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AVANT-PROPOS
TO NILPOTENT GEOMETRY AND ANALYSIS

京都教育大 森本 徹 (TOHRU MORIMOTO)

\S 1. At the beginning of the colloquim entitled “Nilpotent Geometry and Analysis” I
would like to address what I wish to mean by this title.

First of all I introduce the notion of filtered manifold. A tangential filtration $F$ on a
differentiable manifold $M$ is a sequence $\{F^{P}\}_{p\in Z}$ of subbundles of the tangent bundle $TM$

of $M$ such that the following conditions are satisfied:

$ii)i)F^{0}=0,\cup p\in ZF^{p}=TMF^{p}\supset F^{p+1}$
,

iii) $[\underline{F}^{p},\underline{F}^{q}]\subset\underline{F}^{p+q}$ , for all $p,$ $q\in Z$ ,
where $\underline{F}^{p}$ denotes the sheaf of the germs of sections of $F^{p}$ . A filtered manifold is a
differentiable manifold $M$ equipped with a tangential filtration $F$ . We shall often denote
by the bold letter $M$ the filtered manifold $(M, F)$ and by $\{T^{p}N\mathbb{I}\}$ or $\{F^{p}TM\}$ its tangential
filtration. An isomorphism of a filtered manifold NI onto a filtered manifold $M’$ is a
diffeomorphism $\varphi$ : $Marrow M’$ such that $\varphi_{*}T^{p}N\mathbb{I}=T^{p}M’$ for all $p\in Z$ , where $\varphi_{*}$ denotes
the differential of $\varphi$ . Let $M$ be a filtered manifold. By definition there is an integer $\mu\geq 0$

such that $T^{-\mu}M=TM$ . The minimum of such integers is called the depth of M.
The notion of filtered manifold is not only a generalization of that of manifold but also

includes various interesting geometric structures. Let us give some examples.
1) Trivial filtration. A differentiable manifold $M$ itself may be regarded as a filtered

manifold equipped with the trivial filtration defined by $F_{t^{p}r}TM=TM$ for $p<0$ and
$F_{t^{q}r}TM=0$ for $q\geq 0$ .

2) Tangential filtration derived from a regular differential system (Tanaka [15]). Let $D$

be a differential system on a differentiable manifold $M$ , that is, a subbundle of the tangent
bundle of $M$ . Then there is associated a sequence of subsheaves $\{\mathcal{D}^{P}\}_{p<0}$ of $\underline{TM}$ , called
the derived systems of $D$ , which is defined inductively by:

$\mathcal{D}^{-1}=\underline{D}$, $\mathcal{D}^{p-1}=\mathcal{D}^{p}+[\mathcal{D}^{p}, \mathcal{D}^{-1}]$ $(p<0)$ .

It then holds that:
$[\mathcal{D}^{p}, \mathcal{D}^{q}]\subset \mathcal{D}^{p+q}$ for $p,$ $q<0$ .

Suppose that the derived systems $\mathcal{D}^{P}$ are all vector bundles, that is, there are subbundles
$D^{P}\subset TM$ such that $\underline{D}^{p}=\mathcal{D}^{p}$ for all $p<0$ (in this case the differential system $D$ is called
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regular). Then there exists a minimum integer $\mu\geq 1$ such that $D^{p}=D^{-\mu}$ for all $p\leq-\mu$ .
Setting

$F^{p}TM=\{\begin{array}{l}0(p\geq 0)D^{p}(-1\geq p\geq-\mu)TM(p\leq-\mu-l)\end{array}$

we have a filtered manifold $M=(M, F)$ derived from the regular differential system $D$ .
There are two cases to distinguish. If $D^{-\mu}\subsetneqq TM$ , then $D^{-\mu}$ is completely integrable

and defines a foliation on $M$ . In particular, if $D$ is completely integrable the filtered
manifold $M$ is nothing but a foliated manifold. If $D^{-\mu}=TM$ , we say that the tangential
filtration $F$ is generated by the differential system $D$ .

If a filtered manifold $M$ (or $M’$ ) is derived from a differential system $D$ on $M$ (resp. $D$ ‘

on $M’$ ), then $M$ and $M’$ are isomorphic if and only if $(M, D)$ and $(M’, D’)$ are isomorphic,
that is, there is a diffeomorphism $\varphi$ : $Marrow M’$ such that $\varphi_{*}D=D’$ .

