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Approximate-Weight-Splitting Algorithm for
a Minimum Common Base of a Pair of Matroids

東京工業大学 繁野麻衣子 (Maiko SHIGENO)
東京大学 岩田 覚 (Satoru IWATA)

Abstract: This paper deals with the problem of finding a minimum-weight
common base of a pair of matroids $M_{1}$ and $M_{2}$ both coupled with a weight
vector $w$ . In each iteration, the approximate-weight-splitting algorithm com-
putes minimum-weight bases $B_{1}$ of $M_{1}$ with a weight vector $\tau\iota$ and $B_{2}$

of $M_{2}$ with a weight vector $v$ , where $u+v$ is approximately equal to $w$ ,
and then updates the split weight vectors $u$ and $v$ unless $B_{1}=B_{2}$ . The
algorithm attains an approximately minimum-weight common base $B_{1}=B_{2}$ in
pseudo-polynomial iterations. Incorporating cost scaling, we improve the algo-
rithm to run in weakly-polynomial time $0((f+n)nr\log(rW))$ . Here $n$ is the
cardinality of the ground set, $r$ is the rank of both matroids, $W$ is a maximum
absolute value of the weights and $f$ is the time needed to find a circuit or a
cocircuit in a given subset.

Keywords: combinatorial optimization, matroid intersection, auction $al$go-
rithm, cost scaling

1 Introduction

Given a pair of matroids $M_{1}$ and $M_{2}$ on the same ground set coupled with a weight
vector $w$ , find a common base of minimum total weight. This problem, which is re-
ferred to as the minimum common base problem, is equivalent to the weighted matroid
intersection problem or the independent assignment problem which has been exten-
sively studied by many researchers. See the papers J. Edmonds $[5, 6]$ , E. L. Lawler [11],
M. Iri and N. Tomizawa [10], S. Fujishige [8], A. Frank [7], C. Brezovec, G. Cornu\’ejols
and F. Glover [4] and so on. Most of the algorithms studied there are based on the
idea of the “auxiliary network” (or border graph) and repeated applications of efficient
network. algorithms.

In this paper, we propose a different kind of algorithm for the minimum common
base problem. The algorithm works by splitting the weights of the elements and adjust-
ing the split weights to get an approximately optimal common base. In each iteration,
our algorithm computes minimum-weight bases $B_{1}$ of $M_{1}$

)
with a weight vector $u$

and $B_{2}$ of $M_{2}$ with a weight vector $v$ , where $u+v$ is approximately equal to
$w$ , and then updates the split weight vectors $u$ and $v$ unless $B_{1}=B_{2}$ . The algo-
rithm attains an approximately optimal common base $B_{1}=B_{2}$ in pseudo-polynomial
iterations.

Among previously known algorithms, the present algorithm is similar to that of
A. Frank [7] and can be interpreted as an approximate version of his algorithm. Hence
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it is called an approximate-weight-splitting algorithm. On the other hand, it is closely
related to the auction algorithm proposed by D. P. Bertsekas [1] for the assignment
problem, which is a special case of the minimum common base problem (see Remark
1 in Section 3 for the relation).

Although the original auction algorithm has pseudo-polynomial time complexity,
it has been improved to run in polynomial time with a cost scaling technique by
D. P. Bertsekas and J. Eckstein [3] (see also [2]). Analogously, we will improve our
approximate-weight-splitting algorithm for the minimum common base problem to run
in polynomial time by a cost scaling technique. The time complexity of our algorithm
is $O((f+n)nr\log(rW))$ , where $n$ is the cardinality of the ground set, $r$ is the rank
of both matroids, $W$ is a maximum absolute value of the weight of an element and
$f$ is the time needed to find a circuit or a cocircuit in a given subset.

The outline of this paper is as follows. Section 2 provides preliminaries of matroid
theory and defines the minimum common base problem. In Section 3, we propose a
naive approximate-weight-splitting algorithm and discuss its correctness and finiteness.
Section 4 is devoted to improvements with respect to the time complexity.

2 Preliminaries

In this section, we recapitulate several basic concepts of matroid theory and formu-
late the minimum common base problem.

