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Analysis of Fish Movements Using a Newton Rules Model:
Possile Advantages of Schooling to Migration and Foraging
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Abstract

Pelagic fish commonly cruise as aschool. Akinematic theory is presented to analyze erratic move-
ments made by pelagic fish on the basis of aNewton rules model for fish schooling: individual iish are
regarded as gas molecules with locomotion, inbuilt response to each other, and fluctuation of motion.
This approach enables quantitative studies and development of predictive models of requirements and
capabilities for oriented movements in homing migration and foraging in astochastic environment
in relation to individual behavior. Furthermore it offers possible explanations for adaptive advan-
tages of schooling behavior, including error reduction in navigation and optimal iood intake in the
patchy environment. In this framework, the theory gives methods to predict ecological properties
of fish schooling behavior from aknowledge of individual properties, e.g. variability in school size
under food conditions, and also estimate numericd quantities quantifying individual behavior from
ecological-scale data of fish school movements, e.g. orienting ability to external stimuli.

1. Introduction

$\dot{T}$he survival and reproduction rate of pelagic schooling fish, especially migrating species, will depend
on their success at locating food resources (e.g. prey patches) and spawning site (e.g. natal stream
for salmon). This success is determined largely by the manner in which individual fish search for their
necessary items. Thus the $\acute{n}eed$ to quantify their search paths arises.

Pelagic fish commonly show schooling behavior. Various explanations for fish schooling have been
put forward, including escape from predation (Brock &Riffenburgh, 1960; Clark, 1974; Pitchar, 1980,
Partridge, 1982), energy saving (Weihs, $1973a$), and facilitation of finding food in patchy environments
(Pitcher, Magurran &Winfield, 1982). It is thought that schooling also confers advantages on fish in
increasing efficiency orienting towards specific goal and foraging. Larkin&Walton (1969) have suggested
that fish movements as aschool may regulate their migratory paths, and estimated reducing error in
navigation. Duffy &Wissel (1988) presented atheory which allows insights into the relation between
environmental food supplies and school size.

Fish’s search paths have arandom pattern, so that it can be extremely difficult to quantify movement
paths. Afirst step in such examinations of these advantages is the design of aquantitative description of
fish movements when in school. Several authors have used the two-dimensional correlated random walk
model to represent animals’ movements with tendency to go forward (Kareiva&Shigesada, 1983;Bovet
&Benhamou, 1988). These models quantify the movement path by means of only two simple parameters:
move lengths and turning angles between successive moves. But to. apply this approach to observations of
animals’ movements in the field, we need reasonable and consistent criteria for demarcating the end points
of moves. Furthermore the formation of such models necessitates abetter grasp of the natural occurrence
of movements of animal individuals and groups. Therefore the need to mathematically formulate the
mechanism of animal locomotion arises.
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Here I introduce the Newton rules equation describing schooling of fish (Niwa, 1991, 1992, 1993).
On the basis of this kinematic model I establish the statistical properties of the fish movement paths,
considering schools as entities. In particular, I derive a formula for expected net squared displacement
for the movement path. Thus we consider the evolutionary advantages of schooling on the migration and
the foraging by examining that schooling reduces error in navigation of migratory fish towards a goal and
improves the foraging efficiency for patchy food resources.

2. Newton Rules Model for Fish Schooling

The fish schools usually consist of individuals of the same size range (Inoue, 1970), and the same
properties (with similar swimming speeds, as these depend on body length (Wu, 1977)). Schooling fish
perform a well organized collective motion by some kind of mutual interaction. The individual motion
appears to be deterministic in a statistical sense (Okubo, 1980). Now fish schooling can be modeled with
the framework of Newtonian mechanics, and fish locomotion is described by Newton’s law of motion:
Mass $x$ acceleration $=force$ . After dividing it by body mass the vector equation reads

$\frac{dv:}{dt}=\kappa(1-\beta v_{i}^{2})v_{i}+\sum_{j=1}^{N}f_{:j}^{(g)}+\sum_{j=1}^{N}f_{ij}^{(p)}+\eta_{i}(t)$ , (1)

where the fish school consists of $N$ bodies, and $v_{i}$ is the swimming velocity for the ith body in the school.
The exerted forces on the fish body may be of physical, physiological, behavioral and ecological origin.
Fish are regarded similarly as gas molecules with locomotion, and interacting with each other. Since
swimming performance is unavoidably uncertain, it is assumed that the exerted force can be decomposed
into a deterministic part and a stochastic part.

The first term of right-hand side of eq.(l) is locomotive force. A fish can swim forward by pushing its
environmental water backward; the surrounding in turn reacts to provide thrust to the fish. Performance
depends on the balance between thrust and hydromechanical drag. When an individual is moving in
steady swimming, its speed is given by $\beta^{-1/2}$ at which the specific energy cost for cruising is a minimum
(Weihs, $1973b$ ; Wu, 1977). A parameter $\kappa^{-1}$ is regarded as sensitivity of an individual behavior to
surrounding fish or environmental.