The notion of filtered manifold has stemmed from the geometry of differential systems
elaborated by N. Tanaka.

3) Higher order contact manifold. Let $\pi$ : $Marrow N$ be a fibred manifold. Let $J^{k}(M, N)$

be the bundle of k-jets of cross-sections of $\pi$ . On this jet bundle we have a sequence
of canonical differential systems $\{D^{p}\}$ called the higher order contact structure. In local
coordinates it is expressed as follows: Let $(x^{1}, \cdots x^{n}),$ $(x^{1}, \cdots x^{n}, y^{1}, \cdots y^{m})$ be local
coordinates systems of $N$ and $M$ respectively. Then $(x^{1}, \cdots x^{n}, \cdots p_{\alpha}^{i}, \cdots)$ , where $p_{\alpha}^{i}=$

$\frac{\partial^{|\alpha|}y^{i}}{\partial x^{\alpha}}$ with $\alpha=$
$(\alpha_{1}, \cdots , \alpha_{n}),$

$|\alpha|\leq k$ , gives a local coordinate system of $J^{k}(M, N)$ called
a canonical coordinates system. Put

$\omega_{\alpha}^{i}=dp_{\alpha}^{i}-\sum_{j=1}^{n}p_{\alpha+1_{j}}^{i}dx^{j}$

for $|\alpha|\leq k-1$ , with $\alpha+1_{j}=(\alpha_{1}, \cdots\alpha_{j}+1, \cdots\alpha_{n})$ , and define $D^{p}(p\leq-1)$ by the
following Pfaff equations:

$D^{p}$ : $\omega_{\alpha}^{i}=0$ $(i=1, \cdots , n |\alpha|\leq k+p)$ .

It is easy to see that $D^{p}$ are well-defined subbundles of $TJ^{k}(M, N)$ and satisfy:
i) $\underline{D}^{p-1}=\underline{D}^{p}+[\underline{D}^{p}, \underline{D}^{-1}]$ ,
ii) $D^{p}=TJ^{k}(M, N)$ for $p\leq-k-1$ .

We thus obtain a canonical tangential filtration $\{D^{p}\}$ on $J^{k}(M, N)$ of depth $k+1$ generated
by $D^{-1}$ . It should be noted that if $\dim M=n+1,$ $\dim N=n$ and $k=1$ then $J^{1}(M, N)$

is a contact manifold having $D^{-1}$ as its contact structure.
Higher order contact structures as well as contact structures play a fundamental role in

geometric studies of differential equations (cf. [18], [19]).
4) Standard filtered manifold. Let $\mathfrak{n}$ be a finite-dimensional Lie algebra endowed with

a gradation
$\mathfrak{n}=\bigoplus_{p\in Z}\mathfrak{n}_{p}$

such that

i) $[\mathfrak{n}_{p}, \mathfrak{n}_{q}]\subset \mathfrak{n}_{p+q}$ ,
ii) $\mathfrak{n}_{p}=0$ $p\geq 0$ .
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Note that $\mathfrak{n}$ is therefore nilpotent. Let $N$ be a Lie group whose Lie algebra is $\mathfrak{n}$ . Set
$\mathfrak{n}^{p}=\bigoplus_{i\geq p}$ ni and identify $N\cross \mathfrak{n}^{p}$ with a left invariant subbundle of $TN$ , then $\{N\cross \mathfrak{n}^{p}\}_{p\in Z}$ is

a tangential filtration on $N$ . The filtered manifold $N=(N, \{N\cross \mathfrak{n}^{P}\})$ is called a standard
filtered manifold of type $\mathfrak{n}$ .

Let $M$ be a filtered manifold. The tangential filtration $\{T^{p}M\}$ defines on each tangent
space $T_{x}M,$ $x\in M$ , the induced filtration $\{T_{x}^{p}M\}$ . We denote by $T_{x}M$ this filtered vector
space $(T_{x}M, \{T_{x}^{P}MI\})$ . Now by setting

$gr_{p}T_{x}M=T_{x}^{p}M/T_{x}^{p+1}M$ ,

we form a graded vector space:

$grT_{x} \mathbb{N}\mathbb{I}=\bigoplus_{p\in \mathbb{Z}}gr_{p}T_{x}M$
.

