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1 Introduction
In this talk, we study a close relationship between the phase transition of
the Ising model and fractal structure of Julia set associated with the Ising
model.

Phase transition is formulated as non-analyticity of some physical quan-
tities like free energy $\mathcal{F}$ as a function of some thermodynamical parameters
such as temperature. So it is important to know where $\mathcal{F}$ is analytic and how
$\mathcal{F}$ behaves near non-analytic (critical) points, because it determines the type
of the phase transition. To characerize the phase transition we inrtroduce
the following quantity. The critical exponent in the low temperature region
of order $l\in N$ is defined by

$\alpha^{(l)}\equiv\lim_{t\nearrow t_{C}}\frac{\log|\mathcal{F}^{(l)}(t)|}{-\log|t-t_{c}|}$

where $t_{c}$ is the critical temperature and $\mathcal{F}^{(l)}$ is the $l$ -th derivative of $\mathcal{F}$ .
On the other hand, we can consider a complex dynamical system associ-

ated with our model (called the renormalization group transformation). This
transformation is a map on parameter (temperature) space corresponding to
the “coarse grainning” of the model $[2,3]$ . Julia set of the renormalization
group reveals a certain similarity near $t_{c}$ .
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The purpose of this paper is to show a relationship between two theo-
ries, statistical mechanics and complex dynamical systems. Historically, [8]
made such a relationship for the first time. In [8], it was shown that all the
singularities of $\mathcal{F}$ lie on the Julia set of the renormalization group transfor-
mation. Our main results are more quantitative relationship between the
critical exponent and the “fractal dimension” at $t_{c}$ .

Theorem A The free energy can be represented as the logarithmic potential
of the maximal entropy measure $\mu$ of the renormalization group.

$F(t)=b \int_{J(f)}\log(t-z)d\mu(z)+C$

Using this representation, we can show the following.

Theorem $B$ Let $l$ be so large that $(f’(t_{c}))^{l}>2b$ , then we have

$\alpha^{(l)}=l-\frac{\log 2b}{\log f’(t_{c})}$

Moreover $\frac{\log 2b}{\log f(t_{c})}$ represents a similarity of $J(f)$ at $t_{c}$ .

Thus, Theorem $B$ says that the phase transition reflects the fractal struc-
ture of $J(f)$ .

2 Ising Model on Diamond-like Hierarchical
Lattices

For the study of phase transition, various models are considered. Especially,
exactly solvable models are deeply investigated. For example, two dimen-
sional Ising model with Onsager’s solution and Baxter’s six or eight vertex
models and so on.

But here we study another exactly solvable model, Ising model on diamond-
like hierarchical lattices. The diamond-like hierarchical lattices is the se-
quence of graphs $\{\Gamma_{n}\}$ defined as follows. For a fixed integer $b$ greater
than one, we shall define two lattices $\Gamma_{G}=\{B_{G}, V_{G}\}$ (generator) and $\Gamma_{0}=$
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$\{B_{0}, V_{0}\}$ (initial lattice) where $B_{*}$ denotes the set of all bonds of $\Gamma_{*}$ , and $V_{*}$

denotes the set of all vertices of $\Gamma_{*}$ . $\Gamma_{0}$ consists of two vertices and one bond
connecting them. To obtain $\Gamma_{G}$ , we insert $b$ inner vertices between the two
outer ones such that each bond connects an inner vertex and an outer one
(see Figure ). When $\Gamma_{n}$ is constructed, $\Gamma_{n+1}$ is obtained by replacing each
element of $B_{n}$ by $\Gamma_{G}$ . We call $F_{n}=\{B_{n}, V_{n}\}$ the diamond-like hierarchical
lattices $[6,7]$ . (See Figure 1 for the case $b=2$ ).

Bleher and Zalis [6] showed that the free energy on this lattices is discribed
as follows,

$\mathcal{F}(T)=-\frac{J}{2}-\frac{T}{2}\sum_{n=0}^{\infty}\frac{1}{(2b)^{n}}\log(1+t_{n}^{b})$

where

$\{\begin{array}{l}t_{0}=exp(\frac{2J}{bT})t_{n+1}=f(t_{n})f(t)=(1+t^{b})^{2}4t^{b}\end{array}$

The map $f$ is called Migdal-Kadanoff renormalization group transforma-
tion $[4,5]$ which is a strong tool to investigate the asymptotic behavior of
free energy near critical tempereture. The advantage of this model is that
the renormalization group transformation can be expressed explicitly and,
moreover, it turns out to b\’e a rational map.

