goooboooogn
08710 19940 8-14

8

Some Hierarchy Results of Alternating Finite Automata
with Counters and Stack-Counters

HIE Y FAEE (Tsunehiro Yoshinaga) WHAKXY¥ # EFF (Katsushi Inoue) #REF (Itsuo Takanami)

1 Introduction

Alternating Turing machines were introduced in {2] as a mechanism to model parallel computation, and in the related
papers [3-8], investigations of alternating machines have been continued. Inoue, Ito and' Takanami [3,4] investigated
hierarchical properties in the accepting powers of realtime one-way alternating multi-counter automata and multi-stack-
counter automata. Further, Yoshinaga, Inoue and Takanami [5] strengthened the results in [3,4].

In this paper, we introduce a new machine model, a realtime one-way alternating finite automaton with counters and
stack-counters, in order to investigate the essential difference between counters and stack-counters. Section 2 gives the
definitions and notations necessary for this paper. Section 3 investigates a relationship between the accepting powers of
realtime one-way alternating finite automata with counters and stack-counters which have only universal states, which
have only existential states, and which have full alternation. For each k > 0, > 0 ((k,!) # (0,0)), let 1A(k,l,real)
denote the class of sets accepted by realtime one-way alternating finite automata with k counters and [stack-counters,
let 1U(k,l,real) denote the class of sets accepted by realtime one-way alternating finite automata with k counters and
l stack-counters which have only universal states, and let 1N(k,l,real) denote the class of sets accepted by realtime
one-way nondeterministic finite automata with k counters and ! stack-counters. Further, let 1D(k,l,real) denote the
class of sets accepted by realtime one-way deterministic finite automata with k& counters and [stack-counters. We show
that for each k > 0,1 > 0 ((k,1) # (0,0)) and each X€{U,N}, 1D(k,l,real) C 1X(k,,real) G 1A(k,l real). Section 4
investigates hierarchical properties based on the numbers of counters and stack-counters. Book and Ginsburg [1] showed
that for each k£ > 1 and each Xe{N,D}, 1X(0,k + 1,real) ~ 1X(0, k,real) # ¢. Inoue, Ito and Takanami [4] showed that
for each k > 1, 1A(0,k + 1,real) — 1A(0,k,real) # ¢. Further, it is shown in [5] that for each ¥ > 1, 1U(0,% + 1,real)
— 1A(0, k.real) # ¢. We strengthen these results, and show, for example, that for each £ > 0,1 >0 ((k,!) # (0,0)), 1U
(k + 1,0real) — 1A(k,lreal) # ¢, and 1D(k + 1,l,real) — 1X(k,l,real) # ¢ for each X€{U,N}. Section 5 investigates a
relationship between the accepting powers of counters and stack-counters. Book and Ginsburg [1} showed that for each
k > 1, 1N(0,k,real) — IN(2k —1,0,real) # ¢, and it is shown in [5] that for each k > 1, 1U(0, k,real) — 1A(k,0,real) # ¢,
and 1D(0, k,real) — 1U(2k —1,0,real} # ¢. We show, for example, that for each ¥ > 0,{ > 0 and m > 1, 1U(%,{+ m,real)
— 1A(k+ 2m — 1,1 real) # ¢, and 1D(k,! + m real) — 1X(k + 2m — 1,!,real) # ¢ for each X€{U,N}. Section 6 concludes
this paper by giving several open problems.

2 Preliminaries

A one-way multi-counter automaton is a one-way multi-pushdown automaton whose pushdown stores operate as
counters, i.e., each storage tape is a pushdown tape of the form Z' (Z fixed). (See {1,9,10] for formal definitions of
one-way multi-counter automata.) A one-way multi-stack-counter automaton is a one-way multi-counter automaton
with the added property that each counter may be entered without erasing. In addition, the automaton has the ability
to sense the leftmost and rightmost symbols on each stack. We assume that the rightmost symbol on each stack-counter
is the top symbol on the stack. (See [1] for formal definitions of one-way multi-stack-counter automata.)

A one-way alternating multi-counter automaton (1amca) (resp., a one-way alternating multi-stack-counter automaton
(lamsca)) M is the generalization of a one-way nondeterministic multi-counter automaton (resp., a one-way nondeter-
ministic multi-stack-counter automaton) in the same sense as in {2,6,7]. That is, the state set of M is divided into two
disjoint sets, the set of universal states and the set of ezistential states. Of course, M has a specified set of accepting
states.

