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ON THE RATE OF CONVERGENCE OF A SIMPLE MARKOV CHAIN ON A HALF-LINE

AKIO TANIKAWA (& JiB &)

Faculty of Technolofy, Kanazawa University (&R X - 1)

1. Introduction. Let {Xk} be a Markov chain on [0, «) defined by

(1.1) Xk = h(X + Y kK =1, 2,

k-1t i)
where h(z) 1is a continuous function on R1 which satisfies that
h(z) = 0 on (-», al], h(x) 1is strictly increasing on [a, «) for
some a 2 0 and that limwam h(z) = =. Here, {Yk} is a sequence
of independent and identically distributed random variables.  This
form of Markov chain has been considered as the model of dams and
storage systems (see, for example, Bather [1], Glynn [3], Moran [7]

and Prabhu [10]). As a typical example of (1.1), we have a simple

random walk on [0, =)

+

(1.2) Xk = (Xk_l + Yk) , k =1, 2,
where x5 = max(x,IO). We shall denote by Y the generic variable with
the distribution of any of the Yk and assume that E(|Y]) < =. In the

present paper, we consider sufficient conditions for (Harris) ergodicity
and various rates of convergence of the Markov chain {Xk} defined by
(1.1). In particular, we are mainly concerned with sub-geometric rate of
convergence results for various rate functions ¢ as in [13] and [15].

It is well known that finiteness of appropriate moments of
hitting times on small sets (e.g. relatively compact sets under
standard continuity conditions on the transition probabilities)
implies various kinds of ergodicity of Markov cﬁains (see Theorem 1
of [15] and also [8], [9]). Tweedie [15] presented convenient

criteria (see Theorem 3 of [{15]) which imply the finiteness of these
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moments, and applied'the criteria to the random walk (1.2) in order

to obtain several reasonable sufficient conditons for ergodicity and rate
of convergence results. Thorisson improved Tweedie's conditions for
sub-geometric rate of convergence of (1.2) in [13]. In the present

paper, we generalize their results to the Markov chain (1.1).

2. Preliminaries. We suppose that {Xk} is a temporally homogeneous

Markov chain on state space (S, #); the o-field # of subsets of §

is assumed to be countably generated. We write
(2.1) PX(a, M) = Px, € AlX, = o), T €S, Aeg
for the k-step transition probabilities of {Xk}. We assume that

{Xk} is ¢-irreducible; that is, for some measure ¢ on ¥, we
have Zk:l Pk(x, A) > 0 for every z € S and every A € # with
$(A) > 0. We also assume for convenience that {Xk} is aperiodic.
We define {Xk} to be (Harris) ergodic if, for some probability
measure AN on Z, and every I € S,
(2.2) 1P z, -) - nl — o, k — o,
where |l I denotes total variation of signed measures on Z. We
define {X;,} to be geometrically ergodic if there exists a p <1
such that
(2.3) o Kupk(z, -y - =l > o, K — o,
for every. x € S.
Let AO denote the class of sequences ¢:N — R+ which satisfy
(i) ¥ 1is non-decreasing, with V¥(j) =2 2 for all J > 0.
(ii) {log ¥(4)}/4 1s non-increasing and tends to 0 as Jj — o,
We denote by A the class of sequences ¥:N — R+ for which there

exists some . € AO such that

0



lim inf ll/(j)/xlfo(j) > 0, lim sup \If(j)/\lfo(,f)«< o,

g g

Examples of sequences in A are
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(2.4) ¥(4) = i%(log 7)) Pexp(vi®)
for 0 < 8 <1 and either y >0 or v =0 and « > 0. See
details on the classes AO and- A in [5], [9], [12] and [15]. For

v € A, we call {Xk} ergodic of order ¢ if
(2.5) v Pk, -y - al — o, K — o,
for every & € § (see [15] and also [9]).

Let A*(z) (z = 0) be the inverse function of the strictly
increasing function h(z) on [a, «). We denote the hitting time
on a set B by T = inf(k > 1: Xk € B), and write E$ apd Px
respectively for expectation and probability conditional on XO = T.
3. Ergodicity and geometric ergodicity. First of all, we employ the

following standard assumption (of'negative drift) for ergodicity.
Assumption 1. E(Y) < 0.

We also employ the following assumption, which is obviously

satisfied by the random walk (1.2). Under both assumptions, we

obtain ergodicity of the Markov chain (1;1) as follows.