The second term is attraction from other bodies analogous to intermolecular forces like a Lennard-
Jones form (Breder, 1954). For aggregate fish the internal force is attractive except that it is repulsive
in the very vicinity of bodies.

The third term is arrayal interaction. Two neighboring fish tend to swim parallel with each other
and to equalize their velocities. Since each individual effectively interacts with the average velocity of
the entire school (Partridge, 1980), the arrayal force is supposed to be expressed as

$\sum_{j=1}^{N}f_{\dot{\iota}j}^{(p)}=\frac{J}{N}\sum_{j=1}^{N}(v_{j}-v_{i})$ , (2)

where $J$ is the coefficient of arrayal interaction.
The last term is fluctuating force. It will of course have a certain influence on the movement of fish

school. Thus we consider the system coupled to an environment as a noise source. We assume that the
correlation time of the fluctuating force is very short on the typical macroscopic time scale of the equation
of motion $(\approx\kappa^{-1})$ , and the fluctuating forces acting on each body are independent of each other. This
allows us to pass to the idealization of Gaussian white noise. So we have $\delta$-correlated fluctuating force

($\eta_{i}(t)\rangle$ $=0$ , $\langle\eta_{i}(t)\eta_{j}^{T}(t’)\rangle=2\epsilon\delta_{ij}\delta(t-t’)I$ , (3)
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where $\epsilon$ denotes the strength of the fluctuating force, and the bracket \langle $\cdots$ } the ensemble average.
In order to investigate collective properties of the system described by the nonlinear stochastic equa-

tion (1), by averaging over all individuals in the school, eq.(l) can be considerably simplified. Considering
fish swimming in two-dimensional space, we then have the equation for the centroid velocity of the school,
$V= \frac{1}{N}\sum_{\dot{2}}^{N_{=1}}v_{i}$ , as the stochastic dynamical equation:

$\frac{dV}{dt}=\kappa(1-4\frac{\beta\epsilon}{J})V-\kappa\beta V^{2}V+\overline{\eta}(t))$ (4)

where stochastic force $\overline{\eta}(t)=\frac{1}{N}\sum_{1}^{N_{=1}}\eta_{i}(t)$ satisfies the following relation:

{ $\overline{\eta}(t)\overline{\eta}^{T}(t’)\rangle$ $= \frac{2\epsilon}{N}\delta(t-t’)I$. (5)

Then we can derive the following general formula associated with the fish school movement. For the most
probable value of moving speed as a whole, we have

$|V_{m}|=\sqrt{\frac{1}{\beta}(1-4\frac{\beta\epsilon}{J})}$ . (6)

By using eq.(4) we can write down the equation for the mean square velocity

$\frac{d}{dt}\langle V^{2}(t)\rangle=2\kappa(1-4\frac{\beta\epsilon}{J})\langle V^{2}(t)\rangle-2\kappa\beta\langle V^{2}(t)\rangle^{2}+\frac{4\epsilon}{N}$ , (7)

then we have the stationary solution

\langle $V^{2} \}_{st}=\frac{1}{\beta}(1-4\frac{\beta\epsilon}{J})+\frac{2\epsilon/N}{\kappa(1-4\beta\epsilon/J)}$ . (8)

For the two-time correlation coefficient, we have

$c_{|t-t^{J}|}= \frac{\langle V(t)\cdot V(t’)\}}{\langle V^{2}\rangle_{8l}}=\exp(-\frac{2\epsilon/N}{\langle V^{2}\rangle_{st}}|t-t’|)$ (9)

(see Appendix I). The fish school has a tendency to continue moving in the same direction to a certain
degree. A measure of the degree of continue moving in the same direction is provided by the correlation
time relating eq.(9):

$\tau=\frac{\langle V^{2}\rangle_{st}}{2\epsilon/N}$ (10)

In other wards, $\tau$ gives an average time interval of changing direction of moving school.
Fish schools typically traverse circuitous routs. Using the formulae above, we now develop the rela-

tionship between a fish schooPs movement behavior and its expected square displacement. Let us imagine
that a school released from the point $r_{0}$ at $t=0$ reaches the point $r_{t}$ after $t$ time has elapsed. Taking
the average square of the total displacement $R_{I}=r_{t}-r_{0}$ , we then have

$\langle R_{t}^{2}\rangle=\frac{\langle V^{2}\rangle_{st}^{2}}{\epsilon/N}t-\frac{1}{2}\frac{\langle V^{2}\rangle_{st}^{3}}{(\epsilon/N)^{2}}\{1-\exp(-\frac{2\epsilon/N}{\langle V^{2}\rangle_{st}}t)\}$ (11)