Here, we introduce a new machine model, a one-way alternating finite automaton with counters and stack-counters
(1afacs) M, in order to investigate the essential difference between counters and stack-counters. That is, M has counters
and stack-counters, and is a generalization of lamca and lamsca. ‘

For each k > 0, 1 > 0 ((k,I) # (0,0)), we denote a one-way alternating finite automaton with &k counters and !
stack-counters by lafacs(k,!).

We assume that lafacs’s have the right endmarker “$” on the input tape, read the input tape from left to right, and
can enter an accepting state only when falling off the right endmarker $. We also assume that in one step lafacs’s can
increment or decrement the contents (i.e., the length) of each counter and stack:counter by at most one.

An instantaneous description (ID) of lafacs(k,l) M is an element of

¥ x N x Sa,

where © ($ ¢ ¥) is the input alphabet of M, N denotes the set of all positive integers, and Sy = Q x (Z*)F x (Z°) x
(N U {0}) (where @ is the set of states of the finite control of M, and Z is the storage symbol of M). The first and
second components, w and i, of an ID 7 = (w,4,(g, (1, -+, @), (B - -5 B1), (41, -+, J1))) represent the input string and

the input head position, respectively.! The third component (g, (e1,...,at),(81,---,81), (Ji,-- -, J1)) of I represents the
state of the finite control, the contents of the k counters, the contents of the ! stack-counters, and the positions of the
I stack-counter heads. (These positions are counted from left to right.) For each j (1 < j < k), a; is called a storage
state of the j-th counter, and for each i (1 < 7 < 1), the pair (5, i) is called a storage state of the i-th stack-counter. An
element of Sys is called a storage state of M. If ¢ is the state associated with an ID I, then I is said to be a universal
(existential, accepting) ID if ¢ is a universal (existential, accepting) state. The initial ID of lafacs(k,i) M on w € T*is
Ing(w) = (w, 1, (go, (A, ..., A), (A, ..., A),(0,...,0))), where gp is the initial state of M and A denotes the empty string.

We write I bas I’ and say I’ is a successor of I if an ID I’ follows from an ID I in one step, according to the
transition function of M. A computation path of M on input w is a sequence Iy Fas [y Far ... Fag I, (n > 0), where
Io = Ir(w). A computation tree of M is a finite, nonempty labeled tree with the following properties:

1. each node 7 of the tree is labeled with an ID, {(x),

2. if 7 is an internal node (a non-leaf) of the tree, £(r) is universal and {I|((w) Fps I} = {I1,12,...,I.}, then 7 has
exactly r children py,p2,...,pr such that €(p;) = I;, and

3. if x is an internal node of the tree and £(7) is existential, then 7 has exactly one child p such that {(x) Fas {(p).

A computation tree of M on input w is a computation tree of M whose root is labeled with Ips(w). An accepting
computation tree of M on w is a computation tree of M on w whose leaves are all labeled with accepting ID’s. We say
that M accepts w if there is an accepting computation tree of M on w. We denote the set of input words accepted by
M by T(M).

For each k > 0,1 > 0 ((k,1) # (0,0)), let lufacs(k,!) denote a lafacs(k,l) with only universal states, and
let 1nfacs(k,!) denote a one-way nondeterministic finite automaton with & counters and ! stack-counters, that is, a
1afacs(k,!) which has no universal states. Further, let 1dfacs(k,) denote a one-way deterministic finite automaton with
k counters and [stack-counters.

For each x€{a,u,n,d}, a 1xfacs(k,!) M operates in time T'(n) if for each input w accepted by M, there is an accepting
computation tree of M on w such that the length of each computation path of the tree is at most T'(|w|). M operates in
realtime if T(n) = n + 1. For-each x€{a,u,n,d}, we denote by 1xfacs(k,!real) a 1xfacs(k,!) which operates in realtime.
We define

1A(k,lreal) = {L|L = T(M) for some lafacs(k,!,real) M},
1U(k,l,real) = {L|L = T(M) for some lufacs(k,l,real) M},
IN(k,lreal) = {L|L = T(M) for some 1nfacs(k,l,real) M}, and
1D(k,lreal) = {L|L = T(M) for some 1dfacs(k,l,real) M}.

It is shown in [1] that for each k > 1, each one-way nondeterministic k-stack-counter automaton can be simulated
by one-way nondeterministic 2k-counter automaton without loss of time. By using the same technique as in the proof
of this fact, we can easily show that the following fact holds.