This vector space carries a natural bracket operation induced from the Lie bracket of
vector fields: For $\xi\in gr_{p}T_{x}M,$ $\eta\in gr_{q}T_{x}M$ , take local cross-sections $X,$ $Y$ of $T^{p}M,$ $T^{q}M$

respectively such that $\xi\equiv X_{x}(mod T_{x}^{P+1}M),$ $\eta\equiv Y_{x}(mod T_{x^{q+1}}M)$ , and define $[\xi, \eta]\equiv$

$[X, Y]_{x}(mod T_{x}^{P+q+1}M)$ . It is then easy to see that this bracket operation is well-defined
and makes $grT_{x}M$ a Lie algebra. Clearly we have:

i) $[gr_{p}T_{x}M, gr_{q}T_{x}M]\subset gr_{p+q}T_{x}N\mathbb{I}$,
ii) $gr_{p}T_{x}M=0$ for $p\geq 0$ .

This graded Lie algebra $grT_{x}M$ is called the symbol algebra of $M$ at $x$ ([15]), and may be
considered as the tangent space (algebra) at $x$ of the filtered manifold $N\mathbb{I}$ or the first order
approximation (in some weighted sense) at $x$ of the filtered manifold M.

We wish to study geometric objects and differential equations on filtered manifolds
by letting the symbol algebras (nilpotent Lie algebras) play the fundamental role that the
tangent spaces (abelian Lie algebras) usually have played for manifolds. This involves, in
particular, a generalization from the abelian to the nilpotent, and from the polynomial ring
to the enveloping algebra of a nilpotent Lie algebra. We wish to call nilpotent geometry
and analysis attempts in these directions and related topics.

Now I would like to discuss what has interested me and has been done toward this.

\S 2. Geometry on filtered manifolds.
One of the fundamental problems in geometry is the equivalence problem of geometric

structures. It is to find criteria to decide whether or not two geometric structures are
(locally) equivalent.

Let us briefly mention the history. The general equivalence problem has been studied
by many geometers since S. Lie. In particular, E. Cartan, in his study of infinite groups
[1], invented a general method to treat the equivalence problem on the basis of the method
of moving frames and the theory of Pfaff systems in involution, and found important
applications in various domains of his work. However, his method was rather of the nature
of a general heuristic principle not settled in precise mathematical concepts.
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As was brought to light by C. Ehresmann and others, one of the fundamental concepts
underlying his method is that of principal fibre bundle and G-structure. The extensive
works which followed, in particular, I.M. Singer- S. Sternberg [12] and S. Sternberg [14],
gave a rigorous foundation to deal with the general equivalence problem as that of G-
structures and clarified important aspects of Cartan’s ideas.

But the theory of G-structures as achieved there did not seem adequate to treat the
equivalence problem in full generality: Even if one confines oneself to the equivalence
problem of G-structures (the first order geometric structures), one has to deal with higher
order geometric structures in a way suitable to find the higher order invariants of G-
structures, and moreover it is necessary to develop a theory including the intransitive
structures.

In answer to this, we developed in [8] a general scheme to treat the equivalence problem
on the basis of the higher order “non-commutative” frame bundles, and gave a method
to solve the general equivalence problem in a neighbourhood of every generic point in the
analytic category.

On the other hand, in applications to various geometric problems the general method of
G-structures is not always effective. For instance, the deep work of Cartan on les syst\‘emes
de Pfaff \‘a cinq variables [2] is far from being well understood merely by the usual approach
of G-structures. Here he elaborated a more refined method fitting in with the structures
considered: a method of reduction by using Pfaff systems and of constructing what is now
called a Cartan connection.

In his series of papers (in particular, [15],[17]), N. Tanaka developed this aspect exten-
sively as the geometry of differential systems, and found various applications, especially
in CR geometry [16] and in the geometric study of ordinary differential equations [18]. Of
particular importance are the prolongation method based on the algebraic prolongation of
fundamental graded Lie algebras and the construction of Cartan connections for geometric
structures associated with simple graded Lie algebras.

In [11], by integrating the Tanaka theory and our general method [8], we introduced
the notion of filtered manifold and developed a unified method to study the geometric
structures on filtered manifolds.

In particular, we have introduced the concept of involutive geometric structure on fil-
tered manifold by using the generalized Spencer cohomology group,to study the geometric
structures of infinite type.

As another achievement of our method, we have obtained a general criterion to construct
a Cartan connection associated with a geometric structure, generalizing and simplifying
the construction of Tanaka.