Let $E$ be a finite set and $\mathcal{B}$ a nonempty family of subsets of $E$ . Then
$M=(E, B)$ is said to be a matroid, if for any $B_{1},$ $B_{2}\in B$ and $e_{1}\in B_{1}\backslash B_{2}$ , there
exists $e_{2}\in B_{2}\backslash B_{1}$ such that $(B_{1}\cup\{e_{2}\})\backslash \{e_{1}\}\in \mathcal{B}$ . A member of $\mathcal{B}$ is called a
base of $M$. All bases of a matroid have the same cardinality, which is the rank of the
matroid.

A minimal subset of $E$ that is not a subset of any base is called a circuit of $M$.
For any $B\in \mathcal{B}$ and $e\in E\backslash B$ , there exists a unique circuit $C(B|e)$ of $M$ such
that $e\in C(B|e)\subseteq B\cup\{e\}$ . This circuit $C(B|e)$ is called the fundamental circuit of
$e$ in the base $B$ . A minimal subset of $E$ that has nonempty intersection with every
base of $M$ is called a cocircuit of $M$. If $B$ is a base of $M$ and $e\in B$ , there exists
a unique cocircuit $C^{*}(B|e)$ of $M$ such that $e\in C^{*}(B|e)\subseteq(E\backslash B)\cup\{e\}$ . We call
$C^{*}(B|e)$ the fundamental cocircuit of $e$ with respect to the base $B$ .

Let $w$ be a rational weight vector indexed by $E$ . The weight of a subset $F\subseteq E$

is defined by $w(F)= \sum_{e\in F}w(e)$ . Given a matroid $M=(E, \mathcal{B})$ and a weight vector

$w\in Q^{E}$ , we say that $B\in \mathcal{B}$ is a w-minimum base of $M$ if $w(B)\leq w(B’)$ for
every $B’\in \mathcal{B}$ . It is well known that a w-minimum base may be found by the greedy
algorithm, which is based on the following characterization of w-minimum bases.

Lemma 1. Let $M=(E,\mathcal{B})$ be a matroid an$dw\in\dot{Q}^{E}$ a weight vector. For a base
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$B$ of $M$, the following statements are equivalent:
(1) $B$ is a w-minimum $base$;
(2) $e\in E\backslash B$ implies $w(e)\cdot\geq w(e’)$ for all $e’\in C(B|e)$ ;
(3) $e\in B$ implies $w(e)\leq w(e’)$ for all $e’\in C^{*}(B|e)$ .

We now define the minimum common base problem which we treat in this paper.
Let $M_{1}=(E, \mathcal{B}_{1})$ and $M_{2}=(E, B_{2})$ be a pair of matroids on the common ground
set $E$ with base families $B_{1}$ and $\mathcal{B}_{2}$ . A subset $B\subseteq E$ which belongs to both $\mathcal{B}_{1}$

and $\mathcal{B}_{2}$ is said to be a common base of the matroids $M_{1}$ and $M_{2}$ . Given a weight
vector $w\in Q^{E}$ , the minimum common base problem is to find a common base $B$

such that $w(B)\leq w(B’)$ for every $B’\in \mathcal{B}_{1}\cap \mathcal{B}_{2}$ . The following rather obvious fact
gives a basic idea of our algorithm.

Lemma 2. Let $M_{1}=(E,\mathcal{B}_{1})$ and $M_{2}=(E, \mathcal{B}_{2})$ be matroids and $w\in Q^{E}$ a
weight vector. If $u,$ $v$ are weight vectors satisfying $u+v=w$ and $B\in \mathcal{B}_{1}\cap \mathcal{B}_{2}$ is
a u-minimum base of $M_{1}$ and a v-minimum base of $M_{2}$ at the $same$ time, then $B$

$is$ a minimum common \’oase with respect to $w$ .

Throughout this paper, we assume that the weight vector $w$ is integral and there
exists at least one common base of the matroids $M_{1}$ and $M_{2}$ . We denote the
cardinality of the ground set and the rank of both matroids by $n$ and $r,$

$respec\grave{t}ively$ .