Fact 2.1. For each k> 0,1 > 0 and m > 0 ((k,l,m) # (0,0,0)), and each Xe{A,U,N,D},
1X(k,l + m real) C 1X(k 4+ 2m, ! real). ‘

3 A Relationship between 1D (k,l,real), 1IN (k,lreal), 1U(k,l,real) and 1A(k,l,real)
This section investigates a relationship between the accepting powers of realtime lafacs’s with only universal states,
with only existential states, and with full alternation. Now, let

IN(k,1,T(n)) = {L|L = T(M) for some 1nfacs(k,!) M operating in T(n)}, and
1U(k,l,T(n)) = {L|L = T(M) for some lufacs(k,l) M operating in T(n)}.
Yoshinaga, Inoue and Takanami [5] showed that for each k > 1 and each Xe{U,N},

1D(k,0,real) ¢ 1X(%,0,real) G 1A(k,0,real), 1D(0, k,real) c 1X(0, k,real) - 1A(0, k,real),
1U(k,0,real) is incomparable with 1N(k,0,real), and 1U(0, k,real) is incomparable with 1N(0, k,real).

We below show that a similar result holds for lafacs’s. From Lemma 3.1 in [5], we can easily show the following result.

Lemma 3.1. Let L; = {wcw|w € {0,1}*}, and Ly = {wew'|w € {0,1}*,w’ # w}. Then,
(1) Ly € 1U(1,0,real),

(2) Ly € 1N(1,0,real),

(3) L2 ¢ Ur<hcoo Urcicoo Urcreso LUK, 1, m7), and

(4) Lt ¢ Ui<kcoo Urcicoo Utcrcoo IN(R L 7).

From Lemma 3.1 above, we have the follwing results.

!We note that 1 < i < |w|+ 2, where for any strings v, |v| denotes the length of v, “1”, “|w] + 17 and “jw| + 2” represent the positions of
the leftmost symbol of w, the right endmarker $, and the immediate right to $. Further, we note that 0 < j; < |8i| foreach 1 <i <L

10

Theorem 3.1. For each £ > 0,1 > 0 ((k,1) # (0,0)),
(1) 1D(k,l,real) C 1U(k, I real) C 1A(k,l.real), and
(2) 1D(k, ;real) G 1N(k, I real) C 1A(K, I real).

Theorem 3.2. For each k > 0,1 > 0 ((k,!) # (0,0)), 1U(k,l,real) is incomparable with 1N(k,! real).

4 Hierarchy Results Based on the Numbers of Counters and Stack-Counters
Inoue, Ito and Takanami [3,4] showed that for each k > 1,

1A(k + 1,0,real) — 1A(k,0,real) # ¢, and 1A(0,k + 1,real) — 1A(0, k,real) # ¢.
This section first shows that for each k >0,1>0((k,1) #(0,0)),
1U(k + 1,1,real) — 1A(k,l,real) # ¢, and IN(k + 1,i + 1real) — 1A(k,l,real) # ¢.
This result strengthens the results in [5]

1U(k + 1,0,real) — 1A(k,0,real) # ¢, 1U(0,k + 1,real) — 1A(0, k,real) # ¢,
IN(k + 3,0,real) — 1A(k,0,real) # ¢, and 1IN(0,k 4 2,real) — 1A(0, k,real) # ¢

for each k > 1.

To prove these results, we first give some necessary definitions. Let M be a lafacs(k,l,real), k > 0,1 > 0 ((k,1) #
{0,0)), and ¥ be the input alphabet of M. For each storage state s of M and for each w € &%, let an s-computation tree
of M on w is a computation tree of M whose root is labeled with the ID (w,1,s). (That is, an s-computation tree of
M on w is a computation tree which represents a computation of M on w$ starting with the input head on the leftmost
position of w and with the storage state s.) An s-accepting computation tree of M on w is an s-computation tree of M
on w whose leaves are all labeled with accepting I1D’s.

For each n > 1 and for integers a1,@2,...,a; such that 0 < ¢; < n (1 < j < k), let p.(ax,ax—1,...,a1) denote the
integer represented by (n + 1)-ary number agaj_1 ...a2a;. That is,

(@, @pt,. o) =arx (R + 1) T h a1 x (n+ 1) 2 4. 4ay x (n4+ D'+ a1 x (n + 1)°.

Let g : (N U {0}) x (N U{0}) x {0,1} — (N U {0}) be the partial function such that

n
239 +n—j ifm=0

g(”?j’m)z i—o
2(2 +n4i+1 ifm=1,

=0

where j < n. If j > n then g(n,j,m) is undefined.
For each n > 1 and for integers b;,b,,...,b such that 0 < b; < g(n,n,1)-(1 <7 < 1), let gn(bi,bi—1,...,b1) denote
the integer represented by (g(n,n,1) + 1)-ary number b;b;_; ...b2b;. That is,)
an(bisbi—r, . 01) = by x (g(n,n, 1) + 171 4 by X (g(n,m, 1) + 1) 4 o4 by x (g(n,n,1) + 1)°.
Then, for each » > 1, and for integers 0 < ¢; <n (1< j<k)and 0 < b; < g(n,n,1) (1 <<, let

on(pn(ag,...,a1),q.(br,...,b1)) = pn(ak,...,a;) X (g(n,n,1) + 1)' + gn(br,. .., b1).