In [1], T. D. Lee and C. N. Yang gave an idea for the study of the sin-
gularities of .free energy. Because free energy is defined as the logarithm of
partition function, the singularities of free energy appear at the zeros of par-
tition functions. But it is shown that the partition function is essentially
a polynomial of $t$ with positive coefficients. So the singularities never ap-
pear on the temperature interval $[0,1]$ (remark that by change of variable,
$t= \exp(-\frac{2J}{bT})$ , temperature interval $[0, \infty]$ is mapped onto $[0,1]$ ). Lee and
Yang proposed to extend the temperature $t$ to the complex plane. They
thought that, letting $narrow\infty$ , the zeros in the complex plane approach to
some points of $[0,1]$ , which would represent the phase transition point. Fol-
lowing this idea, we consider $\mathcal{F}$ on $C$ and $f$ as a dynamical system on $\hat{C}$ .
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3 Dynamics of the Renormalization Group

The theory of complex dynamical systems appearently developed after the
works of Douady, Hubbard and Sullivan. One of the main object of this
theory is to study invariant set called Julia set $J(f)$ on which the dynamics
of $f$ is “chaotic”. Figure 2 shows the Julia set for $b=2$ .

First we consider $f$ as a dynamical system on $[0,1]$ . Then,

Lemma 1 (Bleher-Zalis [6])

1. $t=0,1$ are super attractive fixed points of $f$ .
2. There exists a unique repelling fixed point $t_{c}$ in $(0,1)$ .

As explained in the previous section, we consider $\mathcal{F}$ as a function on $C$ ,
and $f$ as a dynamical system on $\hat{C}$ . Let $\Omega_{0}$ be the immediate attractive basin
of $0$ . Then, we can show the following.

Lemma 2 (Bleher-Lyubich [7])

1. $\Omega_{0}$ is a Jordan domain ($i.e$ . $\partial\Omega_{0}$ is a Jordan curve). Moreover, $\partial\Omega_{0}$ is
a quasi-circle ($i.e$ . the image of $S^{1}$ by a quasi-conformal map).

2. $f|_{\Omega_{0}}$ is conformally conjugated to the map

$z\mapsto z^{b}$ on $U=\{z\in C||z|<1\}$

(Let us denote the conjugate map by $\varphi.$)

Since $\Omega_{0}$ is Jordan, $\varphi$ can be extended to a homeomorphism from $\overline{\Omega}_{0}$ onto
U. (We denote the extended map by $\varphi$ again.)

From now on, we consider

$F(t)= \sum_{n=0}^{\infty}\frac{1}{(2b)^{n}}gof^{n}(t)$ , $g(s)=\log(1+s^{b})$ (3.1)

instead of $\mathcal{F}$ , where $f^{n}$ is the $n$-fold iterate of $f$ .

Lemma 3 (Bleher-Lyubich) $F$ is analytic on $\Omega_{0}$ , and $\partial\Omega_{0}$ is a natural
boundary of $F$ .
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From the physical point of view, we are interested in the behavior of $F^{(l)}$

(the l-th derivative of $F$ ) when $t$ approaches $\partial\Omega_{0}$ . The $\varphi^{-1}$-image of a family
of line segments $\{re^{i\theta}|0\leq r\leq 1\}$ in $\overline{U}$ are called geodesics in $\overline{\Omega}_{0}$ . Let $B_{\tau}$

denotes the geodesic ending at $\tau\in\partial\Omega_{0}$ (From the previous remark, there
is bijective correspondance between end points and geodesics.) Let $\mu_{0}$ be
the harmonic measure on $\partial\Omega_{0}$ , i.e. $\mu_{0}=(\varphi^{-1})_{*}\lambda$ , where $\lambda$ is the normalized
Lebesgue measure on $\partial U$ . For $t\in B_{\tau},$ $l(t)$ denotes the length of $B_{\tau}$ from $t$

to $\tau$ (in the Euclidian metric). Remark that the Julia set $J(f)$ is symmetric
with respect to the real axis, so $B_{t_{c}}=[0, t_{c}]\subset R$.

Definition 1 For $\tau\in\partial\Omega_{0}$ and $l\in N$ ,

$\alpha_{\tau}^{(l)}\equiv$
$\lim_{tarrow\tau_{\tau},t\in B}\frac{\log|\mathcal{F}^{(l)}(t)|}{-\log l(t)}$

We call it the critical exponent of order $l$ along $B_{\tau}$ . From the previous
remark, $\alpha_{t_{c}}^{(l)}=\alpha^{(l)}$ which was defined in the introduction. $\square$

In [7], Bleher and Lyubich proved the following.