Assumption 2. There exists q, > 0 such that

(3.1) z P(Y 2 -z) < R (2), z > q,

Theorem 1. Suppose that Assumption ! holds.

(1) If Assumpiion 2 also holds, then {Xk} is ergodic.
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(2) If it also holds that

(3.2) 1lim sup <z P(Y = —x)/h*(w) < 1,

I

then {Xk} is geometrically ergodic.

Coroilafy 1. Suppose that Assumption ! holds.

(1) If there ezists 9 > 0 such that
(3.3) Y (z) > z, Tz q, [i.e., h(z) < z, z 2 h*(qo)),
then {Xk} is ergodic.

(2) If it holds that

(3.4) 1lim sup x/h*(x) < 1 (i.e., lim sup h(xz)/z < 1 ),
I I®
then {Xk} is geomelrically ergodie.

Remark 1. (1) It is easy to see that (3.1) implies

(3.5) 1lim sup z/h(z) < 1 (ife., lim sup hAh(z)/z < 1 ).

Lo I
Hence, there exists r = r(u) € (0, 1) such that

(3.8) h*(z) = rz, T > u, (i.e., R(z) < r 1z, z > h*(u)),
and 1imu%mr(u) = 1. (2) It will be ssen that (3.5) is not a sufficient
condition for (Harris) ergodicity under Assumption 1 (see Example 2 in

Section 4).

Example 1. Let A"(z) and P(Y < -z) have the expressions
(3.7) R*(z) = z - z % (), T 2 q,

(3.8) P(y < -x) x_ﬁn(w), T 2z q,

1}

respectively, where g € (0, qo), n(z) 2 0 and n(x) satisfies
“ -8

(3.9) T n(z)de < e,
q

We also assume that £(x) and n(x) are bounded or slowly varying
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functions. Then, we have $§ 2 1 due to (3.9). In this case, (3.1) is
equivalent to
% (z) < 2278, T 2 q,
Hence, (3.1) holds if either of the following conditions holds;
(i) o > 8-1,

(ii) o = -1 and there exists g' > 0 such that £¢(z) < n(x)

for any < > q'.

Remark 2. The integrability condition (3.9) is equivalent to

E[(|Y|-I(Y < 0)] < », where [(A) denotes the indicator function of a

set A.
We put
(3.10) R*(z) = = - d(z).

Then, due to (3.5), we immediately obtain the following lemma, which

will be necessary in Section 4.
Lemma 1. [{ holds that 1lim sup,. d(z)/z < 0.

Under Assumption 1, we can obtain the following well known criterion

for geometric ergodicity (see [8] and [15]).

Theorem 2. Suppose that Assumption ! holds. If there exists s > 0

such that  Elexp(sY)] < «, then {Xk} is geometrically ergodic.

4. Ergodicity of order ¢. In this section, we obtain the main result
concerning ergodicity of order ¢ by making use of Tweedie-Thorisson's

method. First of all, we need to introduce several definitions due
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to Thorisson [13].
The functions ¢¥:{0, @] — [0, «] considered below are

measurable, locally bounded and ¢(») = o (i.e., limmqu(x) = @),
: T
Let ¥ be defined by V¥(z) = f v(y)dy. Two functions ¢ and 0
0

are of the same order if

lim suptﬂmW(t)/O(t) < o and 1lim suptqme(ﬁ)/W(t) < ®,
This implies that E[¥(Y)] < « if and only if E[8(Y)] < « for any
nonnegative random variable Y.

Let VY be the class of all concave non-decreasing ¢ with

0
¥(0) = 0 ; ®, the class of all convex ¥ satisfying ¥(2z) < c¥(x)
for some ¢ < and ¥ = § where 6(0) =0 and 6(g) T » as <z -
® | Throughout the paper, let ¢ be a function of the same order

as T — wnwo(m) where 7m 1is a nonnegative integer and @0 € WO
In this case, we write ¢(z) = xnwo(m). If we define ¥

ively b = @ ,
recursively by wJ wJ~1
order as @, (see Lemma 1(b) of [13]).

J 21, then ¢ 1is also of the same

-‘Under Assumptions 1 and 2, we shall show as follows that {Xk}
is ergodic of order ¢ if E[G(Y+)] < o and some inequalities on

R*(z) and the tail probability of Y-I(Y < 0) hold (see Theorem 3).

