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1. Introduction

The graph structure is a strong formalism for representing pictures in syntactic pattern
recognition. Many models for graph grammars have been proposed as a kind of hyper-
dimensional generating systems (see e.g., [1], [2], and [3]). As one of such graph grammars,
we introduced node-replacement path-controlled embedding graph grammars (nPCE graph
grammars) in [4] for describing uniform structures.

On the other hand, region representation on digital spaces is an important issue in image
processing and computer graphics. The quadtree representation of a digital image provides a
variable resolution encoding of a region according to the sizes and number of maximal
nonoverlapping blocks. Samet [5], [6] provides good tutorial and bibliography of the
researches on quadtrees as well as their applications. In [7], we introduced an optimal image
compression algorithm using the concept of graph rewriting rules and showed that its time
complexity is same as the case of the best quadtree representation.

The development of the quadtree was motivated to a large degree by a desire to save
storage. A quadtree medial axis transform (QMAT), which is introduced in [8], is more
compact than the quadtree and has a decreased shift sensitivity.

In this paper, we will introduce a medial axis transform based on our graph expression for
a given image, rather than quadtree. Since our image compression algorithm uses the concept
of graph rewriting rules, the medial axis transform for graph expression can be defined as an
extension of graph rewriting.

2. Basic definitions
In this section, we review the definitions of nPCE graph grammars [9]. At first, A

directed node- and edge-labelled graph (EDG-graph) over X and T is a quintuple H = <V,
E, Z, T, ¢>, where V is the finite, nonempty set of nodes, X is the finite, nonempty set of
node labels, T is the finite nonempty set of edge labels, E is the set of edges of the form <v,
A, w>, where u, we 'V, Ae T, ¢: VX is the node labelling function. An EDG-graph H is

called an OS-graph if (1) for each AeT there exists an inverse edge label A le I2) Tis
simply ordered by a relation <, and (3) for each ve V, if there exists <v, A, w>€ E then there
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does not exist <v, ¥, z> such that A = y or <z, B, v>€ E such that 7;1=B. Let us take a set of
edge labels for our OS-graphs as {h, -h, v, -v}. Each of its elements represents “EAST”,
“WEST”, “NORTH”, and “SOUTH?”, respectively, and are ordered -h < -v < h <v. The
inverse edge labels of h, -h, v, and -v are -h, h, -v, and v, respectively.

Now we review the definitions of nPCE graph grammars. At first we review the
definitions of the path groups describing the square grid [10].

Definition 2.1. A discrete space is a finitely presented abelian path group I' = (X/D),

where X has 2n generators s{, 87, ..., Sy, sl'l, 82'1, ey sn'l, and D contains all relations
other than the commutativity (sisjsi'lsj'1= 1) and the inverse iterations (sisi‘lz 1). The

1=

square grid is a discrete space described by a four generators s;= (north), so= (east), s1”

(south), 82'1= (west), and D=0.

Note that the path groups defined above can also be defined on a graph generated by a
graph grammar by regarding the edge labels of the generated graph as the generators.

Definition 2.2. A node-replacement graph gfammar using path controlled embedding
with 4 generators abelian path groups, (nPCE4 grammar), is a construction

G=<ZN,P, Vv, Z, AN, AE>) where Xy is a finite nonempty set of node labels, Ay is a finite
nonempty subset of X, called terminal node labels, Ag={h’, v’, h, v}, called terminal edge
labels, P is a finite set of productions of form (v, B), where v, is a graph consisting of only
one node labelled with ae INyBisa connected OS-graph, v is a mapping from Ag* into Ag
provided that for any ne AE"’, Y maps T into c, the first label of T, i.e., there exists a o€ AE*

such that m=co, Z is a connected OS-graph over (X, Ag) called the axiom.

