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A SURVEY OF DEFORMATION
THEORY OF CR-STRUCTURES

BEPE T 2K - BE ZRIEME K (Takao Akahori)

This paper is a survey of deformation theory of CR-structures, which is
studied in (A1),(A2),(A3),(Ku),(Mi). Let (V,0) be an n dimensional normal
isolated singularity in (CV,0). We set

M=V nSHN-1(o)

where SZV—1(0) is the € - sphere in CN. Then we have a real odd dimen-
sional, compact manifold, which is obviously real analytic. Furthermore, over
this M, a CR-structure is naturally induced from V. By Rossi( see (R) ), this CR-
structure (M,° T”) determines the normal isolated singularoty (V,0) , uniquely.
Kuranishi noted this point, and in order to study deformation theory of isolated
singularities, he initiated deformation theory of CR-structures. This method is
improved by (A3),(Mi). Namely, in (A3), it is shown that there is a versal fam-
ily (M,*® T™) which satisfies that ¢(t) is a C* element of 9T ® (°T”)* valued
form, which depends on t , complex analytically, and ¢(0) = 0 . Later, Miyajima
proved that ¢(t) is actually C* in (Mi). Now our ¢(t) satisfies the following
non-linear partial differential equation.

Bpd(t) + Oy Ra(9(t)) = TuL(D _ Biti)

i=1

t = (t1,..t9) ,{Bil1<i<q is a base of Hgf,) , q =dimcHg,},) ,(for notations, see
(A3)). This non linear equations’principal part is sub-elliptic, and we note that
_in the non liner term, only X¢(t) ,XY ¢(t) , where X,Y in °T” + OT” | terms
appear. Of course if there is no non linear term in this equation, the solution
must be real analytic( M being real analytic, so real analytic hypo-ellipticity
holds)(see (Tarl),(Ko)). In our case, as the non linear term is quite suitable(it
doesn’t include XT'¢(t) term and TT¢(t) term, where X in °T” + 0T” and
T is the missing direction), it is natural to expect the same result as in the
elliptic case. Hence it is quite natural to follow the Tartakoff’s method, which
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succeeded in the linear sub-elliptic case. Following the Tartakoff’s method in
the non linear case, we are forced to control (XY ¢())¢(t) term, where X in

OT” 4+ 977, However, instead of the standard L? norm, if we use the || ||(m)
norm(see Sect.l in this paper), we have '

IXY S G (m) < Cmll XY Sy ISy (0 < 1)
and moreover, our norm dosen’t cause so much problem to control ||T'¢(t)“:m) andl

|w?! T"¢(t)||’(’m) where W in °T” 4 9T” (namely, the Tartakoff’s method is also
valid in our norm). Therefore the real analytic hypo-ellipticity is now trivial.

Sect.1. CR — structures and E; structures

We consider an n dimensional isolated singularity (V,0) in (C"V,0), and study
this singularity from the point of view of CR-geometry. For this, we set a real
analytic function on CV, ‘

() =3 e — e
i=1
where € > 0 is chosen sufficiently small. Set
= {z;zimM,r(z)=0}.
On M, a CR structure is naturally induced from CV. That is to say,
={X;XinCQTMnT'C|u }.
In this paper, instead of T” , we use the notation S. Then, our S satisfie

1) SNS=0,f~-dimc(C®TM/(S+5)) =1

2) [P(M7§)7F(M’.§)] g F(M,?)
The pair (M,S) satisfies 1) and 2) is called a CR structure. Now in our case,
obviously, M is real analytic and also the induced CR structure is also real
analytic. Next we set a supplement real vector field ¢ by;

¢ = the dual vector of the real 1 form v/—10r
So

(1.1) C®TM =S + 5 + C¢
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Next we recall E; structures, introduced in (A3). For this, weset T' = S + C(.
And set a first order differential opeator Op from T'(M,T') to
(M, T'®(S)*) by ; for u in I'(M,T") ,

Ipu(X) = [X,ulp

for X in (M, S), where [X, u]T' means the T'-part of [X,u] according to (1,1).
And like the case for scalar valued forms, we have

38 . (M, T' ® AP(S)+) — T(M,T' @ A®*V(E)x), p=1,2, ...

Now we set .
T, = Ker 3% N I'(M,S ® A®(S)) .

