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A SURVEY OF DEFORMATION
THEORY OF CR-STRUCTURES

姫路工業大 理 赤堀隆夫 (Takao Akahori)

This paper is a survey of deformation theory of CR-structures, which is
studied in (Al),(A2),(A3),(Ku),(Mi). Let (V,o) be an $n$ dimensional normal
isolated singularity in $(C^{N}, 0)$ . We set

$M=V\cap S_{\epsilon}^{2N-1}(0)$

where $S_{\epsilon}^{2N-1}(0)$ is the $\epsilon$ -sphere in $C^{N}$ . Then we have a real odd dimen-
sional, compact manifold, which is obviously real analytic. Furthermore, over
this $M$ , a CR-structure is naturally induced from V. By Rossi(see $(R)$ ), this CR-
structure $(M^{0}T’)$ determines the normal isolated singularoty (V, $0$) , uniquely.
Kuranishi noted this point, and in order to study deformation theory of isolated
singularities, he initiated deformation theory of CR-structures. This method is
improved by (A3),(Mi). Namely, in (A3), it is shown that there is a versal fam-
ily $(M^{\phi(t)}T’)$ which satisfies that $\phi(t)$ is a $C^{k}$ element of $T’\otimes(0T’)^{*}$ valued
form, which depends on $t$ , complex analytically, and $\phi(0)=0$ . Later, Miyajima
proved that $\phi(t)$ is actually $0\infty$ in (Mi). Now our $\phi(t)$ satisfies the following
non-linear partial differential equation.

$\overline{\partial}_{b}\phi(t)+\overline{\partial}_{b}^{*}R_{2}(\phi(t))=\square _{b}\mathcal{L}(\sum_{i=1}^{q}\beta_{i}t_{i})$

$t=(t_{1}, ..,t_{q})\{\beta_{i}\}_{1\leq i\leq q}$ is a base of $H_{T}^{(1)},$ $q=dim_{C}H_{T}^{(1)}$ (for notations, see
(A3)). This non linear equations’principal part is sub-elliptic, and we note that
in the non liner term, only $X\phi(t)XY\phi(t)$ , where X,Y in $0T+\overline{0_{T’}’}$ , terms
appear. Of course if there is no non linear term in this equation, the solution
must be real analytic( $M$ being real analytic, so real analytic hypo-ellipticity
holds)(see (Tarl),(Ko)). In our case, as the non linear term is quite suitable(it
doesn’t include $XT\phi(t)$ term and $TT\phi(t)$ term, where X in $0T’+\overline{0T’}$ and
$T$ is the missing direction), it is natural to expect the same result as in the
elliptic case. Hence it is quite natural to follow the Tartakoff’s method, which
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succeeded in the linear sub-elliptic case. Following the Tartakoff’s method in
the non linear case, we are forced to control $(XY\phi(t))\phi(t)$ term, where X in
$0T’+\overline{0_{T’}’}$. However, instead of the standard $L^{2}$ norm, if we use the $||||_{(m)}$

norm(see Sect.1 in this paper), we have

$||(XY\phi(t))(\phi(t))||_{\langle m)}\leq C_{m}||XY\phi(t)||_{\langle m)}||\phi(t)||_{(m)},$ $(n\leq m)$

and moreover, our norm dosen’t cause so much problem to control $\Vert T^{r}\phi(t)||_{(m)}and$]

$||W^{I}T’\phi(t)||_{\langle m)}$ where $W$ in $0T’+^{\overline{0}}T$’ (namely, the Tartakoff’s method is also
valid in our norm). Therefore the real analytic hypo-eUipticity is now trivial.

Sect.1. CR–structures and $E_{j}$ structures

We consider an $n$ dimensional isolated singularity (V, $0$) in $(C^{N},0)$ , and study
this singularity from the point of view of CR-geometry. For this, we set a real
analytic function on $C^{N}$ ,

$r(z)= \sum_{i=1}^{N}|z;|^{2}-\epsilon$ ,

where $\epsilon>0$ is chosen sufficiently small. Set

$M=$ { $x$ ; $x$ in $M,r(x)=0$ }.