A direct derivation step of a nPCE4 grammar G, =@ » is performed as follows:

Let H be an OS-graph. Let p = (v,, B) be a production in P. Let B’ be isomorphic to B
(with h, an isomorphism from B’ into B), where B’ and H-v, have no common nodes. Then
the result of the application of p to H (by using h) is obtained by replacing v, with §’ and
adding edges <u, A, w> between every nodes u in B’ and every w in H-v, such that if the
path from node 1 to node u on B’ is ¢ then w is the node of H defined by v,co or its

equivalent path under abelian path group with four generators and if y(co)=h or v then the
added edges are <u, y(co), w>, otherwise <w, y(co)-1, u>, where ¢ is an element of Ag.

The language of G, denoted as L(G), is defined by L(G) = {H | H is an OS-graph over
(Ay, Ap) and Z =™ H). |



The graph compression rules (see [7])
which work on the OS-graphs representing
two-dimensional rectangular arrays rewrite
four nodes having same label and forming a
unit square into a node with the same label to
get hierarchical graph representation. Such
rules are almost equal to the compression law
in the quadtrees. These graph rewriting
rules, however, need some intermediate
nodes to preserve the neighborhood relations
of the original graph and to restrict both of
the indegree and outdegree within two,

respectively. These intermediate nodes are A

or V, which mean the ascending and
descending compression levels according to
the direction of edges attached to the
intermediate nodes and labelled with “h” or
“v”. If we traverse such edges against their
direction, the meaning of the intermediate
nodes will be inverted. The image
reconstruction process on a given
compressed graph is done by using graph
expansion rules. Roughly speaking, the

(b) graph expansion rules for the OS-graphs are
Fig. 1. An input i i resentsti . .
'9- 1. Aninputimage and its graph represontsiion. ‘defined as the inverse rules of the graph
compression rules.

3. A distance transform on graphs

The quadtree medial axis transform (QMAT) of an image is the quadtree whose BLACK
nodes correspond to the BLACK blocks and each BLACK node has an associated distance
transform value. For the QMAT, the Maximum Value distance (also known as the chessboard

distance): dulp,q)= max‘( | Px-4:b| P Y qY| ) is used since its maximal blocks are
squares. On the other hand, our graph medial axis transform (GMAT) uses the path-length
distance which is introduced in [11]. It is based on the chessboard distance, but depends also
on paths through the input image. The distance transform T for a given graph expression is
defined as a function that gives, for each BLACK node in the given graph expression, the
distance from the center of the block represented by the node to the border of the nearest
WHITE block. A path is defined as a sequence of blocks which are adjacent along their sides
to their previous and next blocks. There are no diagonal steps in a path. A path P, , through a
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sequence of blocks by, by, ..., by, where x is the center of bl and z is on the border of by,
Assume the centers of blocks bl, ..rs Dy are points X1» «es X the length of the path L(sz)

is defined as:
- ¥ L =1 S (size of b,
LP,)= ldM(x,-+1xi)+2(szzeofbn_1)—2(szze0fb1)+i 2(szzeof i)
1

The distance transform, T(B), is defined as the minimum path length from a point x at the
~ center of the BLACK block B to some point z on the border of the nearest WHITE block.
That is, FB,W)=minL(P,,), T(B)=r%nF(B,W).

For example, Fig. la is a block
decomposition of a givén image and its
corresponding graph representation is given
in Fig. 1b. The distance transform of each
BLACK block is given in Fig. 2. Note that
the distance transforms of all WHITE blocks

- are equal to zero.
Almost same arguments as in [11], the
172 © following results hold. They are quite useful
Fig. 2. Distance transform T of the image in Fig.1a. to define the graph rewriting rules.

Lemma 3.1. The minimum-distance path from a node to the border of the nearest WHITE
node does not pass through nodes lager than the starting node.

Lemma 3.2. When calculating the distance of any given node, the node itself cannot
participate to the minimum-distance paths of any adjacent nodes.

The calculation of distance transform can be done by using a kind of graph rewriting rules.
Actually, the rules defined below don’t rewrite graphs to other graphs. They rrianipulate
distance transform only for each BLACK block. To define our graph expansion rules, path-
controlled embedding rules must be extended to the cases of context-sensitive rewriting rules.