(see Appendix II for details; see also Kareiva&Shigesada, 1983). As time $t$ becomes large, the second
term of right-hand side of eq.(ll) becomes negligible. Namely, in the limit the mean-square displacement
depends linearly on time, and is given by the Einstein value:

$\langle R_{t}^{2}\rangle=\frac{\langle V^{2}\rangle_{st}^{2}}{\epsilon/N}t=(2\tau)^{2}\langle V^{2}\rangle_{st}\frac{t}{2\tau}$. (12)
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The correlation coefficient $c_{|t-t’|}$ is a decreasing function of the time interval $|t-t’|$ ) and decays expo-
nentially at large $|t-t’|$ . Thus the correlations of fish school’s movements are of finite range. Then the
distribution function for $R_{\ell}$ has a Gaussian shape (Doi&Onuki, 1992):

$P(R_{t})= \frac{1}{\pi\langle R_{t}^{2}\rangle}\exp[-\frac{R_{t}^{2}}{\langle R_{t}^{2}\rangle}]$ , (13)

where we are in two-dimensions. Thus when we investigate the movements of a fish school in a time
region where $t\gg\tau$ , the probability of finding the fish school at $R_{t}$ is the random walk distribution.
Hence, at spatial scales $R\gg 2_{\mathcal{T}}\sqrt{\{V^{2}\rangle_{st}}$ , we can regard the fish school’s movement as the diffusion or
the random walk of step length

$l=2\tau\sqrt{\langle V^{2}\rangle_{st}}$ , (14)

which is also called the correlation length or the mean free path. We then see that the (sinuosity’
(Bovet &Benhamou, 1988), which is a numerical index quantifying the spatial pattern of erratic paths
of animal)$s$ movements, is equal to $2/\sqrt{l}$.

2. Evolutionary Advantages of Schooling

Compass $Ori$entation in Migratory Fish

The return of Pacific salmon across the open ocean to their spawning grounds covers thousands of
kilometers and constitutes one of the classic examples of animal migration. For mechanisms guiding
migrations it is suggested that homing salmon orient to the geomagnetic field using the magnetic sensi-
tivity (Quinn, 1984). Recent experiments have shown that there exist crystalline particles of the biogenic
magnetite in the head and areas covering the lateral line of chum salmon (Ogura et al., 1992). Here
assuming the compass orientation to a goal, we consider the oceanic homing migrations in terms of the
forces, which are supposed to operate on the individuals and to govern their motions. This orienting
force provides migratory fish a tendency of navigating homeward. Now making an analogy to Lorentz
force acting on charged particles moving in magnetic fields, we may write the orienting force acting on a
fish moving with velocity $v$ as

$f^{(H)}=- \frac{vx(v\cross H)}{v^{2}}$ , (15)

where the vector $H$ is in the homeward direction, and its magnitude $H$ represents the degree of direction-
finding ability of individual fish. Then the orienting force vector $f^{(H)}$ is in the direction perpendicular
to the moving direction $v$ , and its magnitude is proportional to the sine of the angle between $v$ and $H$ .
When a group of fish is migrating as a school of size $N$ , the equation for orienting motion of the ith body
is expressed as

$\frac{dv_{i}}{dt}=\kappa(1-\beta v_{*}^{2})v;+\sum_{i=1}^{N}f^{(g)}|j+\sum_{j=1}^{N}f^{(p)}:j+f^{(H)}|+\eta_{i}(t)$. (16)

Then the azimuthal angle $\Theta$ of the centroid velocity $V$ relative to the homeward direction $H$ changes
with time according to the following equation:

$V^{2} \frac{d\Theta}{dt}=-VH\sin\Theta+V\overline{\eta}\perp(t)$ , (17)

where $V=|V|$ , and $\overline{\eta}_{\perp}$ refers to the component of the fluctuating force $\overline{\eta}$ perpendicular to $V$ (see
Appendix III). Thus we can establish the probability density function which describes the stationary
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distribution of angular deviations $\Theta$ from the true direction:

$P_{st}( \Theta)=N\exp(\frac{V\cdot H}{\epsilon/N})$ , (18)

where $\mathcal{N}$ is a normalization factor (Haken, 1983).
Now let us imagine the migratory path with end points at $r_{0}$ and $r_{t}$ . A fish school’s wanderings can

be decomposed into a series of straight line moves. For such a discretization, we recommend using the
time interval $2\tau$ to define moves. On the supposition of weak orientation, using the convention of straight
line moves, we can write the distribution function for the jth displacement $a_{j}$ as

$p_{j}(a_{j})= \frac{1}{2\pi l}\delta(|a_{j}|-l)\exp(\frac{V_{i}\cdot H}{\epsilon/N})$ . (19)

Hence in the homing migration the distribution function for the total displacement $R_{4}=r_{\ell}-r_{0}$ is
expressed as