The following lemma leads to our main results.

Lemma 4.1. For each k > 0,1 > 0 ((k,!) # (0,0)), let

Ak, 1) = {§r101h.. . j1%ahb¥ ey .. attb h(n,m)f. . Hh(n,m)n 2 1 & r > 1 & V(1 < 5 < K)[0 < 55 < n] &Vi(1 <
<0<t <n0<y; <n—tihe € {0,1}]& VI f L) my > 1] & Je(l < e € 1)[me = on(pn(n — si,...,
n- 31)’qn(g(n —t,n—1 - “lscl)a v vg(n —t,n—1t — ul,Cl)))]}, and

Ak, 1) = {gr121f . gLokat biicy L Loattbteh(n, my) . h(rym)R > 1 & r > 1 & V(1 L5 L k)[O <s;<n]&Vi(l <
<0< <0< y; < n— 1,,c, € {0,1}] & Ve(l < e < 1")[mE > 1 & m. # on(pa(n = Sg,...,n — s1),qn(g(n — 13,
n -1 —uper),...,g(n—t,n -ty —ug,c1)))]}

where h(n,m) = (0§")™. Then, for each k > 0,1 > 0 ((k,1) # (0,0)),

(1) A(k,1) € 1A(k, I real),

(2) A'(k,1) € 1U(k,l,real), and

(3) A(k,I) € IN(k, I+ 1,real),

and for each k> 1,1 > 0 ((k - 1,1) # (0,0))

(4) A(k,1) ¢ 1A(k — 1,0 real), and

(5) A'(k,1) ¢ 1A(k — 1,1,real),

and foreach k> 0,l>1and m>1(I-m2>0),

(6) A(k,1) ¢ 1A(k + 2m — 1,1 — m,real), and

C(7) A'(k,1) ¢ 1A(K + 2m — 1,1 — m,real).

11

The proof of (1) and (2): A(k,l) (resp., A'(k,1)) is accepted by a lafacs(k,lreal) (resp., lufacs(k,l,real)) M
which acts as follows. Let Cy,....Cx and SCq,...,5C] be the counters and the stack-counters of M, respectively, and
H be the input head of M. Suppose that an input string

w = §"1591%2. . g1k et b pa b ey L attbt g O O™ L O L L L RO 072 L L L O §

(where n > 1,7 > 1, ¢; € {0,1}, nyj, m; > 1) is presented to M. (Input strings in a form different from the above can
easily be rejected by M.) M universally branches to check the follwing two points:

(i) whether the initial segment §* is equal to every segment {7,

(ii) whether 0 < s; < nforeach j (1 < j< k), 0<{; <nand0 < u; <n—1t foreachi(l < i <), and

Me = On(pnln — sg,...yn — s1) qulg(n — tym — 8 — iy ¢p), ..., 9(n — i1, n — 1 — uy,¢1))) for some e (1 < e < 7) (resp.,
Me # On(pn(n — Sky.ooyn — 81),qn(g(n —ti,n — 4 — @), .., g9{n —ty,n — 11 —up,c1))) forany e (1 < e < 7).
(i) above can be easily checked by using one stack-counter, and (ii) above can be checked by using the following algorithm.
For each counter C; (1 < j < k), we let «; denote the storage state of ;.. For each stack-counter SC; (1 < i <),
we store the flag F; in the finite control. The value of F; is either 0 or 1. For each i (1 < i < 1), we let (5;,Ji) denote
the storage state of SC;, and let f; denote the value of F;. The counting number of SC; is g(|8:l,7:, f;). For each ¢
(1 £i<1), welet d; denote the counting number of SC;.

(a) While reading the initial segment §* of w, M stores Z" in each of k counters Ci,...,C} and each of ! stack-
counters SCy,...,SC;. After that, for each j (1 < j < k), on the segment 1%, M erases Z% in C; while reading 1%,
and for each i (1 < i <), on the segment a%b%c;, M erases Z% in SC; while reading a®, moves the i-th stack-counter
head u; cells to the left without erasing Z"~% in SC; while reading % and sets f; = ¢; € {0,1}. During this action,
M can check whether 0 < s; < nforeach j (1 <j<k),and0<?;<nand 0 < u; <n—1;foreachi(1<i<)
When H reaches the symbol “0” just after ¢;, aj = Z"~% foreach 1 < j <k, Bi = Z" 4, ji=n—t; — w;, fi = ¢i, and
d; = g(n—t;,n—t; — u;,¢) for each 1 <4 < I, and thus

on(pn(lakls. .. la]), gnlds, ... d1)) =

On(Pa(n — Sk, .y — 81) qu(g(n — t,n — 4 — wpocp),. .. og(n — Gion — 1 — uyg,c4))).