Theorem (Bleher-Lyubich) Let $b>2$ . Then,

1. $F^{(2)}(t)$ is not continuous up to $\partial\Omega_{0}$ .

2. For $\mu_{0}$ -almost all $\tau\in\partial\Omega_{0}$

$\alpha_{\tau}^{(2)}=1-\frac{\log 2}{\log b}$

Here one question arises. Is this result valid for $t_{c}\in\partial\Omega_{0}$ ? Because,
physically, real critical exponent $\alpha_{t_{c}}^{(l)}$ is the most important. Theorem $B$ tells
us the answer of this question.

4 Properties of the Maximal Entropy Mea-
sure

Here we introduce a “natural” measure $\mu$ on $J(f)$ in order to analyse the
properties of the free energy near $\partial\Omega_{0}$ . This measure was, for the first time,
introduced by Brolin [10] for the polynomial case.
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First, it is not difficult to see that all the critical points of $f$ are eventually
mapped to the superstable fixed points $0$ or 1. So, the dynamics of $f$ on
$J(f)$ is expanding (i.e. there exists constants $C>0$ and $\lambda>1$ such that
$||df^{n}(z)||\geq C\cdot\lambda^{n}$ for all $n\geq 0$ , and all $z\in J(f))$ .

Thus, from $Bowen-Ruelle-Sinai’ s$ theory there exists a unique equilibrium
state $\mu$ satisfies the variational principle for potential $\rho\equiv 0$ ,

$P_{f}(0)=h_{\mu}(f)= \sup_{\nu\in M(f)}h_{\nu}(f)$

where $M(f)$ denotes all $f$-invariant probability measure on $J(f)$ . $P_{f}(0)$ is
just the topological entropy, so $\mu$ is called the maximal entropy measure.
This measure has many properties. Let $Exc(f)$ be the exceptional points of
$f$ . Remark that $\deg f=2b$ .

Proposition 1 ($Freire-Lopes-Ma\tilde{n}$\’e [11], Mane [12], Lyubich [13])

1. $h_{\mu}(f)=\log 2b$ .
2. $supp(\mu)=J(f)$ .

3. For all $a\in\hat{C}\backslash Exc(f)$ , let

$\mu_{n}\equiv\frac{1}{(2b)^{n}}\sum_{i=1}^{(2b)^{n}}\delta_{z_{i}^{(n)}(a)}$

where $\delta_{x}$ is the Dirac measure at $x$ and $\{z_{i}^{(n)}(a)\}_{i=1}^{2b}$ are the solutions

of $f^{n}(z)=a$ counting multiplicity. Then

$\mu_{n}arrow\mu$ weakly as $narrow\infty$

4.
$\mu(f(A))=(2b)\cdot\mu(A)$ (4.1)

for any Borel set A where $f|_{A}$ is injective. Conversely, the maximal
entropy measure is the unique f-invariant probability measure satisfies
the above equation.



7

5 Proofs of the Main Theorems

In this section we sketch the proofs of our theorems.

Proof of Theorem A.
Consider the functional equation

$E(t)= \frac{1}{2b}Eof(t)+g(t)$ (5.1)

It is easy to see that both expressions satisfy the above equation. So we must
claim the uniqueness of the continuous solution $E(t)$ of the above equation
satisfying $E(O)=0$ . Let $G(t)$ be the difference of the two expressions. Then
$G$ must satisfy

$\frac{1}{2b}Gof(t)-G(t)=0$ , $G(O)=0$ (5.2)

Assume $G(t_{0})\neq 0$ for some $t_{0}\in\Omega_{0}$ . Then, Using this equation inductively,
we get

$Gof^{n}(t_{0})=(2b)^{n}\cdot G(t_{0})$

Because $t_{0}\in\Omega_{0},$ $f^{n}(t_{0})$ goes to $0$ as $n$ increases. Thus by the continuity
of $G,$ $Gof^{n}(t_{0})arrow 0$ . But if we assume $G(t_{0})\neq 0$ for some $t_{0}\in\Omega_{0}$ , then
$(2b)^{n}\cdot G(t_{0})$ goes to infinity as $narrow\infty$ . This is a contradiction. $\square$

Remark 1 The functional equation often generates continuous but nowhere
differentiable functions including Takagi’s function and Weierstrass’s func-
tion. For details, see [14].

Next we establish the relationship between real critical exponent and the
maximal entropy measure, using the representation in Theorem A. Remark
that $f’(t_{c})>1$ .