$P^{(H)}(R_{t})= \int\cdots\int\delta(\sum_{i=1}^{n}a_{j}-R_{t})\prod_{j=1}^{n}p_{j}(a_{j})da_{j}$, (20)

where $n=t/2\tau$ . Consequently, as is shown in Appendix IV, we arrive at the following form in the
continuous scheme:

$P^{(H)}(R_{t})= \mathcal{N}\exp(-\frac{R_{t}^{2}}{\langle R_{\ell}^{2}\rangle}+\frac{R_{t}\cdot H}{\langle V^{2}\rangle_{\epsilon t}})$ . (21)

Then we have the characteristic length $l_{H}$ defined by

$l_{H}= \frac{\langle V^{2}\rangle_{st}}{H}$ . (22)

For spatial scales $R<l_{H}$ the force $H$ (measured by the dimensionless number $H\cdot R/(V^{2}\rangle_{\epsilon t})$ is a weak
perturbation. A computer simulation by Saila&Shappy (1963) indicated that the migrations of Pacific
salmon from high seas to the coastal vicinity of their natal stream may be accomplished with only slight
homeward orientation. Hence we can assume that $l<l_{H}$ . Thus the $\pi\dot{u}$gration path breaks up into a
series of “segments” each of spread $l_{H}$ . Since at scales where $l\leq R\leq l_{H}$ the mean-square displacement
of fish school’s movement is given by the Einstein value, we then have

$l_{H}^{2}= \frac{\langle V^{2}\rangle_{\epsilon t}^{2}}{\epsilon/N}\tau_{H}$, (23)

where $\tau_{H}$ is the characteristic time related to $l_{H}$ . The supposition of weak orientation reads $\tau<\tau_{H}$ . In
a time region where $t<\tau_{H}$ the movement paths of the homing migratory fish school remain the local
correlation of eq.(9). Comparing eq.(23) with eq.(22) we see

$\tau_{H}=\frac{\epsilon/N}{H^{2}}$ (24)

On the other hand, at larger scales $R>l_{H}$ the migratory path of homing fish school elongates toward
home site. These segments then come into line in the homeward direction. Since the total number of
segments in the present migratory path is $t/\tau_{H}$ , the longitudinal average elongation parallel to $H$ is
evaluated as

$\langle R_{||}\rangle\cong l_{H}\frac{t}{\tau_{H}}\cong\tau Ht$ (25)

(see Appendix V for rigorous expression). Thus the average speed of homing is given by

$\overline{V}=\tau H$ . (26)
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It is also of interest to ascertain the lateral spread of the homing migratory path, $R\perp$ , in elongation. The
projection of the sequence of segments on an axis normal to $H$ is a random walk of step length $l_{H}$ , and
thus

$\langle R_{\perp}^{2}\rangle\cong l_{H}^{2}\frac{t}{\tau_{H}}\cong\frac{1}{2}\frac{\langle V^{2}\rangle_{st}^{2}}{\epsilon/N}t$ (27)

(see Appendix V for rigorous expression). We then define the diffusivity by

$D= \frac{1}{4}\frac{\langle V^{2}\rangle_{st}^{2}}{\epsilon/N}$ (28)

Hiramatsu &Ishida (1989) evaluated diffusivity and mean homing speed of migrating salmon from
the open ocean towards their natal stream using data from tagging experiments. According to them,
for pink salmon (Oncorhynchus gorbuscha) originated from North America, $V_{m}=58.7cm\cdot\sec^{-1},$ $\overline{V}=$

$22.7cm\cdot\sec^{-1}$ , and $D=8.55\cross 10^{7}cm^{2}\cdot\sec^{-1}$ . Using the approximation ( $V^{2}\rangle_{st}=V_{m}^{2}$ , we then have $\epsilon/N=$

$3.5x10^{-2}cm^{2}\cdot\sec^{-3},$ $H=4.6x10^{-4}cm\cdot\sec^{-2},$ $\tau=5.0x10^{4}sec,$ $\tau_{H}=1.7x10^{5}sec,$ $l=5.8x10^{6}cm$ , and $l_{H}=$

$7.5x10^{6}cm$ . Here these values should be regarded as the averages over ensemble composed of various size
of the salmon schools, or the values expected for the most probable size of the salmon schools. Moreover
we can see that a degree of orientation to an outside stimulus is low, that is, the assumption $l<l_{H}$ is
valid. They also estimated a coefficient of directed versus undirected movement, $A=0.77$ . Using the
coefficient $A$ , the distribution function (18) can be expressed as $P_{\epsilon t}(\Theta)=N\exp(A\cos\Theta)$ .