Then there is a subbundle E, of S ® AP(S)* satisfying;

Eo =0 y
r, = I'(M,E,)
And )
3, T(M,E,) C T(M,Egpi1)
Ker 6(1) — HO(M, T') —0
-I_‘fr_(_ab_ ~ HP(M,T"), 2<p<n-1
p-1) :
Im 0y
where a(p) (p)lr(M B, dimpM = 2n—1, dim%T” = n—1.(In(A1),(A2)

and (A3), we used different notations. However, in this paper, for the reader’s

convenience, we dare to use 5?)). Andif n > 4,

B 32
I'(M,E;) — I'(M, E;) — I'(M, E;)

is a subelliptic complex and several important estimates are proved in (A3). We
recall this. For this, we set a real 1 form 6 by

9|s+§ =0
6(¢) =
And we set w = —df , and then we have the Levi metric. From this metric, we

define the volume element dv , and we set the L? norm on I'(M, E,) by

(u,v) = / < u,v>dv for u,vin I'(M,E,)
M
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where < , > means the hermitian inner product induced from (M, SQAP(S)*).

We denote 3, by the adjoint operator of 8; on I'( M, E,) with respect to the above
metric. And we set the Laplacian '

_ 3.7, + 3,7,

For u in I'(M, E,), we set

Il w II’(’?n) = ZII O 1%,

1=0

(u,v),(’m) = Z( O} u, O} v) foru,v in T'(M, Ep)
i=0

Then, we easily have
Lemma 1.1

(Opu, v )’(’m) = (u, Oy )'(’m) for u,v in I'(M, E,)

Namly, 8, is also the adjoint operator of 9, with respect to || ||’(’m).Furthermore

by the result(see Proposition 3.3 in (A2)) with the standard argument, we have
Lemma 1.2 For u in I'(M, E,) ,

IWWu () < Conll ¥ )

We must explain notations. Let {Uj, hi}ier be a finite set of local coordinate
neighborhoods of M. And let {p}ics be a partition of unity subordinate to this
covering. Let {Yji}1<j<n—1 be an orthonormal frame of S over Uy according
to the Levi metric defined by (1.1). With this preparation, the above inequality
means; for u supported in Uy,

where W, 1, Wg = Yj; or Y(j’k), 1 < j < n-1. And henceforth, for this
Wa, k, we use the abbreviation W. Assume the ;dimpM = 2n—12> 7. Then,
Estimate (I)

lull < CUIsull + 11 Bpull + 1w}, for uin T(M, Ey)

(see Theorem 4.1(new estimate) in (A3)). Then by the standard argument, we

have the Neumann operator N for the above differential complex (T'p, 0(p)).
And so, we have the Kodairaodge type decomposition theorem for this complex, -
namely

= Hyu + OpNpu , for uin I'(M, E,),
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where Hj means the projection of u into
{u; win [(M,E,), Oyu = 0, Jyu = 0 }.
Estimate (II)
lull < C{UOwu|l + l[ull} for uin (M, Ey).

We note that || ||” norm is the same as || ||’(’ 0y Norm introduced in this section.
Estimate (III)

| Wo k(o) imy + K Il pu llghy < Con{ | Bs(pu)ll gy + By (o)l oy } + Crall ol i

where Wy = Yj,k or ?j,k, and p € C is supported in Ug. Finally in this
section, we note that there is a real analytic real vector field T on M satisfying;

)T, ¢S, + Sp for every point p of M,
2) [T, Z] =0 modS + S forall Z € F(M,S+§),ﬁ

( see Proposition 1 in (Tar)). So, using this T, we newly introduce a C'* vector
bundle decompostion

(1.2) CRTM = S + S5 +CQ®T

and also introduce corresponding operators 97 ,55}1’.). Then, the complete same
results hold, and the same estimates hold. From now on, we adopt these. And
following (Tarl), we set W =S+ S.

Sect.2 The canonical versal family

In this section, we recall the construction of the canonical versal family ((A3)).
Namely, we set I'(M,S ® 3*) valued power series

o(t) = Z ¢th1....t§«

K=(Ki,..,kq)

where t = (t4,..,ty) € U C C?, and U is a neighborhood of the origin, and K
is a muli index, ¢ = dimcH%). For brevity, we abbreviate this as follows.

$(t) = > oxtX.
' K

Now we recall the construction of ¢(¢). By the Banach inverse mapping theorem,
we solve ¢(t), namely ¢(2) is a unique solution of the following.

#(t) + O, NyRa(9(t)) = /:(Z Biti ), (t1,..,ty) € U CCY,
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where N, is introduced in (A3), and {f;}1<i<, is a base of H(Tl,). It is better to
explain £,introduced in (A2). For v in (M, T' ® 5"), we set

Lv(X) = v(X) - -a—T'ov(X)’ for X € F(M,?),
where 6, is an element of I'(M, S) defined by;
60, X]T = (v(X))T for X inT(M,S),

where [0,, X]r(resp. (v(X))r)means the C ® T part of [6,, X](resp. (v(X)))
according to (1.2).

