02, 03, 84) € 2 (& (x)-n|x|?)

123
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and (61, 62, 63)//6 Q}-

Let ¢ € IP,. We will classify ID. By E.;, J =1,2,3, we
designate the sets of all domains € € ID whose boundaries d Q
satisfy the following (5-7), respectively:

(5) 0 Q 1is not cylindrical.

(6) 0Q 1is cylindrical, but c(¢, 0 Q) 1is empty.

(7) 0Q is cylindrical, and c(¢, 0 Q) is not empty.

We easily see that E,;, J = 1,2,3, are disjoint, and that

D = Uj:lEzj. (3.4)
§4 THE MAIN THEOREM

Theorem 4.1. (I) If ¢ = ¢(x) € P and Q € D, then o,
5 0, and e(0) is the set of all functions of the form

v=(Z;0a;&; +a]&l®+ a2 (4.1)

where M = exp(-¢ (x)-| €1%2/2). a; =a;(x), j=1,...,5, are
complex-valued functions of x € Q satisfying the following (I-1I):
(I) If « =0, then a; =a;(x), Jj=1,...,5 are such that

[(a; = a; + 2.2 askx, J =123, (4.2)
< a4 is a complex constant, : (4.3)
L as = 22,9 (x) + Bo, (4.4)

where B, 1is a constant € C. «a;x, J,k =1,2,3, are complex

constants satisfying the following (i-ii):

(i) &5k + Ags; = O’ jyk = 1’293- (4-5)
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(ii) If we set

(a, B) = ((Real,Reaz,Reas), (Reazzg,Rea;;l,Realz))’

((Imal, Imaz,Imag), (Imaza, Ima31, Imalz)), (4..6)

then (a, B) satisfies the following:
(4.7): If a(¢)Na(Q) is empty, then (a, B) = (0,0).
(4.8): If a(¢)Na(Q) is not empty, then there exists an
g € a(¢)Na(Q) such that B//¢ and o =-7vXB
for any v € 0.

(I1) Let ¢ = ¢ (x) € P..
(i) If Q € E» UEs,, then o,NC. = {0}
(ii) Suppose that Q € E,s. Then,

0. NCA\0} = {(C-1D*Cm)*2i; m € c(¢$,3Q), k=013 (4.9)

For any m € c(¢,d Q) and for k = 0,1, the eigenspace
e((-1)*(2m)*72i) is the set of all functions of the form (4.1) whose
a; =a;(x), j=1,...,5 satisfy the following:

( a; ~ B.‘iy cj: 1’2’39 (4.10)
1 a =0, (4.11)
L a5 ~ (_1)“1(2111)1/22521 Bix;i+ Ba, (4:.12)

where B, Jj=1,...,4, are complex constants satisfying
(ReBI,ReBZyReB3)9 (ImBI,ImBz,ImBs)//a Q, (4.13)

(Re B1,Re B2, Re Bs,Re(-1)*(2m)* " B.1i),
(InB.,InB, InBs, In(-1)*(2m)* "2 B, )€ L (¢ (x)-m|x|?). (4.14)
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(III) Suppose that ¢ = ¢(x) € P,, i.e., that ¢ = ¢ (x)
has the form (3.1).
(1) Assume that Q & E,.. Then,

a,NCN\{0} = {(-D*Cm)*'"%i; k=0,1}, (4.15)

where m is that of (8.1). For k =v0, 1, the eigenspace
e((-1)*(2m)*"%i) 1is the set of all functions of the form (4.1) whose
a; =as;(x), j=1,...,5 satisfy (4.10-12), where B;, j=1,...,

4, are complex constants satisfying (4.13) and
2531 B;n; = (‘I)K(zm)1/234i, (4.16)

where n;, j=1,2,3, are those of (3.1).
(ii) Let Q € E,,. Then,

0,NC.A\{0} = {-D*@m)'"*i; k =0,1}. (4.17)

For k = 0,1, the eigenspace e((-1)*(8m)'“%i) 1is the set of all
functions of the form (4.1) whose a; = a;(x), j=1,...,5, satisfy

the following:
(a; = ((D*"(8m) ' %a.x;i + By, J =128, (4.18)
as 1S a nonzero complex constant, (4.19)

as = —2maq |x|* + (1" (@2m) 2352 Bixsi
L + 5524 Bs?/4a, (4.20)

where B;, J=1,2,3, are complex constants such that
Bi/a, = (-D)*"*(2/m)* ?n;i, j=1,2,3. (4.21)

(iii) Let Q € E;s. Then,
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a,NC A0} = {¢-D*Gm)'7%1; j=2,8 k-=01)

e(-D*(Gm)*72i), j=2,8 k=0,1, are the same as those
described in (i-ii).

(iv) If Q & E,a, then o,NC. = {0}.

(V) If ¢ =¢(x) € P, and Q € D, then o,NC. = {0}.
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