3. The Approximate-Weight-Splitting Algorithm

In this section, we propose an algorithm for the minimum common base problem.
Suppose that the weight vector $w$ is split as $w=u+v$ . The outline of our

algorithm is described below. Set $\overline{u}=u$ and $\overline{v}=v$ . A ii-minimum base $B_{1}$ of the
matroid $M_{1}$ and a $\overline{v}$-minimum base $B_{2}$ of the matroid $M_{2}$ is obtained by the greedy
algorithm. If $B_{1}$ and $B_{2}$ coincide with each other, $B_{1}(=B_{2})$ is a desired minimum
common base. Otherwise, our algorithm modifies the two weight vectors tt and $\overline{v}$

in an appropriate manner and maintains a pair of minimum bases with respect to the
modified weight vectors. We repeat this process until the two minimum bases coincide.
The weight vectors ii and $\overline{v}$ are modified in one component by a given constant
$\epsilon(>0)$ so that the intersection of the two minimum bases may be extended. Note
that it is not difficult to update the minimum bases of the matroids with respect to the
modified weight vectors by finding a fundamental circuit or a fundamental cocircuit.

We denote by greedy$(E, \mathcal{B}, w)$ a function which finds a $w^{)}$-ninimum base of the
matroid $M=(E, \mathcal{B})$ . Let $C_{1^{*}}(B|e)$ be the fundamental cocircuit with respect to
$B\in \mathcal{B}_{1}$ and $e\in B$ in the matroid $M_{1}$ , and $C_{2}(B|e)$ the fundamental circuit with
respect to $B\in B_{2}$ and $e\in E\backslash B$ in the matroid $M_{2}$ . An artificial vector $p\in Q^{E}$

is introduced for the sake of analysis. The approximate-weight-splitting algorithm for
the minimum common base problem is as follows.
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Algorithm approximate-weight-splitting
input: a pair of matroids $M_{1}=(E, \mathcal{B}_{1})$ and $M_{2}=(E, \mathcal{B}_{2})$ ,

split weight vectors $u,v\in Q^{E}$ such that $u+v=w$ and a constant $\epsilon(>0)$

$1$ : begin
2: $\overline{u}$ $:=u$ , 可「: $=v,$ $p$ $:=0$ ;
3: $B_{1}arrow greedy(E,\mathcal{B}_{1},\overline{u})$ ;
4: $p(e)$ $:=p(e)+\epsilon$ for all $e\in B_{1}$ ;
5: $B_{2}arrow greedy(E,\mathcal{B}_{2},\overline{v})$ ;
6: while $\exists e^{-}\in B_{1}\backslash B_{2}$ do
7: begin
8: $\overline{u}(e^{-})$ $:=\overline{u}(e^{-})+\epsilon$ ;
9: $e^{+} arrow\arg\min\{\overline{u}(e)|e\in C_{1}^{*}(B_{1}|e^{-})\}$ ;

10: $B_{1}arrow(B_{1}\backslash \{e^{-}\})\cup\{e^{+}\}$ ;
11: $p(e^{+})$ $:=p(e^{+})+\epsilon$ ;
12: if $e^{+}\not\in B_{2}$ then
13: begin
14: $\overline{v}(e^{+}):=\overline{v}(e^{+})-\epsilon$ ;
15: $e’ arrow\arg\max\{\overline{v}(e)|e\in C_{2}(B_{2}|e^{+})\}$ ;
16: $B_{2}arrow(B_{2}\cup\{e^{+}\})\backslash \{e’\}$

17: end
18: end;
19: output $B_{1}(=B_{2})$ as a common base $B$

20: end.

Observing the approximate-weight-splitting algorithm above, we see the following
properties.

Observation 3. The $su$ bsets $B_{1}$ and $B_{2}$ are a u-minimum $base$ and a v-minimum
base, respectively, at the end of each iteration as well as right after line 11.

Observation 4. No element enters $B_{2}\backslash B_{1}$ during an$y$ iteration. As a consequence,
$it$ always Aolds that $p(B_{2}\backslash B_{1})=0$ .

Observation 5. At the end of each iteration of the approximate-weight-splitting al-
gorithm, the following conditions are satisfied:

$u(e)+p(e)=\overline{u}(e)+\epsilon$ , $\forall e\in B_{1}$ , (31)
$u(e)+p(e)=\overline{u}(e)$ , $\forall e\in E\backslash B_{1}$ , (32)

$\overline{v}(e)-\epsilon\leq v(e)-p(e)\leq\overline{v}(e)_{-}\forall e\in E$ . (3.3)

Observation 5 implies that the following inequalities hold at the end of $ea$ch itera-
tion.