For a treatise on these subjects refer to [11]. Here we only explain just the entrance of
our formulation.

Let $M$ be a filtered manifold. Choose a graded vector space $\mathfrak{v}=\oplus \mathfrak{v}_{i}$ isomorphic to the
graded Lie algebra $grT_{x}M$ filtered vector space $T_{x}M$ for some and hence all $x\in M$ . Let
$\mathcal{R}^{(0)}(M)$ be the totality of the isomorphisms as graded vector spaces $z$ : $\mathfrak{v}arrow grT_{x}M$ for
any $x\in M$ . Then $\mathcal{R}^{(0)}(M)$ is a principal fiber bundle over $M$ with structure group $Aut(\mathfrak{v})$

and called the first order frame bundle of M.
A subbundle of $\mathcal{R}^{(0)}(M)$ is called a first order geometric structure on M. It is a gen-
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eralization of G-structure and most of interesting geometric structures can be formulated
in this way. It is for these geometric structures that the studies mentioned above are de-
veloped. It should be noted that a filtered manifold $M$ is in general not locally trivial and
that the local equivalence problem of $\mathcal{R}^{(0)}(M)$ itself is already a difficult and interesting
problem.

\S 3. Differential equations on filtered manifold.
For a differential operator on a filtered manifold $(M, F)$ , it is often more natural and

better to use a weighted ordering induced from the tangential filtration $F$ rather than the
usual ordering: The weighted order is defined for a vector field $X$ to be $\leq k$ if $X$ is a
section of $F^{-k}TM$ and is extended to any differential operator in the obvious manner. We
wish to study differential equations systematically by using this weighted ordering and see
to what extent the usual theory can be naturally generalized and on the other hand what
phenomena different from the usual occur.

First we consider the formal theory, that is, to obtain a criterion for the formal integra-
bility of a given differential equations. As well-known as Cartan-K\"ahler theorem, Cartan
formulated the formal integrability as systems in involution in terms of Pfaff systems. The
algebraic aspect of the notion of involutivity is later clarified by Kuranishi, Sternberg and
others. In terms of jet bundles the formal theory is then settled by Spencer, Quillen, and
Goldschmidt. (See, e.g., [3], [4], [13].)

The formal theory can be generalized quite naturally to differential equations on filtered
manifolds. For a vector bundle $E$ on a filtered manifold $M=(M, F)$ we introduce the
k-th weighted jet bundle $\hat{J}^{k}E$ . Let $\underline{E}_{x}$ be the stalk at $x$ of the sheaf $\underline{E}$ and let $F^{k+1}\underline{E}_{x}$ be
the subspace of $\underline{E}_{x}$ consisting of $u\in\underline{E}_{x}$ such that $D_{x}(\langle\alpha, u))=0$ for for any differential
operator $D$ of weighted order $\leq k$ and for any section $\alpha$ of $E^{*}$ . We then set $\hat{J}_{x}^{k}E=$

$E_{x}/F^{k+1}\underline{E}_{x}$ and $\hat{J}^{k}E=\bigcup_{x\in M}\hat{J}_{x}^{k}E$ , which is called the weighted k-th jet bundle.
Now a system of differential equations on $M$ of weighted order $\leq k$ is defined by a

subbundle (submanifold if $nonlinear$) $R^{k}$ of $\hat{J}^{k}E$ . A section $u$ of $E$ is a solution of $R^{k}$ if
the weighted jet $\hat{J}^{k}u$ is contained in $R^{k}$ .

The formal theory for differential equations based on weighted jet bundles can be de-
veloped analogously to the one based on usual jet bundle, in which the following exact
sequence plays an important role:

$(^{*})$ $0arrow U_{k}(grTM)^{*}\otimes Earrow\hat{J}^{k}Earrow\hat{J}^{k-1}Earrow 0$ ,

where $U_{k}(grTM)^{*}$ is the bundle over $M$ whose fibre $U_{k}(grT_{x}M)^{*}$ at $x$ is the dual of the
k-th homogeneous component (in the weighted sense) of the universal enveloping algebra
$U(grT_{x}M)$ of the graded nilpotent Lie algebra $grT_{x}M$ . Note that in the weighted version
$U_{k}(grTM)^{*}$ takes the the place that the the k-times symmetric tensor of the cotangent
bundle $S^{k}(T^{*}M)$ does in the usual jet. We have also the notion of involutivity in the
weighted sense (roughly speaking, it is a criterion for formal solvability in terms of weighted
formal expansion) by using the generalized Spencer cohomology group. The detail will be
developed in [10].