{b) Assuming that (i) above is successfully checked (i.e., n = n;; for all i, j), after reading the segment §"1°1f.. 1%
a'tb"icy .. .a%b'e; of the input w, M existentially guesses some e (1 < e < r) and checks whether m. = 0, (pn(lagl, ...,
la1]). gu(dy... . d1)) (resp., M universally branches to check whether m, # on(pn(|akl,...,]e1])sgn(di,. .., dy)) for
each € (1 < e < r)). To check whether me = on(paljasl,...,]a1]), gu(di, ..., d1)) (resp., me # on(pullar);...,la1]),
gn(dy,...,d1))), M decrements on(pn(lakl,...,le1]),q:(di,...,d1)) by one each time H meets the symbol “0” in the
substring 03" 0§<2 ... Qf"=me (é ve). In order to do so, M decrements d; (= the counting number of SC}) by one each
time H meets the symbol 0. In this case, for example, if d; = 0 when H meets the r-th 0 from the left in v, then

i. if d,, # 0 (where m is the smallest integer such that d,, # 0), then M decrements d,, by one instead of decrementing

dy by one, and M sets dy = dy = ... = d;—y = ¢g{n,n,1) by using the (assumed) length n of §"<!’s in v, (note that we
assume that neg = n for each 1 <1< m,).

il. ifdy = ... = d; = 0 and |a,,| # 0 (where m is the smallest integer such that |a,,,| # 0), then M erases the rightmost
Z on Cp, (ie., |am| — lay| — 1) by one instead of decrementing d; by one, and M sets dy = dy = ... = d; = g(n,n,1) -
and oy = a2 = ... = a1 = Z" by using the length n of §*<’s in v,.

M enters an accepting state only if H meets the last 0 in v, with jay| = ... = |ag| = dy = ... = dp = 0

(i.e., on(prllakl,- - -, la1]), guldy,. .., d1)) = 0) (resp., M enters an accepting state only if H meets the last “0” in v, with
|aj| # 0 for some 1 < j < k or with d; # 0 for some 1 < i < I (ie., on(pallakl,-..,|a1]),qn(dy, ..., d1)) # 0) or H meets
0in ve after [oy| =...= ol =d1 = ... = d; = 0). .

[In order to decrement d;(1 <7 < I) by one,

i. if fi = 1 and j; # 0, then M has only to set f; = 1, and move the i-th stack-counter head one cell to the left
(i.e., ji — ji — 1),

ii. if f; =1 and j; = 0, then M has only to set f; = 0 with 7; = 0,

iii. if f; = 0 and j; < |B;{, then M has only to set f; = 0, and move the i-th stack-counter head one cell to the right
(ie., Ji — ji+ 1), and

iv. if f; = 0 and j; = |8;| # 0, then M has only to set f; = 1, and erase the rightmost Z on SC; (i.e., |8i] — |8:| -1
and j; — ji - 1). ‘

Note that if f; = 0 and j; = |8;| = 0, then d; = g{|8il, 4, fi) = ¢(0,0,0) = C. ‘]
The proof of (3): A lnfacs(k,l + 1,real) M can accept A(k,l) as follows. Let Cy,...,Ck be the counters and
SCy,...,5Ci41 be the stack-counters of M. For a presented input string, M checks the above two points (i) and (ii)
in the proof of (1) and (2). That is. M checks by using SCj;; wheter (i) above holds, and checks by using the same
algorithm as in the proof of (1) whether (ii) holds.