Lemma 2. Suppose that Assumption ! holds. If ¢ € A0 s

ElY ¢ (Y] < =,

(4.1) F(z)P(Y > -z) < ¥(h"(z)), z>q',

(4.2) V(R (2)) < cpu(a), zz2q,

and

(4.3) E[V¥(h (t[o, q.]))] < clw(h (z)), z=2q'

hold for some constants, q' (= qo), Cy > 0 and ci > 0, then
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(4.4)  EFGR (v w1 < e, (h"(2)

[0'

holds for some comnstants, q" (= q') and ¢

5 > 0, and all large

enough .

Proposition 1. Suppose that Assumptions ! and 2 hold. Suppose
also that there exist q' (2 q;) and T (> 1) such that
(4.5) R*(z) < Tz, T =2q', (i.e., h(z) > /7, T > h*(q')].
If E[@(Y)] <=, ¢z) =~ xnwo(m) and
(4.86) G (2)P(Y 2 -z) < ¢, (R (), t>q', 4=0,1, ..., n-1
hold, then there ezxist positive constants q" (2 q') and c¢ such
that
(4.7) ELlo(h"(t g cn))] < co(h” (@)

for all large enough =x.

Theorem 3. Suppose that Assumptions ! and 2 hold. If E[@(r")]
<, 99 and for some q' (= q,)
(4.8) G, (@IP(Y 2 -z) <G (R (2)), t2q, j=0,1, ..., n

hold, then there exists q" (= q') such that

(4.9) Ex[w(t[o’ q"])] < @
for all large enough x. Hence, {Xk} is ergodic Qf order ¢.
We now turn to sufficient conditions for (4.8). By virtue of

Theorem 3, we immediately have the following corollary, which is a
simple extension of Theorem 5 of [13] (from the random walk (1.2) to

the Markov chain (1.1)).

Corollary 2. Suppose that Assumptions ! and 2 hold. If E[G(Y+)]

< @, @ x @, and (3.3) hold, then {X;} is ergodic of order ¢.
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From now on, we investigate sufficient conditions for (4.8)
when (3.3)vdoes not hold.

Recall that h*(z) is written as h'(z) = z - dtz) (i.e.,
(3.10)) . Since we are interested in the case where the inequality

(3.3) fails to hold, we assume

(4.10) d(z) =20, Tz =2q', (i.é., h*(m) < z, z 2 q').
for some q' > 0. Then, it follows from Lemma 1 that
-(4.11) limmﬂmd(m)/x = 0.

We now obtain a criterion for (4.8) provided that ® is a

regularly varying function when the innequality (4.10) holds.

Corollary 3. Suppose that Assumptions ! and 2 hold. Let R (x)
has the form (3.10) and d(z) satisfy (4.10). If ¢y €¥,NnR, (02>
0), éwn , E[@(r")] < = and
(4.12) P(Y 2 -z) < {1+ (0 +mn+ efd(w)/x}_l, T 2q

for éome constants q (= gq) and € > 0, then {Xk} is ergodic of
order ¢. Here, RO denotes the class of regularly varying functions

with index o.

Remark 3. It is obvious to observe that the inequality (4.12) is

implied by the inequality

Q2

(4.13) P(Y4< -z) 2 (6 +n + g)d(z)/x, z >

for some constants € > 0 and q (= q).

Example 1. Let h*(x) and P(Y < -z) have the same forms as in
Example 1, and suppose QO € Ro (c =2 0) and E[&(Y+)] < o, Since

d(z) = m_aﬁ(x), (4.13) is equivalent to
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1y (z), > 3.

x_Bn(x) > (6 +1n + 8)x
Hence, (4.13) holds if either of the following conditions holds:
(i) o >f8 -1

$£ -1 and 1lim sup E(z)/n(z) = 0.

2>

(ii) o

Example 2. Let h*(m) and P(Y < -z) have the same forms as in

Example 1 and suppose that o =0 and

(4.14) [E(Y)] + & < &(z) < K, z=2q

for some positive constants g, K and gq. If 8 > 1, then {Xk} is
null (i.e., nonergodic). . If B =1 and n(zx) = (log x)—y (v > 1),
then {Xk} is also null. These results can be proved by verifying all

the conditions of Theorem 9.1(ii) of [14].

Remark 4. 1In view of Example 2, we obtain that (3.5) besides

Assumption 1 is not a sufficient condition for ergodicity.
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