Now for the question of accuracy in navigation we have

$\frac{\sqrt{(R_{\perp}\rangle}}{\{R_{||}\rangle}=\frac{1}{H}\sqrt{\frac{2\epsilon}{Nt}}$. (29)

We see that error in navigation is reduced as $1/\sqrt{N}$ . When a group of fish is migrating as a school
there are opportunities for the errors of individuals to be compensated, so that as the size of school
increases, the error in navigation for the school will be lessened. This agrees with Larkin&Walton’s
(1969) conjecture. They estimated this effect from the consideration of the statistical properties, similar
to the central limit theorem, of the circular normal distribution which was supposed to describe the
accuracy of navigation, that is, the angular deviations of their moving vector from the direction of goal,
under the assumption that the individuals jointly orient to a group mean direction.

Strategy for Foraging

Analysis of animals’ movements has been shown to be worthwhile in the framework of Optimal
Foraging Theory. We now examine the constraints put on school size by food supply. Schooling is
common among long distance swimming species. Long stretches of these search paths for feeding are
often crossed without food intake so that efficient foraging is essential to survivd. Here Ishow that
the habit of schooling is an advantage to foraging. Of course, disadvantages of schooling include being
increased intraspecific competition for food within schools (Eggers, 1976). Then, is schooling impossible
under certain food environment? Does food limit school size? Is there an optimal school size? These
questions are also investigated by using the present kinematic model of fish schooling.

Duffy&Wissel (1988) have presented amathematical theory on school sizes, in which they assumed
that aschool should be as large as possible to facilitate finding food in patchy environments (Pitcher,
Magurran&Winfield, 1982), to confuse or evade predators when attacked (Pitcher, 1980), and to reduce
the individual’s chance of being eaten (Brock&Riffenburgh, 1960,$\cdot$ Clark, 1974), given that all individuak
must obtain enough food to satisfy their energetic requirements. They did not explicitly consider the
intraspecific competition within schools. They discussed maximum school sizes in relation to the total
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amount of food resources or the average food density in a feeding area. Here we discuss the size of a school
as the outcome of optimizing food intake, assuming that each individual in a $s$chool always attempts to
maximize its food intake, and that obtaining food is a greater selective constraint on individual$s$ than
predation.

We now consider the random search movements of fish over large distances for food items when in
school of size $N$ . Here we do not take into account school splitting and amalgamating. Let us assume
that food supplies are clumpy and randomly distributed. Biotic populations are usually distributed
heterogeneously in their habitats, and the distribution itself is often patchy (Cassie, 1963). When a fish
school forages during some period $T$ , e.g. one day, the per capita total food intake is proportional to the
foraging efficiency, that is, the chance of encounter with prey patches in searching unit. Then the per
capita total food intake is expressed as

$Q_{N}\cdot T=S_{N}\cdot(T-\Delta T)\cdot q_{N}$ , (30)

where QN is the average rate of per capita food intake, $S_{N}$ the foraging efficiency, $\Delta T$ the total time
exploiting food patches during $T$ time, that is, the handling time, and $q_{N}$ per capita food intake per prey
patch.

When the fish school explores the feeding area, the foraging efficiency $S_{N}$ is defined by the probability
of encountering a prey patch. Therefore $S_{N}$ is proportional to the number density of prey patches and
the sweeping area of the search path made by the fish school per unit period. The foraging fish school
statistically spreads over the area of $\langle R^{2}\rangle$ , where $R$ is an end-to-end vector of movement path in searching
unit and the mean-square of $R$ is given by eq.(12). Namely considering the ensemble of fish schools of
size $N$ which are released at a point $r_{0}$ , we have the mean dispersal area per unit period, $(R^{2})$ . It is
similar to a drop of ink spreading in water. Hence let us suppose that the search path’s sweeping area is
comparable with its net square displacement. We then have

$S_{N}=b\langle R^{2}\rangle$ , (31)

where $b$ is the number density of prey patches in the feeding area. The foraging efficiency is also written
as.

$S_{N}=2b\tau\langle V^{2}\rangle_{\epsilon t}=bl\sqrt{\langle V^{2}\rangle_{\epsilon t}}=4bD$ , (32)

by using the correlation time, the correlation length, or diffusivity. Thus the randomness of search paths
will reflect the adaptation of fish’s foraging behavior to the stochasticity of the environment.