$w(e)-\epsilon\leq\overline{u}(e)+\overline{v}(e)\leq w(e)+\epsilon,$ $\forall e\in E$ . (3.4)

The inequalities (3.4) are also satisfied right after line 11, which is trivial for an element
except for $e^{+}$ . Since the element $e^{+}$ satisfies the condition (3.1) and

$\overline{v}(e^{+})-2\epsilon\leq v(e^{+})-p(e^{+})\leq\overline{v}(e^{+})-\epsilon$
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right after line 11, the inequalities (3.4) also hold for the element $e^{+}$ .
We now discuss an error bound of a common base obtained by the approximate-

weight-splitting algorithm. Let Bopt be a minimum common base with respect to the
weight $w(=u+v)$ .

Lemma 6. Assume that the approximate-weight-splitting algorithm $I_{J}as$ terminated
with a common $b$as$e$ B. Then

$w(B)\leq w(B_{opt})+2\epsilon r$ .

Proof. It follows from the inequalities (3.4) and Observation 3 that

$w(B)$ $\leq$ $\overline{u}(B)+\overline{v}(B)+\epsilon r\leq\overline{u}(B_{opt})+\overline{v}(B_{opt})+\epsilon r\leq w(B_{opt}).+2\epsilon r$ . I

Since the weight vector $w$ is assumed to be integral, Lemma 6 implies that the
approximate-weight-splitting algorithm finds a minimum common base if $\epsilon<1/(2r)$ .

We show the number of iterations of the approximate-weight-splitting algorithm in
the worst case.

Lemma 7. Suppos$eB_{u}$ is a u-minimum base of the matroid $M_{1}$ and $B_{v}$ is a v-
minimum base of the matroid $M_{2}$ . Then the number of iteration$s$ of the approximate-

weight-splitting algorithm is less than $n L\frac{w(B_{opt})-(u(B_{u})+v(B_{v}))}{\epsilon}\rfloor+2nr$ .

Proof. Since the value of $p(E)$ increases exactly by $\epsilon$ in every iteration, we will
show an upper bound of $p(E)$ .

Let us check the value of $p(e^{+})$ right after line 11. If $e^{+}\in B_{2}$ , then $e^{+}\neq e^{-}$

and $p(e^{+})=\epsilon$ . Otherwise,

$p(e^{+})\leq p(B_{1}\backslash B_{2})=p(B_{1})-p(B_{2})+p(B_{2}\backslash B_{1})=p(B_{1})-p(B_{2})$ .

From Qbservation 3 and inequalities $(3.1)-(3.4)$ , we have

$p(B_{1})-p(B_{2})$ $\leq\overline{u}(B_{1})+\epsilon r-u(B_{1})+\overline{v}(B_{2})-v(B_{2})$

$\leq\overline{u}(B_{opt})+\overline{v}(B_{opt})-u(B_{u})-v(B_{v})+\epsilon r$

$\leq$ $w$ ( $B$
。$p\iota$ ) $-u(B_{u})-v(B_{v})+2\epsilon r$ .

Hence the number of iterations in which the same element becomes $e^{+}$ is at most
$\lfloor\{w(B_{opt})-(u(B_{u})+v(B_{v}))\}/\epsilon\rfloor+2r$, and the total number of iterations is less than
$n\lfloor\{w(B_{opt})-(u(B_{u})+v(B_{v}))\}/\epsilon\rfloor+2nr$ . $1$

If we put $W= \max_{e\in E}|w(e)|$ , then Lemmas 6 and 7 imply the following corollary.



79

Corollary 8. If $u=w,$ $v=0$ an$d \epsilon=\frac{1}{3r}$ , the approximate-weight-splitting
algorithm terminates within $n(6r^{2}W+2r)$ iteration$s$ and fin$ds$ a minimum common
base.