On $M$ , a CR structure is naturally induced from $C^{N}$ . That is to say,

$S=$ {X ; $X$ in $C\otimes TM\cap T’C^{N}|_{M}$ }.

In this paper, instead of $\overline{0T’}$ , we use the notation S. Then, our $S$ satisfie

1) $S\cap\overline{S}=0,f-dim_{C}(C\otimes TM/(S+\overline{S}))=1$

2) $[\Gamma(M,\overline{S}), \Gamma(M,\overline{S})]\subseteqq\Gamma(M,\overline{S})$

The pair (M,S) satisfies 1) and 2) is called a CR structure. Now in our case,
obviously, $M$ is real analytic and also the induced CR structure is also real
analytic. Next we set a supplement real vector field (by;

$\zeta=the$ dual vector of the real 1 form $\sqrt{-1}\partial r$

So

(1.1) $C\otimes TM=S+\overline{S}+C\zeta$
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Next we recall $E_{j}$ structures, introduced in (A3). For this, we set $T’=S+C\zeta$ .
And set a first order differential opeator $\overline{\partial}_{T}$ from $\Gamma(M, T‘)$ to
$\Gamma(M, T’\otimes(\overline{S})^{*})$ by ; for $u$ in $\Gamma(M,T’)$ ,

$\overline{\partial}_{T’}u(X)=$ $[X, u]_{T^{t}}$

for $X$ in $\Gamma(M,\overline{S})$ , where [X, $u$ ] $\tau$ means the $T$‘-part of [X,u] according to $(1,1)$ .
And lik\’e the case for scalar valued forms, we have

$\overline{\partial}_{T}^{(p)}\backslash ;\Gamma(M, T’\otimes\wedge^{p}(\overline{S})*)arrow\Gamma(M, T’\otimes\wedge^{(p+1)}(\overline{S})*),$ $p=1,2,$ $\ldots$

Now we set
$\Gamma_{p}=Ker\overline{\partial}_{T}^{(p)}\cap\Gamma(M, S\otimes\wedge^{(p)}(\overline{S})*)$ .

Then there is a subbundle $E_{p}$ of $S\otimes\wedge^{p}(\overline{S})*satisfying$ ;

$E_{0}=0$ ,
$\Gamma_{p}=\Gamma(M, E_{p})$

And
$\overline{\partial}_{p}^{(p)}\Gamma(M,E_{p})\subset\Gamma(M, E_{(p+1)})$

$Ker\partial_{b}^{\langle 1)}arrow H^{(1)}(M, T’)arrow 0$

$\frac{Ker\overline{\partial}_{b}^{\{p)}}{Im\overline{\partial}_{b}^{(p-1)}}\simeq H^{(p)}(M,T’),$ $2\leq p\leq n-1$

where $\overline{\partial}_{b}^{(p)}=\overline{\partial}_{T}^{(p,)}|_{\Gamma(M,E_{i})},$ $dim_{R}M=2n-1,$ $dim_{C}^{0}T’=n-1$ . $(h(A1),(A2)$
and (A3), we used different notations. However, in this paper, for the reader’s
convenience, we dare to use $\overline{\partial}_{b}^{(p)}$ ). And if $n\geq 4$,

$\Gamma(M,E_{i})arrow\Gamma(M, E_{2})\overline{\partial}_{1}arrow\Gamma(M, E_{3})\overline{\partial}_{2}$

is a subelliptic complex and several important estimates are proved in (A3). We
recall this. For this, we set a real 1 form $\theta$ by

$\theta|_{S+\overline{S}}=0$

$\theta(\zeta)=1$

And we set $\omega=-d\theta$ , and then we have the Levi metric. From this metric, we
define the volume element dv, and we set the $L^{2}$ norm on $\Gamma(M, E_{p})$ by

$(u, v)= \int_{M}<u,$ $v>dv$ for $u,v$ in $\Gamma(M, E_{p})$



120
TAKAO AKAHORI

where $<,$ $>means$ the hermitian inner product induced from $\Gamma(M, S\otimes\wedge^{p}(\overline{S})^{*})$ .
We denote $\overline{\partial}_{b}^{*}$ by the adjoint operator of $\overline{\partial}_{b}$ on $\Gamma(M, E_{p})$ with respect to the above
metric. And we set the Laplacian

$\coprod_{b}=\overline{\partial}_{b}^{*}\overline{\partial}_{b}^{*}+\overline{\partial}_{b}\overline{\partial}_{b}^{*}$ .