The time required to handle food items when encountering a prey patch is proportional to $q_{N}$ , hence
the total time spent feeding during $T$ time is proportional to the total number of encounters with prey
patches during $T$ time and $q_{N}$ , assuming the amount of food in any prey patch is constant. Then we
have

$\Delta T=\frac{q_{N}}{\gamma}\cdot S_{N}\cdot(T-\Delta T)$ , (33)

where $\gamma$ means the rate of food intake, that is, the efficiency of prey consumption. Hence the available
time for foraging is given by

$T- \Delta T=T(1+\frac{q_{N}}{\gamma}S_{N})^{-1}$ . (34)

Thus we have the average rate of per capita food intake

$Q_{N}=S_{N} \cdot(1+\frac{q_{N}}{\gamma}S_{N})^{-1}\cdot q_{N}$ . (35)

Considering the expression of $q_{N}$ , the followings are now supposed: Any fish individual in a school of
size $N$ takes the same quantity of food from a prey patch, so they all have the same $q_{N}$ ; When a $prey$
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patch is attacked by a fish school, it begins to disperse; When the prey density in a patch becomes a
certain value, fish give up it, and begins to search other prey patches. Therefore the whole intake per
prey patch of the school, i.e. $Nq_{N}$ , becomes larger as the size of the school increases. However $Nq_{N}$ will
saturate at a certain size $N_{0}$ because of the limited volume of the prey patch. Moreover $Nq_{N}$ will be
lessened for $N>N_{0}$ because of increasing intraspecific competition for food within the school. Thus for
a change of school size, the whole intake per prey patch changes as

$\delta(Nq_{N})=q_{N}\cdot[1-\gamma_{d}\varphi(N,\gamma)]\cdot\delta N$, (36)

where $\varphi(N, \gamma)$ quantifies the intraspecific competition, $\gamma_{d}$ the rate of patch dissipation. Here we expect
$\varphi$ to depend only on the school size $N$ and on the feeding rate $\gamma$ . We then have

’ $\frac{\partial q_{N}}{\partial N}=-\frac{q_{N}}{N}\gamma_{d}\varphi(N, \gamma)$ . (37)

The $s$chool size $N$ and the feeding rate $\gamma$ play the same role to exploit the prey patch, namely, the effect
of doubling $N$ upon exploiting the patch is equivalent to doubling $\gamma$ . Consequently the following scaling
law holds:

$\varphi(\nu N, \nu^{-1}\gamma)=\varphi(N, \gamma)$ , (38)

that is,
$\varphi(N, \gamma)=\varphi(\gamma N)$ . (39)

We now have the form
$\varphi(N, \gamma)=\gamma_{c}(\gamma N)^{\alpha}$ , (40)

where $\gamma_{c}$ indicates the intensity of competition. Assuming two-body interaction for the intraspecific
competition within the school, we have $\alpha=2$ . Thus we obtain the expression for the per capita food
intake when the fish school of size $N$ encounters a prey patch:

$q_{N}=q_{0} \exp[-\frac{1}{\alpha}(\frac{N}{N_{0}})^{\alpha}]$ , (41)

where the saturation size $N_{0}=\gamma^{-1}(\gamma_{c}\gamma_{d})^{-1/\alpha}$ . $q_{0}$ is proportional to the prey population within a patch
or the whole energy content per patch.

Assuming that $\epsilon/\kappa\beta V_{m^{4}}\ll 1$ , that is, a group of fish forages as a highly organized school, we then
have the average rate of per capita food intake

$QN=[ \frac{1\exp\{\alpha^{-1}(N/N_{0})^{\alpha}\}}{bq_{0}V_{m^{4}}/\epsilon N}+\frac{1}{\gamma}]^{-1}$ (42)

The optimal size $N_{opt}$ fulfills the condition

$\frac{\partial Q_{N}}{\partial N}=0$ , (43)

which leads to
$N$
。$P^{t}=N_{0}$ . (44)

Besides optimal diffusivity (correlation time, correlation length) can be also determined for foraging.
Thus we see that the optimal size is the size at which the whole food intake per prey patch is a

maximum, and the schooling regulates foraging in this sense. Fish then utilize patchy food resources
most efficiently. We also see that $N_{opt}$ depends on the ethological relations between fish and prey items,
i.e. $\gamma$ and $\gamma_{d}$ . For example, when the available prey item is of great mobility (large value of $\gamma_{d}$ ) and
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the fish consume it with high efficiency (large value of 7), the expected school size is small. Here it
should be noted that Nopt is not directly depend on the number density of prey patches, $b$ , and the prey
population within a patch, $q_{0}$ , therefore, the total amount of food resources in a feeding area. We can
say the optimal school size is set by the quantity of food, not the amount of food supplies. Our results
suggest that changes in food items will cause changes in school size. Hence seasonal or regional variability
in food items need to be considered when examining the changes in observed school size with area and
season (Misund, 1991).

4. Future Problems

We started with the Newton rules model for fish schooling $(eq.(1))$ and derived the expressions eq.(29)
and eq.(42)for reducing error in navigation and per capita energy intake. These procedures analyzing
fish movements as aschool based on the kinematic equation were convenient to connect the individual
behavior and the statistical properties (ecological phenomena), for instance, migration and variability in
school size.