Next let us consider the problem of convergence. Cartan-K\"ahler theorem asserts that if
a system of differential equations is involutive and analytic then it has an analytic solution.
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We then ask whether it remains true for a weighted involutive system. For that, as a simple
example, consider the following differential equation in a neighbourhood of $0$ in $\mathbb{R}^{2}$ :

$(a(x, t) \frac{\partial^{2}}{\partial^{2}x}+\frac{\partial}{\partial t})u=f(x,t)$ ,

where $a$ and $f$ are analytic functions. If $a(0)=0$ the equation is not involutive at $0$ . But
if we regard $\mathbb{R}^{2}$ as a filtered manifold with a tangential filtration $F$ defined by: $F^{-1}=$

$\langle\frac{\partial}{\partial x}\rangle,$ $F^{-2}=T\mathbb{R}^{2}$ then the left hand side of the equation is homogeneous of weighted order
2 and therefore the equation is involutive in the weighted sense even if $a$ vanishes at $0$ .
Since the equation is not Kowalevskian if $a(0)=0$ , it does not in general admit analytic
solution. In fact, we can choose $a$ and $f$ so that any formal solution at $0$ is divergent.
Thus it turns out that there does not necessarily exist convergent solutions for a weighted
involutive system.

However, it holds and is not hard to prove that the equation always possesses a formal
solution $u$ satisfying the following estimate:

$|(( \frac{\partial}{\partial x})^{p}(\frac{\partial}{\partial t})^{q}u)(0)|\leq Cp!(q!)^{2}\rho^{p+q}$

for any non-negative integers $p,$ $q$ with some positive constant $C,$ $\rho$ .
$\mathbb{R}^{3}:We$

take another example. Consider the following equation in a neighbourhood of $0$ in

$(^{**})$ $(Z+aX^{2}+bXY+cY^{2})u=f$ ,

where $X,$ $Y,$ $Z$ are vector fields on $\mathbb{R}^{3}$ defined by

$X= \frac{\partial}{\partial x}-\frac{1}{2}y\frac{\partial}{\partial z}$ , $Y=\frac{\partial}{\partial y}+\frac{1}{2}x\frac{\partial}{\partial z}$ , $Z= \frac{\partial}{\partial z}$

and a $,$

$b,$ $c$ are analytic functions which vanish at the origin and $f$ is any analytic function.
This equation is degenerate second order differential equation and is not involutive in

the usual sense, so there is not necessarily analytic solution.
But since [X, $Y$] $=Z,$ $[X, Z]=[Y, Z]=0$ the vectors $X,$ $Y,$ $Z$ generate a nilpotent

graded Lie algebra (3-dimensional Heisenberg Lie algebra) $\mathfrak{n}=\mathfrak{n}_{-1}\oplus \mathfrak{n}_{-2}$ with $\mathfrak{n}_{-1}=$

\langle X, $Y\rangle$ , $\mathfrak{n}_{-2}=\langle Z\rangle$ we can identify $\mathbb{R}^{3}$ with the Heisenberg Lie group. If we regard $\mathbb{R}^{3}$ as
a standard filtered manifold in this way, then the equation is weighted involutive because
the weighted order of $Z$ is equal to 2 while those of $X,$ $Y$ are 1. We then expect there
always exists a formal solution $u$ of $(^{**})$ at the origin satisfying the following estimate:

$|X^{p}Y^{q}Z^{r}u(0)|\leq Cp!q!(r!)^{2}\rho^{p+q+r}$

for any non-negative integers $p,$ $q,$ $r$ with some positive constant $C,$ $\rho$ .
It is remarkable that not only this does hold but also we have a much more general

