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Notes on the periodic solutions of the

2-dimensional heat convection eguations

By Kazuo OEDA (X?ﬁi—\ 2, BALARNER)

§1. Problems and assumptions.

We consider the heat convection equation of Boussinesg

approximation in a time-dependent bounded domain Q(t) of Rz.

u, + (u*vV)u

t -vp/p + vAu + (1 - a(G-TO))g .

o,

1) div u

6, + (u-")0 = kAl

t
where u, 68 and p are the velocity of the fluid, the temperature
and the pressure, respectively. We assume the boundary 9Q(t) of
the domain Q(t) consists of two components, that is, 9Q(t)
= Fo U T(t) and 9Q(t) varies periodicaly in t with the period T.
The boundary condition and the periodic one are as follows

= B(x,t) , olro = TO > 0, elr(t) =0 ,

2) ulggy,
(3) u(t+T) = u(t) , GCt+T) = O(t)

In the 3-dimensional case, we showed the existence,
uniqueness and the stability of the periodic strong solution in
{4) and [5] when the data are small. Recently. Inoue-Otani [2]
obtained the periodic strong solution (space dimension n =2,3)
under their small type condition. As for the periodic weak
solution, we refer Morimoto [3]. Now, the purpose of our present
work is to remove the small type condition on the boundary data

of the fluid velocity. (The present result is an improvement of

our previous one in [61.)
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Here we state assumptions

(AQ) Q(t) is included in a fixed open ball B1= B(0,d) and the
inner boundary FO and the outer one N'(t) do not intersect
each other.

(Al) For each fixed t 2 0, F(t) and FO are both simple closed
curves. Moreover, They are smooth (of class e”) in x. t.
Let K be a compaci set surrounded by Fo, then K includes
the origine 0 in its interior.

(A2) There exists Q(ro.rl) = (X € R? : 0<r0<|x|<rl) such that

Q(ro,rl) c QCt) for all t 2 0. Moreover, there exists 5 > 0

such that

"
-
St
~

dist ", (x| 28 and

dist ("(t), (Ix| =r») 28 for all t > 0.

(A3) Q(t+T) = Q(t), f(t+T) = I'(t) and 8(x,t+T) = B(x,t)
for all t > 0.

(Ad) g(x) is a bounded continuous vector function in HZ—K.

(A5) There exists a function b = b(x,t) of the form b = rot
c(x,t) where ¢ = c(x,t) € C3 on (BI-K) X [0,») and periodic
in t with period T. Moreover, b'ag(t> = 8 and

fr08°n ds = fr(t)B'n ds = 0 .

We have two lemmas. (Put B=B-K.)
Lemma 1. For any € > 0, there exists b8= be(x,t) such that

b. € HX(B), div b, = 0. by (82(t)) = 8 and

(4) l((u~V)b8; w | < eHVuﬂz for any u € H;(Q(t)).

(cf.Temam [71.)
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Lemma 2. For any € > 0, there exists 68 = ae(x.t) such that

g, € cB® n H2(B) and

(5) Ncu-vH8 0 ¢ elvul  for any u € H(R(1)).

To show Lemma 2, we use Oo(x)

(T . X € B_ -K
o r
o
Go(x) = 4 To-log(r/rl)/log(rolrl) , X € Q(ro.rl)
0 'Y X € B—B .
L

where B, = (x € R® i Ixl ¢rpp Go=o0, D.
i
On the other hand, according to Lemma 1.9 of Temam [7]., for

any € > 0, there exists ae = ae(x,t) € CZ(Q(t)) such that a8=1

in some neighbourhoods of Fo and I'(t) og = 0 if p(x) 2 25(€)

and D (| ¢ €/p(X) if p(x) ¢ 28(8) (k =1, 2), where

p(x,t) = min(dist(x,ro). dist(x,[(t))} and 8(g) = exp(-1/€).
And we pqt 68 = aeﬂo. Then, thanks to the assumption (A2),

we have, by retaking €, if necessary, a function 58 satisfying

the condition of Lemma 2.

§2. Abstract heat convection equation.

We write b = b and 9 = 68’ (Later we take an appropriate
€ > 0.) Then we put u = i+ b, 0= 0+ 9 s (X,Y) d(x*.y*).

t = d2/mt*, 4= wdu®, 8= (vTo/x)G* and p = (ov2/da®rp*.

Here we abbreviate asterisks * and we have

u, + (u*Vu —~Vp + Au - (u*¥)b - (b-V)u - R6

t

(6) ' b, - (b:-¥)b + &b + d3g/v? - R(@-x/v),

div u 0
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6, + (U9)0 = (k/V)AO + (k/V)XAD - (u*V)0 - (b*V)8- (b-V)0,

where R = agTodS/Kv.