We investigated the homing migration by assuming directional orientation to the goal, although the
precise orienting mechanism is not yet clear. Pacific salmon migrate from the open ocean to the home site
well timed over thousands of kilometers in absence of any landmark indicating the location of this place.
Hence salmon must determine their location relative to home. It then becomes necessary to poetulat$e$

that salmon have acertain system of navigate which enables them to know where they are and where they
are to go. This implies that salmon has to either posses acalendar as well as acompass (Quinn, 1984),
or memorize the location of home site by means of an egocentric coding process, that is, by relating the
distance and the direction of the home site to the salmon’s own location and orientation by processing
the rout-based information about its ongoing path (Benhamou, Sauve’ &Bovet, 1990). Here the following
question arise: Does schooling improve these map senses?

We were also dealing with foraging search paths in ahomogeneous stochastic environment, i.e. one
where the prey patches are randomly distributed (according to Poisson’s law). The search paths might
be regulated by certain environmental features. When involving explicitly the effect of patchy resource
disp $e$rsal structure in the theory, we wish to know the expected school size in relation to the food resource
supplies. This is another important character of foraging fish schools.

Fish school sizes are randomly distributed over the range of school size in the wild (Anderson, 1981).
Observations on the size-frequency distribution show awell-defined peak frequency. Towards larger
and $smalle\iota$ sizes the frequency distribution decreases in an exponential-like manner. These frequency
distribution may be determined by environmental conditions. Since interaction between fish schools may
occur in the processes controlling the school size, the frequency distributions are likely to be set by fish
stock size. Namely one school will split into some schools, and schools meet and amalgamate. Then the
meeting chance must depend on the fish stock population. This problem must be reduced to ageneralized
diffusion problem in an abstract space within the framework of Optimal Foraging Theory. Then we may
connect the $size- freq_{\dot{1}1}ency$ distribution and the per capita energy intake $Q_{N}$ .
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Appendix I

Eq.(4) is formally solved as follows:

$V(t)= \exp\{\int_{0}^{t}\kappa(1-4\frac{\beta\epsilon}{J}-\beta\langle V^{2}(t)\rangle)dt’\}$

$x[\int_{0}^{t}\overline{\eta}(t’)\exp\{-\int_{0}^{t’}\kappa(1-4\frac{\beta\epsilon}{J}-\beta\langle V^{2}(t’’)\})dt’’\}dt’+V(0)]$ . (A1)

Exploiting eq.(5), we find for the two-time correlation function immediately

\langle V $(t)\cdot V(s)$ } $= \langle V^{2}\rangle_{\epsilon t}\exp\{-\frac{2\epsilon/N}{\langle V^{2}\rangle_{\epsilon t}}(t-s)\}$ , (A2)

for $t>s$ .
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Appendix II

For the continuous travels, we designate the displacement of the fish school after a succession of some
time intervals $\Delta t$ as $a_{j}$ $(j=1, 2, )n;n\equiv t/\Delta t)$ . For $\Delta t\ll\tau$ , each $j$ th move $a_{j}$ takes $V_{j}\Delta t$ , where
$\gamma_{j}$ is the velocity observed at each $jth$ beginning of the interval. Then the total displacement after $n$

consecutive moves is given by $R_{t}= \sum_{j=1}^{n}a_{j}=\sum_{j=1}^{n}V_{j}\Delta t$ . The mean square of net displacement $R_{\ell}$ is
then written by

$\langle R_{t}^{2}\rangle=\{(\sum_{j=1}^{n}a_{j})\cdot(\sum_{k=1}^{n}a_{k})\}=\langle V^{2}\rangle_{\epsilon t}(\Delta t)^{2}\sum_{j,k=1}^{n}c_{|j-k|\Delta\ell}$. (A3)

Letting $r_{\Delta t}=\exp(-\Delta t/\tau)$ , we have

$\sum_{j_{1}k=1}^{n}c_{\{j-k|\Delta 1}$ $=$ $\sum_{j_{1}k=1}^{n}r_{\Delta\ell}^{|i-k|}=n+2\sum_{j=2}^{n}\sum_{k=1}^{j-1}\dot{\mu}_{\Delta t}-k$

$=$ $n(1+ \frac{r_{\Delta t}}{1-r_{\Delta 1}})-2(\frac{r_{\Delta t}}{1-r_{\Delta t}})^{2}(1-r_{\Delta t}^{n})$ , (A4)

for small $\Delta t$ . Thus the mean-square distance is given by

$\langle R_{t}^{2}\rangle=2\tau\langle V^{2}\rangle_{\epsilon t}t-2\tau^{2}\langle V^{2}\rangle_{\S t}(1-e^{-t/\tau})$

$-\langle V^{2}\rangle_{st}t\Delta t+2\tau\langle V^{2}\rangle_{\epsilon t}(1-e^{-t/\tau})\Delta t+O(\Delta t^{2})$ . (A5)

Going to the continuous limit $\Delta tarrow 0$ , we arrive at eq.(ll).