The proof of (4) and (5): Suppose that there exists a lafacs(k — 1,/,real) M which accepts A(k,1) (resp., A'(k,1)).
For each n > 1, let

V(n) = {§"11h...j1%at b ¢y ... a6 crh(n, my)y . . Bh(n, mpm)) Vi1 < < R0< s5 Sn] & V(1 <i <0 <t <
n,0 < u < n—tye € {0,1}] & V(1 € f < L)1 £ my < L(n)] & Je(1 < e < L(n))[m, =
On(Pn(n — Spy ..oyt — 81),qn(g(n — ti,n — 41 — wycr),. .., 9(n — t1,n — &1 — u1,c1)))] (resp.,Ve(l < e < L(n))[m, /;é

12

On(Pn(n — sgy.ocon—s1),qulg(n —t,n — 4 —up, 1), g(n —13,m — 11 — g, e1)))))} C A(k, 1) (resp., C A'(k,1)), where
L(n) = {(n+1)* =1} x {g(n,n, 1)+ 1} + {g(n,n, 1) + 1}} =1 = (n + 1)*{g(n,n,1) + 1}} — 1, and let
W(n) = {h(n,m).. . ph(n,mp))IVi(l < i< L(n))[1 < m; < L(n)}.
Note that for each & = §71%}...§1%a" 6" ¢y ... a"b" cih(n, m)] .. . fh(n,m[,)) in V(n), there exists an accepting
computation tree of M on z which has the properties:

(i) for each computation path P from the root to a leaf, the length of P is |z3| and P represents a computation in
which the input head moves one cell to the right in each step, and thus

(ii) for each node r labeled with an ID which M enters just after the input head has read the initial segment
fr1ol . p1tkaltbiiey .. attbt e of ¥, the length of each counter and stack-counter in {(7) is bounded by (k+ 2[4 1)n +
(k+1-1), since M operates in realtime and we assume that M can enter an accepting state only when falling off the
right end marker $.

For each storage state s of M and for each y in W(n), let

My(s)

=1 if there exists an s-accepting computation tree of M on y such that for each computation path P from the root to
a leaf, the length of P is |y$| and P represents a computation in which the input head moves one cell to the right
in each step,

=0 otherwise.

For any two strings y, z in W(n), we say that y and z are M-equivalent if M,(s) = M.(s) for each storage state
s =(q,(a1,.y06_1),(Bry- -, A1), (G155 J1)) of M with 0 < || < (k+ 20+ 1)n+(k+1-1) (1 <5< k~1)and
0<7: Bl S(k+24+ 1)n+ (k+1-1) (1 <i<L1). Clearly, M-equivalence is equivalence relation on strings in W (n),
and there are at most

E(n) - 2r((k+2l+1)n+(k+1)}"+7"‘

M -equivalence classes, where r denotes the number of states of the finite control of M. We denote these A -equivalence
classes by C1,C,...,CE(n). For each y = h(n,m1)}.. .hhin,mpq,y) in W(n), let b(y) = {m|3i(1 < i < L(n))[m = m;]}.
Furthermore, for each n > 1, let R(n) = {b(y)ly € W(n)}. Then,

|R(n)| = (L(ln) > N (L(2n)) - (%3) ol _ .

We can easily see that log E(r) = O(n*+#~1) and log |R(n)| = O(n*+%}.2 Thus, we have |R(n)| > E(n) for large n.
For such n, there must be some Q, Q' (@ # Q') in R(n) and some C; (1 < ¢ < E(n)) such that the following statement
holds:

“There are two strings y, z € W(n) such that (a) b(y) = Q # Q = b(2), and (b) y, 2 € C; (i.e., y and 2 are
M-equivalent).”

Because of (a), we can, without loss of generality, assume that there is some positive integer m such that 1 <
m < L(n) and m € b(y) — b(z). Clearly, there are some sy,82,...,8k, and (t1,u1,¢1), ({2, u2,¢2), ..., (11, u, ;) such that
m = on(pn(n — sk,...,n—51),qnlg(n —t,n =ty —uy,¢1),. .., g(n — ty,n — t; —ug,¢q))) and for such s; (1 < 7 < k) and
(tiyuiy) (1 < i< 1), it follows that

y = {fr1sgLoeg . jlokatib crat2bi2cy . L bty € A(k,D)

(resp., y = Br1°11%2y .. j1%ah b1 ¢ al2bV2cy .. altbez € A'(k, 1)), and

2= fr1sg1ozg . f1tkat bt cpat2bi2 ey . Ltttz ¢ A(k,D)

(resp., 2/ = "1°141%2Y. . j1%*al b cyal2b¥2cy . . attb¥ery ¢ A'(K, D).

But because of (b), ¥’ is accepted by M iff 2’ is accepted by M, which is a contradiction. This completes the proof of
(4) and (5). ‘
The proof of (6) and (7): The proof is almost the same as that of (4) and (5) of the lemma, and so omitted here. O

We are now ready to have our main results.

Theorem 4.1. For each k > 0,1 > 0 ((k,1) # (0,0)),
(1) 1U(k + L,lreal) — 1A(k,lreal) # ¢, and
" (2) 1U(k,l + 1real) — 1A(k,lreal) # ¢.