Remark 1. Let us mention now the relation between our approximate-weight-splitting
algorithm and the auction algorithm for the assignment problem originally proposed
by D. P. Bertsekas [1]. It $1_{J}as$ been shown by T. Matsui an $d$ K. Shibata [12] that
the auction algorithm still works for a minimum common $base$ problem in which one
of the matroids is a partition matroid such as the minimum arborescence problem.
A minimum common base problem with $M_{1}$ and $M_{2}$ can be reduced to another
minimum common base problem with a partition matroid and $M_{1}\oplus M_{2^{*}}$ , i.e., the
direct sum of $M_{1}$ an $d$ the dual of $M_{2}$ , which $fact$ leads us to an auction-type
algorithm essentially tantamount to th $e$ approximate-weight-splitting algorithm.

4 Scaling Approach

As we have seen in Section 3, the error bound and the number of iterations of
the approximate-weight-splitting algorithm depend on the value of $\epsilon$ . For sufficiently
small $\epsilon$ , the algorithm obtains a minimum common base, however the number of
iterations becomes large. The number of iterations also depends on the initial value
of the split weight vectors $u$ and $v$ . If it starts with split weight vectors close to
the dし esired ones, we might expect that the number of iterations to find $a$ minimum
common base will be relatively small.

The observations in the preceding paragraph suggest an approach called scaling,
which has been extensively used to derive polynomial time algorithms for combinatorial
optimization problems. In this case, we employ cost scaling which is often called $\epsilon-$

scaling. Our scaling algorithm starts with a large value of $\epsilon$ which is given by $\epsilon_{0}$ and
successively reduces 6 up to an ultimate value $\mu$ . The scaling algorithm performs
a number of scaling phases. Each scaling phase reduces the value of $\epsilon$ and calls
the approximate-weight-splitting algorithm in which the initial split weight vectors are
modified by the artificial vector $p$ obtained at the end-of the last scaling phase. The
scaling algorithm is given below.
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Algorithm scaling
input: a pair of matroids $M_{1}=(E,\mathcal{B}_{1})$ and $M_{2}=(E, \mathcal{B}_{2})$ , a weight vector $w\in Z^{E}$ ,

an initial value $\epsilon_{0}(>0)$ and an ultimate value $\mu(>0)$

begin
$\epsilon;=\epsilon_{0},$ $u$ $:=w,$ $v$ $:=0,p$ $:=0$ ;
while $\epsilon\geq\mu$ do
begin

$\epsilon:=\epsilon/2$ ;
approximate-weight-splitting$(u,v,\epsilon;p, B)$ ;
$u$ $:=u+p,$ $v$ $:=v-p$

end;
output a common base $B$

end.

In the above algorithm, (. ; ) designates that the left arguments are inputs and the
right arguments are outputs of the subprocedure.

Let $u^{(k)},$ $v^{(k)}$ and $\epsilon^{(k)}$ be inputs of the approximate-weight-splitting algorithm
of the k-th scaling phase. Obviously, $u^{(k)}+v^{(k)}=w$ . Assume that the approximate-
weight-splitting algorithm of the k-th scaling phase has terminated with a common
base $B^{(k)}$ . Then we have $w(B^{(k)})\leq w(B_{opt})+2\epsilon^{(k)}r$ , which may be proved in the
same way as the proof of Lemma 6. (Recall that $B_{opt}$ denotes a minimum common
base.) From the assumption that $w$ is integral, the scaling algorithm finds a minimum
common base, if we set $\mu=1/(2r)$ .

We now analyze the complexity of the scaling algorithm. Suppose that $\epsilon_{0}=W$

Clearly, the scaling algorithm executes $\lfloor\log_{2}(W/\mu)\rfloor+1$ scaling phases. We compute
the number of iterations of the approximate-weight-splitting algorithm of each scaling
phase.

Lemma 9. The approximate-weight-splitting algorithm of the k-th scaling $phase$ ter-
minates within $6nr$ iterations, provided that $\epsilon_{0}=W$

Proof. Let $B_{u}^{(k)}$ and $B_{v}^{(k)}$ be a $u^{(k)}$ -minimum base of $M_{1}$ and a $v^{(k)}$ -minimum
base of $M_{2}$ , respectively.