Sect.3 The real analyticity
As we recalled in Sect.2, ¢(t) satisfies

q
$(t) + yNeRa(4(1)) = L( D Biti)-
. =1
Hence we have
q
Dug(t) + DBy NeRa(#(2)) = Tul( ) Aiti ),

namely A
g .
Osd(t) + Oy R2(4(1)) = OL( ) Biti )-
i=1
We must show that this ¢(t) is real analytic. We follow the Tartakoff’s line
in (Tarl) and we adopt his notations. Let p, be the reference point of M.
Let Ui(p,) be a sufficiently small neighborhood of p, in M, and Uz(p,) be a
neighborhood of p, satisfying; Ui(p,) € Ua(p.)-
Now we show that there are constants C; and C; which satisfy; there is a
e > 0, and for every q , there is a C™ function 1, supported in Uz(p,) and
Yelu,(p.) = 1 satisfying;

(%) 1 940P(9)$(2) llmy < C1Ciq!, for any tin (0,¢)

Here Op(q) denotes the g-th order differential operator formed by T,W; in W.
If this is proved, by the Sobolev lemma, for every q,

Sup v, p)| OP(Q)$(2) | < ¢ | OP(D)E(t) N(m) v p0) » (M 2 1),

where || ||’('m) Uy (p.) Means the corresponding norm over U, (po)- So

Sup v, o)l OP(9)8(1) | < ¢ || $40P(@)6(t) llim)
<c Clcgq!
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Therefore by Lemma 1 in (Tarl), we have that ¢(t) is real analytic for any t in
(0,€). And by the following lemma, it is shown that @(¢) is real analytic.
Lemma 3.1 Let u(x,t) is a C* function on R™ x C™ (k > 1), which is real
analytic with respect to x, and complex analytic with respect to t, separately.
Then, u(x,t) is real analytic on (x,t).

Proof. We consider the partial complexfication of R™ x C",C™ x C". And

——

for a fixed t, we can naturally consider u(z,t) on C™ x C" for u(x,t). By the

N

assumption, our u(z,t) is complex analytically with respect to respectively z and

t. So by Osgood’s lemima, our u(z,t) is complex awn:lutic with respect to both
variables. So u(x,t) must be real analytic. Q.E.D.

For (%), it suffices to show; there are constants C; and C; which satisfy; there
is a € > 0, and for every q, there is a C° function 9, supported in U;(po) and
Yeluy(p,) = 1 satisfying;

(%) | pWIT (1) ||’(’m) < CCHITINL, For any t in (0,€).

(see Proposition 1 in (Tar2)). We see the sketch of the proof of (#*). In order to
see this, we recall several lemmas which were shown in (Tarl), and use his useful
notations. Following (Tarl), Op(k,q) denotes a q-th order differential operator
formed by concatenating k W’s and q-k T’s. ‘ '

Lemma 3.2(Lemma 2 in (Tarl)) For k£ > 1, any Op(k,q) may be written
sybolically

q
Onlk,a) = WOplk—1,0-1) + Yo (*)agy0o(kig =) , e

i=1

if there is a W, we may commute it to the left modulo the indicated sum of at
most ¢’ (‘J’) terms, ¢ some integer depending only on n, of the form a(;,Op(k,q¢—j).
Lemma 3.3(Lemma 3 in (Tar)) Let a denote any of a finite number of real
analytic functions and Z any of a finite number of real analytic vector field. Let
{a(g)} be recursively defined by;

a1y = any of the a's

Q(g+1) = G(1)8(q) OT Za(g),

i.e., a(1)a(q) stands for one of the a’s timers an expression of the form a(,). Then
locally there exists K such that for all a and for all q,

D%y | < K KU (|a| +q)!.
(9)

123
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Then, as for our norm, we immediately have
Lemma 3.4
I D%ag) llgmy < K' K™ (fa] + g+ m).
So by choosing a proper K, we have ‘
I D%aq) llmy < K KUHD(la] 4+ g)1.
Lemma 3.5(Lemma 4 in (Tarl))
r _ . i(T r—j
[T7,0:] = ) & (j){ WaiinW + Wagira) + a4 }JT77 .
j=1

Now we begin by estimating || pWTP¢(t) ||’(’m) and ||pT”¢(t)||'(’m). As for p, we
use a general partition of unity, and we recall the basic estimate(Estimate (III)).

I Wou [y + K Il pullimy < cm{ 11 Bs(pu) Iy + 11 By o) 7y } + Creymll pu |2

namely,

< em{ ) _(Tis(pu), T0iBs(pw)) + Y _(T3B3(pu), 033 (pu))} + Crmll pull®.

=0 1=0 )
So in the place of u in this equality, we put u = TP¢(t). Then, we have
I WoT?¢(2) iy + Kl pT7$(2) limy

(* * %) < em{ Y2 (TED(p4(1)), Dis(p(1))

+ ) (033, (p4(1)), 053, (p6(t)} + Circym || #T?4(2) |12

=0

< em { ) (@O(pT?6()), Oi(pT?4(1)} + Cr,mll PTP4(2) II%.