theorem as shown in [9]. To state the theorem, we quote a part of it.
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Soit $\mathfrak{n}$ une alg\‘ebre de Lie de dimension $n$ sur le corps $\mathbb{R}$ des nombres r\’eels munie d’une
graduation; $\mathfrak{n}=\oplus_{p1}^{\mu_{=}}\mathfrak{n}_{p}$ telle que $[\mathfrak{n}_{p}, \mathfrak{n}_{q}]\subset \mathfrak{n}_{p+q}$ pour tous entiers $p,$ $q$ (on convient
que $\mathfrak{n}_{p}=0$ pour $p\not\in\{1, \ldots, \mu\}$ ). Donc $\mathfrak{n}$ est nilpotente. Soit $N$ un groupe de Lie dont
l’alg\‘ebre de Lie est $\mathfrak{n}$ . Posons $\mathfrak{n}^{p}=\oplus_{i\leq p}\mathfrak{n}^{i}$ et identifions $N\cross \mathfrak{n}^{p}$ au sous-fibr\’e invariant
\‘a gauche de $TN(=N\cross \mathfrak{n})$ . Alors $(N, \{N\cross \mathfrak{n}^{p}\})$ est une vari\’et\’e filtr\’ee, dite standard.
Coisissons une base $\{X_{1}, \cdots X_{n}\}$ de $\mathfrak{n}$ compatible avec la graduation, c’est-\‘a-dire telle
que $\{X_{d(p-1)+1}, \cdots , X_{d(p)}\}$ soit une base de $\mathfrak{n}_{p}$ pour tout $p$ o\‘u $d(p)=\dim \mathfrak{n}^{p}$ . On definit
une fonction de poids $w$ : $\{1, \cdots n\}arrow\{1, \cdots\mu\}$ par la propri\’et\’e: $X_{i}\in \mathfrak{n}_{w(i)}$ pour tout
$i$ . On emploiera les notations suivantes: Pour $I=(i_{1}, \cdots i_{l})\in\{1, \cdots n\}^{l}$ , on pose

$X_{I}=X_{i_{1}}\cdots X_{i_{l}}$ , $w(X_{I})=w(I)= \sum_{a=1}^{\iota}w(i_{a})$ .

On identifiera aussi $X_{i}$ (ou $X_{I}$ ) au champ de vecteurs (resp. \‘a l’op\’erateur diff\’erentiel)
invariant \‘a gauche sur $N$ .

Soient $V,$ $W$ des espaces vectoriels de dimensions finies sur $\mathbb{R}$ . Soit $\Phi(x, y_{I})$ une fonctions
\‘a valeurs dans $W$ de $(x, y_{I}) \in N\cross\prod_{w(I)\leq k}V_{I}$ avec $V_{I}=V$ , et consid\’erons l’\’equation
diff\’erentielle d’ordre pond\’er\’e $\leq k$ , pour une fonction $F$ \‘a valeurs dans $V$ :

(E) $\Phi(x, (X_{I}F)(x))=0$ $(w(I)\leq k)$ .

Soit $0\in N$ et soit $F^{l}=\wedge j_{0}^{l}F\in\hat{J}_{o}^{l}(N\cross V)$ avec $l\geq k$ . On dit que $F^{l}$ est une l-jet solution
de (E) si

$X_{J}\Phi(x, (X_{I}F)(x))|x=0=0$

pour tout $J$ tel que $w(J)\leq l-k$ . On dit aussi d’apr\‘es Malgrange [7] qu’une l-jet solution
$F^{l}$ est fortement prolongeable si pour toute m-jet solution $F^{m}(m\geq l)$ telle que $\wedge j_{0}^{l}F^{m}=F^{l}$ ,
il existe $(m+1)$-jet solution $F^{m+1}$ tell que $j_{0}^{m}F^{m+1}\wedge=F^{m}$ .

Si $F^{k}\in J_{o}^{\gamma}(N\cross V)$ est fortement prolongeable, on peut donc trouver une s\’erie $\{F^{l}\}_{\iota\geq k}$

de l-jet solutions telle que $\wedge j_{0}^{l}F^{m}=F^{l}$ pour $m\geq l\geq k$ , et par passage \‘a la limite une
solution formelle de (E): $F^{\infty}= \lim F^{l}$ telle que $\wedge j_{0}^{k}F^{\infty}=F^{k}$ . On demade alors s’il existe
une solution analytique pour $1’\acute{e}quationarrow\Phi$ suppos\’ee analytique. Lorsque la filtration de
$N$ est triviale, i.e., $\mathfrak{n}=\mathfrak{n}_{1}$ , ceci est vrai, car c’est exactement une version du th\’eor\‘eme de
Cartan-K\"ahler d\’emontr\’e par Malgrange ([7] Appendice). Mais dans le cas g\’en\’eral cela ne
reste plus vrai. (Voir les deux exemples pr\’ec\’edents.)