Theorem 4.2. For each k£ > 0,1 > 0 ((k,1) # (0,0)),
(1) IN(k + 1,1+ 1,real) — 1A(k,lreal) # ¢,

(2) IN(k,l + 2.real) — 1A(k,lreal) # ¢, and

(3) IN(k + 3,1 real) — 1A(k,lreal) # ¢.

2For any set S, |S| denotes the number of elements of .

13

proof. (1) follows from Lemma 4.1»(3) and (4). (2) easily follows from (1) of the theorem. Since 1N(k,I + m,real) C
IN(k+2m, i real) foreach k > 0,1 > 0 and m > 0 ((k,{,m) # (0,0,0)) (Fact 2.1), (3) follows from (1) of the theorem. O

Book and Ginsburg [1] essentially showed that for each ¥ > 1 and each X € {N, D},
1X(k + 1,0,real) — 1X(k,0,real) # ¢, and 1X(0,k + 1,real) — 1X(0, k,real) # ¢.

Now, we strengthen this result, and show a relationship between the accepting powers of Lufacs(k, ! real)’s, Lnfacs(k,,real)’s
and ldfacs(k,lreal)’s. : : :

Lemma 4.2. For each £ > 0,1> 0 ((k,1) # (0,0)), let

Uk, 1) = {0m100%21% goratifragleey . g1 |vi(l < i < DL <1 < 5] & Vi(1 < 5 < k)[u; > 1]}, and
L(k,l) = {wewP|w € U(k,1)}.2

For each k > 0,1 > 0 ((k,1) # (0,0)),

(1) L(k,1) € 1D(k,l,real) and

(2) L(k,1)° € 1D(k,l real),*

and for each k > 1,1 >0 ((k — 1,1) # (0,0)),

(3) L(k,1) ¢ IN(k — 1,1 real),

and foreach k> 0,/ >1land m > 1 (l-m > 0),

(4) L(k,!) ¢ IN(k + 2m — 1,1 — mreal).

proof. By using the same technique as in the proof in [5], we can prove this lemma. So the proof is omitted here. O

Theorem 4.3. For each k> 0,12 0 ((k,1) # (0,0)),
(1) 1D(k + 1.1,real) — IN(k.lreal) # ¢. and
(2) 1D(k,1 4 1,real) — IN(k,l.real) # ¢.

We need the following lemma.

Lemma 4.3. For each k >0,12>0 ((k,1) # (0,0)), let co-1N(k,[,real) = {L¢|L€1N(k, L real)}.
Then, for each k > 0,1 > 0 ((k,1) # (0,0)), 1U(k, l,real) = co-1N(k,/,real).

proof. By using the same technique as in the proof of Lemma 5.1 in [5], we can easily prove this lemma. a

Theorem 4.4. For each k > 0,1 > 0 ((£,1) # (0,0)),
(1) 1D(k + 1,l,real) — 1U(k,Lreal) # ¢, and
(2) 1D(k,1 + 1,real) — 1U(k, ! real) # ¢.

proof. By Lemma 4.2 (3) and Lemma 4.3, we can show that L°(k,l) ¢ 1U(k — 1,lreal) for each £ > 1,1 > 0
((k = 1,1) # (0,0)). The theorem follows from this fact and Lemma 4.2 (2). 8]

Corollary 4.1. For each & > 0,1 > 0 ((k,1) # (0,0)), and each Xe{A,U,N,D},
(1) 1X(k + 1,l,real) — 1X(k,!l real) # ¢, and
(2) 1X(k,1 + 1,real) — 1X(k,lreal) # ¢.

Corollary 4.2. For each k > 0,1> 0 ((k,1) # (0,0)), and each X€{A,U,N,D},
(1) 1X(k,lreal) G 1X(k + 1,/ real), and
(2) 1X(k,l,real) - 1X(k,l + 1,real).

5 A Relationship between Counters and Stack-Counters .
This section investigates a relationship between the accepting powers of realtime lafacs’s.
Book and Ginsburg [1] showed that for each £ > 1,

IN(0, k,real) — 1N(2k — 1,0,real) # ¢.
Yoshinaga, Inoue and Takanami [5] showed that for each & > 1,

1D(0, k,real) — 1U(2k — 1,0,real) # ¢.

3For any string w, w™ denotes the reversal of w.
*For any language L, L© denotes the complement of I.

14

We first show that a similar result holds for 1afacs’s with only universal states and with only existential states.