For $u$ in $\Gamma(M, E_{p})$ , we set

$||u||_{t^{m)}}^{2}= \sum||m\square _{b}u||^{2}$ ,
$t=0$

$(u, v)_{(m)}= \sum_{i=0}^{m}(\square _{b}^{1}u, \square _{b}^{i}v)$ foru, $v$ in $\Gamma(M, E_{p})$ .

Then, we easily have
Lemma 1.1

$(\overline{\partial}_{b}u , v)_{\langle m)}=(u, \overline{\partial}_{b}^{*}v)_{(m)}$ for $u,$ $v$ in $\Gamma(M,E_{p})$

Namly, $\overline{\partial}_{b}^{*}$ is also the adjoint operator of $\overline{\partial}_{b}$ with respect to II $\Vert_{(m)}$ .Furthermore
by the result(see Proposition 3.3 in (A2)) with the standard argument, we have
Lemma 1.2 For $u$ in $\Gamma(M, E_{p})$ ,

$||WWu||_{(m)}\leq C_{m}||u||_{(m+1)}$

We must explain notations. Let $\{U;, h_{i}\}_{i\in I}$ be a finite set of local coordinate
neighborhoods of M. And let $\{\rho\}_{i\in I}$ be a partition of unity subordinate to this
covering. Let $\{Y_{j,k}\}_{1<j<n-1}$ be an orthonormal frame of $\overline{S}$ over $U_{k}$ according
to the Levi metric defined by (1.1). With this preparation, the above inequality
means; for $u$ supported in $U_{k}$ ,

$||W_{\alpha,k}W_{\beta,k}u||_{(m)}\leq C_{m}\Vert u||_{(m+1)}$ ,

where $W_{\alpha,k},T/V_{\beta,k}=Y_{j,k}$ or $\overline{Y}_{(j,k)},$ $1\leq j\leq n-1$ . And henceforth, for this
$W\alpha,$ $k$ , we use the abbreviation W. Assume $the;dim_{R}M=2n-1\geq 7$ . Then,
Estimate (I)

11 $u$ II $\leq C$ { $\Vert\overline{\partial}_{b}u||+$ Il $\overline{\partial}_{b}^{*}u||+||u||$ }, for $u$ in $\Gamma(M, E_{2})$

(see Theorem 4.1(new estimate) in (A3)). Then by the standard argument, we
have the Neumann operator $N_{b}$ for the above differential complex $(\Gamma_{p},\overline{\partial}_{b}^{(p)})$ .
And so, we have the Kodairaodge type decomposition theorem for this complex,
namely

$u=H_{b}u+\coprod_{b}N_{b}u$ , for $u$ in $\Gamma(M, E_{2})$ ,
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where $H_{b}$ means the projection of $u$ into

{ $u$ ; $u$ in $\Gamma(M,$ $E_{2}),$ $\overline{\partial}_{b}u=0,$ $\overline{\partial}_{b}^{*}u=0$ }.

Estimate (II)

II $u||\leq c$ ‘{ Il $\coprod_{b}u||+||u||$ } $f^{\circ ruin\Gamma(M,E_{2})}$ .