=0
The commutator [p,s] does not make troubles so much. In fact, the above can
be estimated as follows.

3 ” e ”»
< Calld' TPy + (E)”PWT%U)“(,%.)
P .
+0. Y & (%) loagunW TP 602y + lpoan T I8012)
j=1

HI5 DOy W TP SOy + 15 Oy 1T S )
5Dy IW TP S 1y + 152 O ) I TP SO (1)

HI5 ™ DO ) W TP SO0y + 15 ™ () ITP $() o)
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while these are estimated by

(large con’stant)||j(2k+l)(p)||’("2n) + (small constant)||VVT”¢(t)||’(’3‘_k__1)
and

(large constarzt)]]j(2k+2)(p)||’("2n) + (small co‘nstant)”T”d)(t)“’(’z,_k_l),

(for the notation, see (A2) , (A3) ). Therefore at most, they are estimated by

C.,. » » ”
(D™ )y + el IWT?S()ll7y + 1Ty }-

Namely, it does not bother us. Hence we can neglect this. As X is conipact, and
T is globally defined, for p; € C2° of small support,

N
o' TP (t)(my < D ColloiTP$(t)ll (-
i=1

And if K > 2(C,C + C”)N and p itself is one of the p;, upon summing this
over i, then this error term will be absorbed on the left. Furthermore

(O3 0 TP $(t), Oy pLs TP (1))
=(05"pT?0pé(t), 05" pTP O é(2)) + (O p[Ce, TP1¢(t), Oy pTP $(2))
=(0OF pTPOé(t), OF pTP $(2))

' | |
HOPPW (Y a(ienyWTP §(t)), 05 pT?$(t)) . (by Lemma 3.5)

j=1

By the same way as in (Tarl), we can handle the second term. So we omit this.
We will control the first term.

.
TPOp(t) + TPO RA((t) = TPOLL(D . Biti ) -

i=1

And so this term can be estimated by;

q
(@5 e TPTL()  Biti), OF pi TP (1))l

=1
+ |(OF piTP9, Ra(#(t)), OF o TP $(1))).

The first term was already handled by (Tarl). We see the second term which |
didn’t appear in (Tarl). The second term becomes

[(OF p:T? Ra(4(t)), 05 p:0sT?$(t))| + commutator terms
< (large constant)||O7 p; TP Ry(¢(1)||1> + (small constant)||O5 p;0sT7 $(2)||?

+ commutator terms.



126

TAKAO AKAHORI
To contro; commutator terms is tedious. But the method is standard. So we

omit this. For the non-linear term T? Ry (4(t)),
Lemma3.6 If we choose C,C; sufficiently large, we have

» 1
17" Rao($(E))ll(my < (3)C1C2p! for every p.

Proof To estimate TP Ry(#(t)), we must estimate TP{(W ¢(t))4(t)}. Namely,

THW ) = @ WHONKD + ()T wen)Ta)

p p—1 P
N (p_ 1)(T(W¢(t)))(T B() + (We(t))(TP4(1))

+ 3 @(T’(W¢(t)»(Tﬂ‘*¢(t)))-

r=2

Since ¢(0) = 0, we can assume that ||¢(t)”’(’m),||W¢(t)||’(’m) are sufficiently small
if we choose € sufficiently small. So the first term, the second term, the third
term, and the fourth term can be absorbed in the left of (* * *). Now we see
how to control the other term. By induction, we see

NT*(W () my » IT*$()l(my te CLC2(k =2 if k > 2.

k=2 case is OK, if we choose C} sufficiently large. We assuine k=p-1 case. Now
we see p case. By m 2> n

n : (7)o som = sl
< g(”) 1T (W SNy~ (0
oon < pz;::(‘r’) C1CI 2 (r - 2)!‘01 Cr " (p—r—2)!
< : (p) CICE™(r =2 (p — r — 2)!
And

T (p>(r_2)!(p_r__2)! =S p(p—1)(p — 2)!

—\r —r(r-1)(p-r)p-r-1)
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Whileif r <[£] ,p—r>%2,p—r—12>Z Hence

& plp—1)(p-2)
Z‘zr(r -Dp-r)p—-r-1)

(%]
2 -1 —2)
_ Z P(P )(P )

—r(r—1)(p-r)p—r-1)

(3]
8
< —_— - - 2)!
< ;r(r e xp(p—1)(p—2)
p—1
< 8——(p—2)!
<8 (p—2)
< 8(p—2)!
Hence 8C,
(3.6.1) < (=5)CiCF % (p - 2)!

C?

So if we choose %’} < 1, then we have our estimate. So we can control
2

IT? Sy » IWTP Sl om) -

For ||WIT”¢(t)||’(’m), |I] > 2, following the Tartakoff’s method, namely using
Ehrenpreis’s localizing function with careful study of the non-linear term as in
Lemma 3.6, we have our estimate.
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