Definition 3.1. A graph production rules is a construction (o, B, y), where o and P are
connected OS-graphs, y is a mapping from (vxAgt) into (vXAg) provided that for any

ne Ag*, W maps w into c, the first label of =, i.e., there exists a e AE* such that n=co

Note here that the extended embedding rules still do not depend on node labels.The |
definition of graph rewriting rules for image reconstruction are as follows:

Definition 3.2.  Graph rewriting rules for calculating distance transform T have the
following three schemes:
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ey

T(1) = undefined T(1) = min T(i) + 4 (size of node 1)

where the label of node 1 must be BLACK, and the labels of all edges are from {h, v}. The
distance transforms of all nodes other than node 1 must be defined.

2
—

2 3 2 3
T(1) = undefined T(1) = min (T(2), T(3))

where the labels of nodes 2 and 3 are arbitrary including A and V. The distance transforms of
nodes 2 and 3 must be defined.
3)
®, = o,
T(1) = undefined T(1)=0

where the label of node 1 is WHITE. 4

For each of those rule schemes, y is defined such that all nodes in each scheme are
connected to previously connected nodes. Since such definitions are quite simple, the

definition of y is omitted.

Theorem 3.1. For any given graph expression of binary input image, the distance
transform T for each BLACK node of the graph expression is determined by the applications
of graph rewriting rules in Definition 3.2. :

4. Graph medial axis transform

The graph medial axis transform (GMAT) is a graph expression for digitized images. It
divides the input image into a set of nondisjoint circle. Unlike from Semet’s quadtree medial
axis transform (QMAT) [8], GMAT adopts path-length transform T discussed previous
section. So GMAT’s circles do not become squares.

To define the graph medial axis transform, we must define the graph expression skeleton. -
Let the set of all BLACK blocks in the input image be B. For each BLACK block b;e B, let
SQ(b;) be the part of the input image whose center is x; (center of b;) and whose side length is

equal to 2*T(b;).
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Definition 4.1. The graph expression skeleton is the set, SK, of BLACK blocks

satisfying the following properties:
(1) B = UNION(SQ(b;)),

(2) for any s;e SK, there isn’t by in B vwhich is not equal to s; and SQ(s;)=SQ(by),

(3) for any b;e B, there exists t; in SK such that SQ(b;)=SQ(ty).

Definition 4.2.  The graph medial axis transform is the graph expression whose BLACK
nodes came from graph expression skeleton and each of them has an path-length transform

associated to it.

For example, the GMAT for the digitized image of Fig. 1a is represented in Fig. 3. Each

. BLACK node of it has an value of distance transform given in Fig. 2.

Definition 4.3.  Graph rewriting rules for GMAT have the following three schemes:
(D

a a
o—>0 == O—>0
1 2 1 2

if size(1) + %size(Z) +T() < TR

where the label for node 1 is BLACK, for node 2 and 2’ are BLACK, A, or V, for node 1’ is
WHITE. The edge label a is from {h, v, h’, v’}.

(2)
a a
1 2 ¥ 2
T(1') =T(2) and T(2') = T(2)
where the labels for nodes 2 and 2’ are BLACK, or A. The edge label a is from {h, v, hyy,
hD, VL, VR} .

(3)
a a
1 2 1 !

T(1Y =T(1)and T(2') = T(1)
where the labels for nodes 1 and 1’ are BLACK, or A. The edge label a is from {h, v, hyy,

hD, VL, VR} -
For each of those rule schemes, y is defined such that all nodes in each scheme are
connected to previously connected nodes. Again they are omitted. '
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To compress the graph expression around newly introduced white nodes, we need graph
compression rules in [7].

Fig. 3. GMAT representation for the image in Fig. 1a.

Theorem 4.1.  For any given graph expression of binary input image, its GMAT is
obtained by the applications of graph rewriting rules in Definition 4.3 providing that the
distance transform T for each BLACK node of the graph expression is given
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