Pour traiter le probl\‘eme de convergence, nous introduisons une classe de fonctions
formelles Gevrey sur la vari\’et\’e firtree $(N, \{N\cross \mathfrak{n}^{p}\})$ . Soit $V$ , comme en haut, un es-
pace vectoriel de dimension finie, et le munissons d’une norme quelconque $|$ . . D\’esignons
par $E$ le fibr\’e trivial $N\cross V$ sur $N$ . Posons: $J^{\infty}E \wedge=\lim_{arrow}\hat{J}^{l}E$ ; son fibr\’e $J_{x}^{\infty}E\wedge$ est donc
l’ensemble des fonctions formelles \‘a valeurs dans $V$ en $x\in N$ . Soit $r=(r_{1}, \cdots r_{n})$ avec
$r_{i}>0$ . Definissons une pseudo-norme . $|_{r}$ de $J_{x}^{\infty}E\wedge$ , en posant pour $F\in J_{x}^{\infty}\wedge$ ,

$|F|_{r}= \sum^{\infty}\frac{1}{k!}\sup_{w(K)=k}|(X_{K}F)(x)|r^{K}$ ,
$k=0$
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o\‘u $r^{K}=r_{k_{1}}\cdots r_{k_{l}}$ pour $K=(k_{1}, \cdots k_{l})$ . On dit que $F\in J_{x}^{\infty}E\wedge$ est une fonction formelle
Gevrey en $x$ s’il existe $r$ et $C>0$ tels que $|F|_{r}\leq C$ . On voit que cette d\’efinition ne d\’epend
que de la filtration $\{N\cross \mathfrak{n}^{p}\}$ . On notera $\mathcal{G}_{x}(N)\otimes V$ l’ensemble des fonctions formelles
Gevrey en $x$ \‘a valeurs dans $V$ . Remarqueons que lorsque la filtration de $N$ est trivale, une
fonction formelle Gevrey n’est pas autre qu’une fonction analytique.

En revenant maintenant \‘a l’\’equation diff\’erentielle (E), nous disons que $\Phi(x, y_{I})$ est une
fonction formelle Gevrey par rapport \‘a $x$ et analytique par rapport aux $y_{I}$ en $(0, y_{I}^{0})$ si

$\Phi\in \mathcal{G}_{(0,y_{I}^{0})}(\tilde{N})\otimes W$,

o\‘u on pose $\overline{N}=N\cross\prod V_{I}$ , et le regarde comme un groupe de Lie filtr\’e dont l’alg\‘ebre de
Lie fi est gradu\’ee par $\sim \mathfrak{n}=\oplus\sim_{p}\mathfrak{n}$ avec

$\overline{\mathfrak{n}}_{1}=\mathfrak{n}_{1}\oplus$ $\oplus$ $V_{I}$ , $\overline{\mathfrak{n}}_{p}=\mathfrak{n}_{p}$ $(p\geq 2)$ , $[\overline{\mathfrak{n}}, \oplus V_{I}]=0$ .
$m(I)\leq k$

Alors le th\’eor\‘eme principal s’\’enonce comme suit:

Th\’eor\‘eme. Supposons que $\Phi(x, y_{I})$ est une fonction formelle Gevrey par rappor$t$ \‘a $x$ et
analytique par rappor$t$ aux $y_{I}$ en $(0, y_{I}^{0})$ . Si $F^{k}=(y_{I}^{0})\in J_{o}^{\gamma}(N\cross V)$ est une k-jet $solu$ tion de
$(E)$ et fortement prolongea$ble$, alors il existe une solution formelle Gevrey $F\in \mathcal{G}_{0}(N)\otimes V$

de $(E)t$elle que $J_{o}^{\gamma}F=F^{k}$ .

Pour d\’emontrer ce th\’eor\‘eme nous suivons de pr\‘es Malgrange (loc.cit.) qui \’etablit ce
th\’eor\‘eme dans le cas analytique, c’est-\‘a-dire o\‘u $\mathfrak{n}=\mathfrak{n}_{1}$ . La clef de la d\’emonstration est
d’employer le th\’eor\‘eme des voisinages privil\’egi\’es (une version generalis\’ee pour l’alg\‘ebre
enveloppante d’une alg\‘ebre de Lie nilpotente, un anneau non-commutatif) pour choisir
par r\’ecurrence une s\’erie formelle de sorte qu’elle satisfasse la majoration voulue.