Proof of Theorem B.
First remark that, in the integral representation, the integral near $t_{c}$ dom-
inates $F^{(l)}(t)$ . Let $r>0$ be small enough so that we can linearize $f(t)$ on
$B_{r}(t_{c})=\{z\in C||z-t_{c}|\leq r\}$ and fix it. Let $J_{r}\equiv J(f)\cap B_{r}(t_{c})$ , and
take arbitrary $p_{0}\in(0, t)\cap B_{r}(t_{c})$ . Define a sequence $p_{n}\in(p_{n-1}, t_{c})$ so that
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$p_{n-1}=f(p_{n})$ . Let $f^{-1}$ be the inverse branch on $J_{r}$ which fixes $t_{c}$ . Consider
the ratio,

$\frac{F^{(l)}(p_{n+1})}{F^{(l)}(p_{n})}=c_{l\int_{f^{-1}(J_{l})}\frac{d\mu(t)}{(t-p_{n+1})^{l}}+J_{J(f)\backslash f_{r}(J_{r})^{\frac{d\mu(t)}{\ovalbox{\tt\small REJECT}(t-p_{n+1})^{l}}}}}c^{r}\int_{J_{T}}\frac{d\mu(t)}{(t-p_{n})^{l}}+c^{l}c_{\iota\int_{J(f)\backslash J^{-1}}\frac{d\mu(t)}{(t-p_{n})^{l}}}$ (5.3)

Let $t’=f(t)$ . Then,

$\int_{f^{-1}(J_{r})}\frac{d\mu(t)}{(t-p_{n+1})^{l}}=\frac{1}{2b}\int_{J_{r}}\frac{d\mu(t’)}{(f^{-1}(t’)-f^{-1}(p_{n}))^{l}}$ (5.4)

From the definition of the derivative

$\frac{1}{f^{-1}(t’)-f^{-1}(p_{n})}\approx\frac{f’(t_{c})}{t’-p_{n}}$

So the ratio (5.3) goes to
$\frac{(f’(t_{c}))^{l}}{2b}$

as $n$ tends to infinity. Taking logarithms, we get

$\log F^{(l)}(p_{n+1})\approx n\log\frac{(f’(t_{c}))^{l}}{2b}+\log F^{(l)}(p_{0})$ . (5.5)

On the other hand, we have

$\log(t_{c}-p_{n+1})\approx\log(t_{c}-p_{0})-n\log f’(t_{c})$ (5.6)

From the equations (5.5) and (5.6), it is not difficult to deduce our statement
from this. $\square$

Remark 2 A similar equation has been already conjectured in [9]. Indeed,
we need not use the integral representation to calculate the critical exponent
itself.
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6 Local Similarity of $\mu$

What does $\log 2b/\log f’(t_{c})$ in Theorem $B$ mean? First, consider, for ex-
ample, the Sierpi\’{n}ski gasket. When we enlarge the size of the Sierpi\’{n}ski
gasket twice, the “area” (rigorously speaking, the Hausdorff measure) be-
comes three times. Thus, the similarity dimension of the Sierpi\’{n}ski gasket
equals to $\log 3/\log 2$ . This is the fundamental idea of similarity dimension.

In our case, if we linearize $f$ near $t_{c}$ , then the equation (4.1) becomes

$\mu(L(V))\approx(2b)\cdot\mu(V)$

where $L(t)\equiv f’(t_{c})\cdot(t-t_{c})+t_{c}$ is the linearization of $f$ , and $V$ is a neighbor-
hood of $t_{c}$ . See Figure 3 where we can see the fractal structure of $J(f)$ near
$t_{c}$ , and convince that the above equation is quite precise. This situation is
just the same as the case of the Sierpi\’{n}ski gasket. That is, when we enlarge
the size of $Vf’(t_{c})$-times, then the measure $\mu(V)$ becomes about $2b$ times.
So $\log 2b/\log f’(t_{c})$ is supposed to represent a similarity of $\mu$ near $t_{c}$ . Thus,
Theorem $B$ states that the critical exponent reflects the local similarity of
the maximal entropy measure.

Remark 3 The following remark is due to Dr. Kokubu on a connection
between the results of Bleher-Lyubich and the author.

If we rewrite the result of Bleher-Lyubich in our fashion, we get

$\alpha_{\tau}^{(2)}=2-\frac{\log 2b}{\log b}$

So in both cases the critical exponent shows the following form

$l- \frac{topologicalentropyoff}{Lyapunovexponentat\tau}$

Applying something like Pesin’s formula [15], we get

$\alpha_{\tau}^{(l)}=l$ –local dimension of the maximal entropy measure.
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