We note that Il $||$ norm is the same as $||\Vert_{(0)}$ norm introduced in this section.
Estimate (III)

$||W_{\alpha,k}(\rho u)||_{\langle m)}^{2}+K$ II $\rho u||_{\langle m)}^{2}\leq C_{m}\{||\overline{\partial}_{b}(\rho u)||_{(m)}^{2}+\overline{\partial}_{b}^{*}(\rho u)||_{\langle m)}^{2}\}+C_{m}’||\rho u||_{\langle m)}^{2},$]

where $W_{\alpha,k}=Yj,$ $k$ or $\overline{Y}_{j,k}$ , and $\rho\in c\infty$ is supported in $U_{k}$ . Finally in this
section, we note that there is a real analytic real vector field $T$ on $M$ satisfying;

1) $T_{p}\not\in S_{p}+\overline{S}_{p}$ for every point $p$ of $M$,
2) $[T, Z]\equiv 0modS+\overline{S}$ for all $Z\in\Gamma(M, S+\overline{S})$,

(see Proposition 1 in (Tar)). So, using this $T$ , we newly introduce a $c\infty$ vector
bundle decompostion

(1.2) $C\otimes TM=S+\overline{S}+C\otimes T$

and also introduce corresponding operators $\overline{\partial}_{T’},\overline{\partial}_{T}^{(p,)}$ . Then, the complete same
results hold, and the same estimates hold. From now on, we adopt these. And
following (Tarl), we set $W=S+\overline{S}$.

Sect.2 The canonical versal family

In this section, we recall the construction of the canonical versal family $((A3))$ .
Namely, we set $\Gamma(M, S\otimes\overline{S}^{*})$ valued power series

$\phi(t)=\sum_{K=(K_{1},,k_{q})}..\phi_{K}t_{1}^{k}’\ldots$
. $t_{q^{q}}^{k}$

where $t=(t_{1}, ..,t_{q})\in U\subset C^{q}$ , and $U$ is a neighborhood of the origin, and $K$

is a muli index, $q=dim_{C}H_{?^{v}}^{(1)}$ . For brevity, we abbreviate this as follows.

$\phi(t)=\sum_{K}\phi_{K}t^{K}$

Now we recaU the construction of $\phi(t)$ . By the Banach inverse mapping theorem,
we solve $\phi(t)$ , namely $\phi(t)$ is a unique solution of the following.

$\phi(t)+\overline{\partial}_{b}^{*}N_{b}R_{2}(\phi(t))=\mathcal{L}(\sum^{q}\beta;t_{i}),$
$(t_{1}, \ldots,t_{q})\in U\subset C^{q}$ ,

$i=1$
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where $N_{b}$ is introduced in (A3), and $\{\beta_{i}\}_{1\leq i\leq q}$ is a base of $H_{T}^{\langle 1)}$ . It is better to
explain $\mathcal{L},introduced$ in (A2). For $v$ in $\Gamma(M, T’\otimes\overline{S}^{*})$, we set

$\mathcal{L}v(X)=v(X)-\overline{\partial}_{T’}\theta_{v}(X)$, for $X\in\Gamma(M,\overline{S})$ ,

where $\theta_{v}$ is an element of $\Gamma(M, S)$ defined by;

$[\theta_{v},X]\tau=(v(X))\tau$ for $Xin\Gamma(M,\overline{S})$ ,

where $[\theta_{v},X]_{T}(resp. (v(X))_{T})means$ the $C\otimes T$ part of $[\theta_{v},X](resp. (v(X)))$

according to (1.2).

Sect.3 The real analyticity

As we recalled in Sect.2, $\phi(t)$ satisfies

$\phi(t)+\overline{\partial}_{b}^{*}N_{b}R_{2}(\phi(t))=\mathcal{L}(\sum^{q}\beta;t; )$ .
$i=1$

Hence we have

$\coprod_{b}\phi(t)+\coprod_{b}\overline{\partial}_{b}^{*}N_{b}R_{2}(\phi(t))=\coprod_{b}\mathcal{L}(\sum^{q}\beta_{i}t_{i})$ ,
$i=1$

namely

$\square _{b}\phi(t)+\overline{\partial}_{b}^{*}R_{2}(\phi(t))=\coprod_{b}\mathcal{L}(\sum_{i=1}^{q}\beta_{i}t_{i})$ .