As shown above, the class of formal Gevrey functions seems well-fitted to differential
equations on filtered manifolds. However, at present we do not know very well the nature
of formal Gevrey functions. Though they are only formal functions (in general divergent),
they seem to have interesting features related with geometric properties of the underlying
filtered manifolds. For example, even in the simplest case of Heisenberg Lie group it would
be interesting to study formal Gevrey functions by analytic continuation along integral
curves of the contact structure.

Finally we mention some topics or problems seeming to relate to our approach.
1. H\"ormander has shown that if a system of vector fields $X_{1},$ $\cdots$ $X_{k+1}$ on a differential

manifold $M$ satisfies the H\"ormander condition, that is, it generates the tangent space at
each point, and if $a\in C^{\infty}(M)$ , the differential operator $\sum_{i1}^{k_{=}}X_{i}^{2}+X_{k+1}+a$ is hypoelliptic.

This theorem is closely related with nilpotent graded Lie algebras, and after H\"ormander

many people have elaborated to generalize it to differential operators on graded nilpotent
Lie groups. For a detailed exposition see Helffer and Nourrigat [6].

It seems that these theories become more transparent at least in the geometric aspect
if reformulated as a theory of differential operators on filtered manifolds. The exact se-
quence $(^{*})$ will play a fundamental role providing us with a simple way to associate with
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a differential operators on a Mtered manifold $M$ an invariant differential operator on the
graded nilpotent Lie group $(algebra)grT_{x}M$ for each $x\in M$ as the symbol at $x$ .

2. A CR-structure on a differential manifold $M$ is defined by giving a subbundle $D$ of the
tangent bundle and a complex structure on $D$ satisfying certain integrability conditions.
So CR-manifold may be viewed as a first order geometric structure on a filtered manifold.
In particular, a strongly pseudo-convex CR- manifold has a contact structure as underlying
structure. The extensive studies on CR-manifolds are a rich example of nilpotent geometry
and analysis. It is interesting to exploit some other nice geometric structures on filtered
manifolds to which geometry is relatively developed and analysis, relating to the geometry,
is fertile. To develop an analysis on Cartan’s space of five variables would be interesting.

3. In the $c\infty$ -category the equivalence problem often involves very delicate problems in
analysis.

If a geometric structure is formally transitive one can associate with it a transitive
Lie algebra which formally fulfills the invariants of the structure: Given two geometric
structures formally transitive, they are formally equivalent if and only if the corresponding
Lie algebras are conjugate equivalent.

It then naturally arises the following question:
If two formally transitive geometric structures have a same transitive Lie algebra $L$

associated with them, are they equivalent?
To obtain a map which gives an equivalence one has to solve a certain differential

equation. If $L$ is finite dimensional, the equation is of finite type and one can obtain a
solution by solving a Frobenius type equation. Thus the problem is the case when $L$ is
infinite dimensional. In the analytic category one can find a solution by Cartan-K\"ahler

theorem. In the $c\infty$ -category it is called the $c\infty$ -integrability problem.
Darboux’s theorem and Newlander-Nirenberg theorem are typical examples to which

the $c\infty$ -integrability problem is affirmatively solved. Sternberg and Conn gave counter-
examples based on the Lewy equation. Guillemin found the Jordan-H\"older decomposition
of a transitive Lie algebra $L$ , and proposed a general program to study the $c\infty$-integrability
problem according to the decomposition as a sort of Galois theory for differential equations.
Spencer, Kumpera, and Goldschmidt elaborated a general machine to attack the problem
in terms of Lie equations. Malgrange proved the conjecture of Spencer that if a structure
comes from an elliptic analytic Lie equation then the problem is affirmative. At present,
one of the known best results is the one proved by Goldschmidt and Molino, which asserts
that if $L$ contains the translations then the $c\infty$ -integrability problem is affirmative. (For
a short survey and references on these topics see Goldschmidt [5].)

However, there are many examples which are not covered by the above results. We
therefore propose to study the $c\infty$ -integrability problem in the case when $L$ is graded,
that is $L$ is isomorphic to the completion of a graded Lie algebra $\oplus_{i}^{\infty_{=-\mu}}g_{i}$ (note that
if $\mu$ is 1 then it is contained in the case studied by Goldschmidt and Molino), and we
conjecture the problem is affirmative in this case. This problem is closely related to the
$c\infty$ -solvability of invariant differential operators on nilpotent Lie groups.
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