_Theorem 5.1. Foreach k> 0,1> 0 and m > 1,
(1) 1D(k,1 + m,real) — IN(k + 2m — 1,l.real) # ¢, and
(2) 1D(k,l1 + m.real) — 1U(k + 2m — 1,l,real) # ¢.

proof. (1) follows from Lemma 4.2 (1) and (4). By using the same technique as in the proof of Theorem 4.4, (2)
follows from (1) of this theorem. ‘ o

Corollary 5.1. Foreach k > 0,1 > 0 and m > 1, and each Xe{U,N,D}, 1X(k,! + m,real) — 1X(k+ 2m — 1,l,real) # ¢.

Inoue, Ito and Takanami [4] showed that for each k > 1,
1A(0, k,real) — 1A(k,0,real) # ¢.
Yoshinaga, Inoue and Takanami [5] strengthened this result and showed that for each k£ > 1,
1U(0, k,real) — L1A(k,0,real) # &, IN(0,k,real) — 1A(k,0,real) # ¢ (k # 2), and 1A(0, k,real) — 1A(2k — 1,0,real) # ¢.

From Lemma 4.1, we now strengthen this result further.

Theorem 5.2. Foreachk>0,/>0and m > 1,
(1) 1U(k,I + m,real) — 1A(k + 2m — 1,l,real) # ¢, and
(2) IN(k,i+ m + 1,real) — 1A(k + 2m — 1,l,real) # ¢.

Theorem 5.3. For each £ > 0,12> 0and m > 1, 1A(k,! + m,real) — 1A(k 4+ 2m — 1, real) # &.

Remark Book and Ginsburg [1] showed that there are no i and j such that 1N(¢,0,real) = 1N(0,j,real). It is
shown in [5] that there are no i and j such that 1X(7,0,real) = 1X(0, j,real) for each X€{U,D}. For each X€{A,U,N,D},
if “1X(k,1+ 1,real) G 1X(k + 2,l.real) for each k > 0,1 > 0”7 can be proved, then from the results in this paper, it follows
that there are no pairs (%, j) and (k,1) such that (¢, j) # (k,1) and 1X(¢, j,real) = 1X(k,l,real).

6 Conclusion
In this paper, we presented several hierarchical results in the accepting powers of realtime lafacs’s. We conclude
this paper by listing up some open problems.
(1) For each k > 0, ! > 0 and each Xe{N,D},"
1X(k + 1,Lreal) — 1A(k,Lreal) # ¢ 7 and 1X(k,l + 1real) — 1A(k,lreal) # ¢ ?
(2) IN(k,l 4+ m,real) — 1A(k + 2m — 1,l,real) # ¢ foreach k> 0,/ >0and m > 1?7, and
(3) 1X(k,1 + 1,real) G 1X(k + 2,l.real) for each k > 0, I > 0 and each X€{A,U,N,D} ?

References :

(1) R. Book and S. Ginsburg, “Multi-stack-counter languages”, Math. Systems Theory, vol. 6, pp. 37-48, 1972.

(2) AK. Chandra, D.C. Kozen and L.J. Stockmeyer, “Alternation”, J. ACM, vol. 28, no. 1, pp. 114-133, 1981.

(3) K. Inoue, A. Ito and I. Takanami, “A note on real-time one-way alternating multicounter machines”, Theoret. Com-
put. Sci., vol. 88, pp. 287-296, 1991. ;

(4) K. Inoue, I. Takanami and A. Ito, “A note on real-time one-way alternating multi-stack-counter automata”, in
Toyohashi Symp. on Theoret. Comput. Sci., (Toyohashi, Japan), pp. 11-15, 1990.

(5) T. Yoshinaga, K. Inoue and I. Takanami, “Hierarchical Properties of Realtime One-Way Alternating Multi-Stack-
Counter Automata”, Technical Report of IEICE, Comp93-46, pp. 59-68, 1993.

(6) K.N. King, “Alternating multihead finite automata”, in Automata, Languages and Programing, 8th Collogquium 1981,
Lecture Notes in Computer Science, vol. 115, pp. 506-520, 1981.

(7) R.E. Ladner, R.J. Liptom and L.J. Stockmeyer, “Alternating pushdown automata”, in Proc. 19th IEEE Symp. on
Found. Comput. Sci., (Ann Arbor, ML), pp. 92-106, 1978,

(8) J. Hromkovic, “Alternation multicounter machines with constant number of reversals”, Inform. Process. Lett., vol.
21, pp. 7-9, 1985.

(9) P.C. Fisher, A.R. Meyer and A.L. Rosenberg, “Counter machines and counter languages”, Math. Systems Theory,
vol. 2, pp. 265-283, 1968. '

(10) S.A. Greibach, “Remarks on the complexity of nondeterministic counter languages”, Theoret. Comput. Sci., vol.
1, pp. 269-288, 1976.