Appendix III

The vector product of $v_{i}$ and eq.(16) gives

$\frac{1}{N}\sum_{*=1}^{N}v_{i}x\frac{dv_{1}}{dt}=\frac{1}{N}\sum_{i=1}^{N}v_{i}xf!^{H)}+\frac{1}{N}\sum_{1=1}^{N}v_{i}x\eta_{i}$ . (A6)

We separate $v_{i}$ into the two terms: $v;=V+\delta v;$ , where $\delta v_{i}$ denotes fluctuations around the average
$V= W^{1}\sum_{1}^{N_{=1}}v;$ . Inserting it into eq.(A6) yields

$V x\frac{dV}{dt}=-Vx(V\cross H)+Vx\overline{\eta}$ (A7)

to the first approximation.

(A8)

Appendix IV

By using the form of Fourier integral

$\delta(\sum_{j=1}^{n}a_{j}-R_{\ell})=\int\frac{dk}{(2\pi)^{2}}\exp\{i(\sum_{j=1}^{n}a_{j}-R_{t})\cdot k\}$ ,
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the distribution function for $R_{t}$ is written down as

$P^{(H)}(R_{t})$ $=$ $\int\frac{dk}{(2\pi)^{2}}e^{-;k\cdot R_{t}}\prod_{j=1}^{n}[\int da_{j}p_{j}(a_{j})^{k\cdot a_{j}}e^{i}]$

$=$ $\int\frac{dk}{(2\pi)^{2}}e^{-1k\cdot R_{t}}[\int da\frac{1}{2\pi l}\delta(|a|-l)\exp\{(ik+\frac{1}{2\tau}\frac{H}{\epsilon/N})\cdot a\}]^{n}$

$=$ $\int\frac{dk}{(2\pi)^{2}}e^{-tk\cdot R}{}^{t}exp[n\ln\{1+\frac{1}{2!}\frac{1}{2}(ik+\frac{1}{2\tau}\frac{H}{\epsilon/N})^{2}l^{2}+\cdots\}]$

$=$ $\int\frac{dk}{(2\pi)^{2}}e^{-tk\cdot R_{2}}\exp[\frac{nl^{2}}{4}(ik+\frac{1}{2\tau}\frac{H}{\epsilon/N})^{2}]$ , (A9)

thus we arrive at eq.(21).

Appendix V

Describing the configuration of migratory path as a succession of position vector $\{r_{j}\}$ observed at
the jth end of some fixed interval $\tilde{\Delta}t$ , s.t. $\tau\ll\tilde{\Delta}t\ll t$ , we can write down the probability of the
entire configuration of a path with end points at $r’$ and $r$ , that is, the probability of starting at the point
$r_{0}=r’$ at time $t=0$ and coming into the point $r_{n}=r$ at time $t$ :

$G(r,t;r’, 0)= \int dr_{0}\int d\{r_{j}\}\delta(r_{0}-r’)\delta(r_{n}-r)\prod_{j=1}^{n}P^{(H)}(r_{j}-r_{j-1})$, (A10)

where $n=t/\tilde{\Delta}t,$ $P^{(H)}$ is given by the distribution function (21). In continuous scheme, the probability
$G(r, tr’0)$ is described by a path integral

$G(r, t;r’, 0)= \int_{r(0)=r’}^{r(t)=r}D[r(s)]\exp[-\int_{0}^{t}\{\frac{1}{\sigma^{2}}(\frac{dr(s)}{ds})^{2}-\frac{V(s)\cdot H}{\langle V^{2}\rangle_{st}}\}ds]$ , (All)

where $\sigma^{2}=\langle V^{2}\rangle_{st}^{2}/(\epsilon/N)$ (Khandekar &Wiegel, 1989). The most probable path $r_{m}(t)$ is determined
by maximizing the integrand to yield

$\frac{dr_{m}}{dt}=\frac{1}{2}\frac{\{V^{2}\rangle_{8}t}{\epsilon/N}H=\tau H$ . (A12)

The variance $\langle[r-r_{m}(t)]^{2}\rangle$ is obtained from the probability distribution for $y(t)=r-r_{m}(t)$ :

$\hat{G}(y,t)=\int_{y(0)=0}^{y(t)=y}D[y(s)]\exp[-\frac{1}{\sigma^{2}}\int_{0}^{t}(\frac{dy(s)}{ds})^{2}ds])$ (A13)

which is easily derived from eq.(All). Consequently

$\langle y^{2}\rangle=\frac{\langle V^{2}\rangle_{st}^{2}}{\epsilon/N}t$ . (A14)

Hence the component perpendicular to $H$ is given by

$\langle R_{\perp}^{2}\rangle=\frac{1}{2}\frac{\langle V^{2}\rangle_{st}^{2}}{\epsilon/N}t$ . (A15)