=0 , 0} =0 |,

(1 ulag iy 30 (1)
(8) u(t+T) = uct) , B(t+T) = OCt)

We define proper lower semicontinuous convex functions for

U= (u,8) !
_ (1 2 ., K 2 1 1
¢gU) = 2IB(IVuI + vlvel ) dx, U € H_(B) X HO(B),
s+, U € (H.B) x L2 N () x nl s
’ o g 0 '
Tggy (W) = 0, UE€EKt,

+ @, U€ (H(B) X L2(B)) \ K(t),

where K(t) = (U € HO(B) X LZ(B) ; U= 0 a.e. B\ Q(t)},

and ¢é(U) = wB(U) + 1 (U) for t > O.

K(t)

Then, we can consider the subdifferential operator awt of

wt and we have :

2

( i) DoY) (U € H (B) x L“(B) ul

2 1
Q(t)e (H"Q(t)y) n HO(Q(t)))

X (Hy(QCt)) n Hl(Q(t))). ul = 0}.

B-Q(t)

2

(f € H (B) x L (BY;:PQ(t) £ = AQCt) U]

(ii) Bwt(U)

Qct) Q!
where AQ(t)) = (-PO(Q(t))A,-(K/v)A).P(Q(t)) = (Po(g(t))’lQ(t))’
PO(Q(t)) is a projection LZ(Q(t)) -— HO(Q(t)).

Now we introduce an abstract heat convection equation

(AHC) :

du
dt

where F(t)U(t) = (PO(B)(u~V)u,(u-V)9).

(AHC) + awt(U) + F(HUCt) + M(HUt) 3 PBYf(t), t 2 0,

Mt Uty = (PO(B)((U'V)b + (b*V)u + RO)., (u'v)0 + (b-V)0),
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£(t) = (=b, - (b:V)b + Ab + a3g/v2 “R(B-k/V), (K/VIAB-(b-7)D).

Definition 1. Let U be a function [0,S] — HO(B) X LZ(B)
where S € (0,»). Then U is called a strong solution of (AHC) on
(0,81 if it satisfies :

( i) U € C(10,51 ; H_(B) x L®(B)) and dU/dt exists for a.e.

t € (0,S1].

(ii) UCt) E,D(awt) for a.e. t € [0,S] and there exists a

function G:10,S1 — H_(B)xLZ(B) such that G(t) € 80'(U(t))

for a.e. t € [0,S]

and

{8

—% + G(t) + F(HUt) + M(BHuct) = P(BY (L)
holds for a.e. t € [b.S].

Definition 2. A strong solution of (AHC) is called a
periodic strong solution (resp. a srong solution of the initial
value problem) if it satisfies the condition (9)(resp.(10))
stated below :

(9) UCt+T) = UCt) for t € [0, in H_(B) x L®(B),
(10) U0 = (&, B) in H (B x L) ,
where (a, h) € HO(Q(O)) x L2(Q(0)) and 3, K are extensions of

a, h to B with zero outside Q(t), respectively.

§3. Results.

We make some assumptions.

2

(A6) b € L0, : HZ(BY), b, € L™(0.» ; L2(B)),

e L0, = ; HZ(B)).

t
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Theorem. Suppose (AO) ~ (A6) are satisfied. Then we have
(i) For sufficiently small R = orgTodS/lcv. there exists a

periodic strong solution of (AHC) with period T.

(ii) Moreover, if uanw(O’m:Hz(B)). "bt“Lm(O,m:Lz(B))’

Kol 2 are sufficiently small and v is large

o«©
L (0,o;H"(B))
enough, then the periodic strong solution is unique.

(iii) Under the same conditions on b, bt' § and v, the periodic

strong solution Un(t) in (i) is stable, that is,

BU(t)-Un(t)"LZ(Q(t))XLZ(Q(t)) — 0 as t — o, where u(t)

is a strong solution of (AHC) with U(0) = Un(O) + U0 and

er HO(Q(O)) X LZ(Q(O)) is an arbitrarily given data.

§4. Some lemmas.

Lemma 3. There exists a positive cnnstaht C1 such that

t 2
(1) e ) 2 ¢ HUR" 2 o

1

]
O(B) X HO(B).

for every t € [0,S] and U € H

The next lemma is a version of Lemma 2.1 of Foias, Manley

and Temam [11].

LLemma 4. Let U = (u,0) be a strong solution of (AHC).

Then we have

,B,1/2 -2k t/v

(12) NectHh 2 < k/v + 18(0)lle

LT (B)
for t € (0,»). Here |B| is a volume of B.
To prove our theorem, the following lemma is useful.
Lemma 5.