Since $u^{(1)}=w$ and $v^{(1)}=0$ , we have $w(B_{opt})-(u^{(1)}(B_{u}^{(1)})+v^{\langle 1)}(B_{v}^{\langle 1)}))\leq 2rW$.
From Lemma 7 and $\epsilon^{(1)}=W/2$ , the number of iterations of the approximate-weight-

splitting algorithm at the first scaling phase is less than $n L\frac{2rW}{W/2}\rfloor+2nr=6nr$ .
. Consider the k-th scaling phase where $k\geq 2$ . We denote a common base obtained

at the end of the k-th scaling phase by $B^{(k)}$ , and modified weight vectors and the
artificial vector at the end of the approximate-weight-splitting algorithm of the k-th
scaling phase by $\overline{u}^{(k)},\overline{v}^{(k)}$ and $p^{(k)}$ . From Observation 3 and the inequalities $(3.1)-$

(3.4), we have

$w(B_{opt})$ $\leq$ $w(B^{(k-1)})$
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$\leq$ $\overline{u}^{(k-1)}(B^{(k-1)})+\overline{v}^{(k-1)}(B^{(k-1)})+\epsilon^{\langle k-1)}r$,
$u^{(k)}(B_{u}^{\langle k)})+v^{\langle k)}(B_{v}^{(k)})$ $=$ $u^{(k-1)}(B_{u}^{(k)})+p^{(k-1)}(B_{u}^{(k)})+v^{(k-1)}(B_{v}^{(k)})-p^{(k-1)}(B_{v}^{(k)})$

$\geq$ $\overline{u}^{(k-1)}(B_{u}^{(k)})+\overline{v}^{(k-1)}(B_{v}^{\langle k)})-\epsilon^{(k-1)}r$

$\geq$ $\overline{u}^{(k-1)}(B^{(k-1)})+\overline{v}^{(k-1)}(B^{(k-1)})-\epsilon^{(k-1)}r$.

Hence it follows from Lemma 7 and $\epsilon^{(k-1)}=2\epsilon^{(k)}$ that the number of iterations of
the approximate-weight-splitting algorithm at the k-th scaling phase $(k\geq 2)$ is less
than $n\lfloor(4\epsilon^{\langle k)}r)/(\epsilon^{\langle k)})\rfloor+2nr=6nr$. I

The overall time complexity of the scaling algorithm is as follows. The number of
executions of the approximate-weight-splitting algorithm is $O(\log(W/\mu))$ , and each
approximate-weight-splitting algorithm has $0(nr)$ iterations. We assume that for
any subset $F\subseteq E$ we can find in $F$, if there is one, a cocircuit of $M_{1}$ in $f_{1^{*}}$

time, and a circuit of $M_{2}$ in $f_{2}$ time. We find a u-minimum base of $M_{1}$ in
$0(n\log n+nf_{1^{*}})$ time and a v-minimum base of $M_{2}$ in $O(n\log n+nf_{2})$ time
by the greedy algorithm. Moreover, we obtain a minimum element of a fundamental
cocircuit at line 9 of the approximate-weight-splitting algorithm in $O(f_{1^{*}}+(n-r))$

time and a minimum element of a fundamental circuit at line 15 in $O(f_{2}+r)$ time.
The other steps of the approximate-weight-splitting algorithm are executed in constant
time. Summarizing the above and putting $f= \max\{f_{1^{*}}, f_{2}\}$ , we obtain the following
theorem.

Theorem 10. The scaling algorithm finds a $\min$imum common base in $O((f+$

$n)nr\log(rW))$ time if we set $\epsilon_{0}=W$ and $\mu=\frac{1}{2r}$ .

5 Concluding Remarks

An approximate-weight-splitting algorithm for the minimum common base problem
is proposed and the polynomial time complexity of $O((f+n)nr\log(rW))$ is achieved.

Very recently, S. Fujishige and X. Zhang [9] have proposed a cost scaling algorithm
for the independent assignment problem with $0((f+n)n\sqrt{r}\log(rW))$ time. This
algorithm is a generalization of the hybrid algorithm by J. B. Orlin and R. K. Ahuja
[13] for the ordinary assignment problem. Their cost scaling algorithm performs a
number of cost scaling phases and each phase consists of an auction-like algorithm and
a successive-shortest-path algorithm. Our scaling version of the approximate-weight-
splitting algorithm can also be further improved to achieve the same time complexity
by hybridization with the successive-shortest-path algorithm for minimum common
base problem.
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