(i) Let U = (u,08) be a strong solution of (AHC). Then, for any

d € (0,S), there exist positive constants ai(é) (i = 1,2,.3.
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independent of S, depending on b and 0, such that
(13) wt(U(t)) < (82(6)/6 + a3(6))exp a1(8) for any t € [8,S].
(ii) Furthermore, if U is a periodic strong solution with period
T, then the same estimate holds for all t € [0.T].
Here we give a sketch of proof of Lemma 5. Multiplying

(AHC) by G(t) and integrating on B, then we have

(14) a%wt(U(t)) + 16 1?
¢ cyrucoiZaucon aecnn®’2 . facouch G|
. t 1/2 , o gt
S HECORIGCOT + C IGO0 Wt + chotwat)).

where H'Il = l"Hl(B) % HI(B)‘
From this, we have

(15) a%wt(U(t)) + %ac(t)l2

¢ caucHiZetawaen? + cMet ity
2 t 2
v 2ct + cp etwety + 20802,

- - - a . a 2
where M;= ibl, b, + 20bH-Nbl, + UGN, e, « IR| and

el 5 = BElp= 0 12 0p)y
(Here we used (3.23) of Chap.IIl in Temam [81.)

On the other hand, multiplying (AHC) by U(t) and integrating

on B, then we get

a6 Srwcnr? « 2c 1ucn? ¢ alri?eprecon? « 2nm®se

where we used Lemma 1 and Lemma 2 with suitable €.

vThanks to Lemma 4, we get from (16)
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(a7 weor? ¢ e 2rtomn? + clri?zei i+ necoi?)

+ ufnz/cf)(l - e 20ty

Hence, we get an apriori estimate
2 - 2
(18) HUCL)HH < C0 + COHU(O)" ’

czIrlZ-1Ble® w2+ unnl )/ b

where C
0

>

and C0

1+ 2|R|2/C% i
Using thése Hnequalies (156), (18) and making use of the uniform

Gronwall inequality, we get (13) of Lemma 5, where

2
(2C2 + C3

-
81(6) + C6M1)6.

s c(c_+ cTHUOI®ra, (8)5
5 70 0 3

(19){ 82(8) 26Ifﬁi

33(6)

2

-1 , 2
2 (Co + COHU(O)“ )

+ a/cplrl?dBliEv? « nacon?y

Remark 1. When U is a periodic solution, we have

2

200 Boo8? ¢ IBIE/WE

21 1w ¢ ascalri?- s a2 ).

Lemma 6. For any U0 = (a,h) € HO(Q(O)) X LZ(Q(O)), there
exists a unique strong solution U of (AHC) on {0,S] with
uwo) = Uo' (See, [61]1.)

8§5. Proof of Theorem.

First we prove (i) of Theorem. Here we assume |R]| < 01/4‘
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Multiplying (AHC) by U(t), then we have

1 d 2 t
(22) 5 a—{'lU(t)' + 20 (UCt))

[[PaN

| (Ca*Mb, W] + [ (bDu,w)| + (RO, W] + [ (u-v0,0)]|
+ | (b-w8,0)] + |f(tH,uctn|

elvul? + [RI-N6H-Nul + € UVOU-Nvull + HE£CE)N- HU

HA

¢ 3ot x a4 el

where we used Lemma 1 with € = 1/8 and Lemma 2 with

1/2

g” = (1/8)(x/v) i no= C /42R|,

From (22), we get

d 2 2 2
(23) dtllU(t)l + 2C1NU(t)ﬂ < (2/C1)||f||°° 2

v
and we obtain

-2C. t

2C1hweonn? « aschiun? ,a-e*4h.

(24) TUCLHR? < e

Now we define a mapping vt as follows @

(25) T : H = H(Q0) x L2(Q(0)) — H,

(26) TU(O0) = U(T) in H.

Here we used QéO) = Q(T) and Lemma 6. Tt is continuous in H.
Moreover, t is compact in H, because TU(0) = U(T) is included

in a bounded set of H;(Q(O)) X Hé(Q(O)) by Lemma 5.

On the other hand, if we take- r > 0 such that (1/Cl)llflloo 9 < r.

then for U(O) with HUCO)H { r we have by (23)

-2C. T 2 2 -2C, T 2
e 1

27) HU(T)II2 < 1sr° + r“(l1-e ) =r° .

Therefore, tBr c Br’ where

B. = (& € H; holl,, ¢ r.

Hence, by Schander s fixed point theorem, there exists V0 € H
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such that tVO = Vo.

Next we prove (ii). Let Un be the periodic strong solution

in (i) and U, be any periodic strong solution. Put W = Un - Ul‘

1

then we have
1 d 2
(28) > dtHW(t)H + 20(W(t))

t /2

< Co0 (W(t))*tp(Un(t))l + CaNChIO (W)

for a.e. t € [0,T1].
Here N(t) = HVb(t)N + HvB(t)N + |R|. Noticing (ii) of Lemma 5.
(19), (20), (21) and using the assumptions of (ii) of Theorem,

1/2

then we see 2-C7¢t(Un(t)) - C8N(t) > 0 for t € [0,T]. Thus,

we can show the uniqueness of the periodic strong solution for
small data. We omit the proof of (iii).
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