We must show that this $\phi(t)$ is real analytic. We follow the Tartakoff’s line
in (Tarl) and we adopt his notations. Let $p_{0}$ be the reference point of $M$ .
Let $U_{1}(p_{0})$ be a sufficiently small neighborhood of $p_{0}$ in $M$ , and $U_{2}(p_{\sigma})$ be a
neighborhood of $p_{\sigma}$ satisfying; $U_{1}(p_{0})\Subset U_{2}(p_{0})$ .
Now we show that there are constants $C_{1}$ and $C_{2}$ which satisfy; there is a
$\epsilon>0$ , and for every $q$ , there is a $C^{\infty}$ function $\psi_{q}$ supported in $U_{2}(p_{0})$ and
$\psi_{q}|_{U_{1}(p_{\Phi})}=1$ satisfying;

$(*)$ $||\psi_{q}Op(q)\phi(t)||_{\langle m)}\leq C_{1}C_{2}^{q}q!$ , for any $t$ in $(0, \epsilon)$

Here Op(q) denotes the q-th order differential operator formed by $T,W_{j}$ in W.
If this is proved, by the Sobolev lemma, for every $q$ ,

$Sup_{U_{1}\langle p_{0})}|Op(q)\phi(t)|\leq c||Op(q)\phi(t)||_{(m),U_{1}(p_{0})},$ $(m\geq n)$ ,

where $||||_{(m),U_{1}(p_{\Phi})}$ means the corresponding norm over $U_{1}(p_{0})$ . So

$Sup_{U_{1}(p_{0})}|Op(q)\phi(t)|\leq c||\psi_{q}Op(q)\phi(t)||_{(m)}$

$\leq cC_{1}C_{2}^{q}q!$
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Therefore by Lemma 1 in (Tarl), we have that $\phi(t)$ is real analytic for any $t$ in
$(0, \epsilon)$ . And by the following lemma, it is shown that $\phi(t)$ is real analytic.
Lemma 3.1 Let u(x,t) is a $C^{k}$ function on $R^{m}\cross C^{n}(k\geq 1)$ , which is real
analytic with respect to $x$ , and complex analytic with respect to $t$ , separately.
Then, u(x,t) is rcal ftll dytic on (x,t).

Proof. Wc considcr tlte partial $co111$})$1cxf_{1}catio11$ of $R^{n\iota}\cross C^{n},C’’’\cross C^{n}$ . Ancl
for a fixed $t$ , we can naturally consider $u(z, t)$ OI1 $C^{m}\cross C^{n}$ for u(x,t). By the
assumption, our $u(z, t)$ is complex analytically wit $h$ respect to respectively $z$ and
$t$ . So by Osgood’s lemma, our $u(z,t)$ is complex $a1_{1\backslash ^{\backslash }}^{\backslash Jutic}$ with respect to both
variables. So u(x,t) must be real analytic. Q.E. $D$ .

For $(*)$ , it suffices to show; there are constants $C_{1}$ and $C_{2}$ which satisfy; there
is a $\epsilon>0$ , and for every $q$ , there is a $c\infty$ function $\psi_{q}$ supported in $U_{2}(po)$ and
$\psi_{q}|_{U_{1}(p_{0})}=1$ satisfying;

$(**)$ $||\psi_{q}W^{I}T^{r}\phi(t)\Vert_{(m)}\leq C_{1}C^{|I|+r}|I|!r!$ , for any $t$ in $(0, \epsilon)$ .

(see Proposition 1 in (Tar2)). We see the sketch of the proof of $(**)$ . In order to
see this, we recall several lemmas which were shown in (Tarl), and use his useful
notations. Following (Tarl), Op(k,q) denotes a q-th order differential operator
formed by concatenating $kW’ s$ and q-k $T’ s$ .

Lemma 3.2(Lemma 2 in (Tarl)) For $k\geq 1$ , any Op(k,q) may be written
sybolically

$Op(k, q)=WOp(k-1, q-1)+ \sum_{j=1}^{q}\dot{d}(\begin{array}{l}qj\end{array})a_{(j)}Oo(k, q-j)$ , i.e.

if there is a $W$ , we may commute it to the left modulo the indicated sum of at
most $c^{j}(_{j}^{q})$ terms, $c$ some integer depending only on $n$ , of the form $a_{(j)}Op(k, q-j)$ .
Lemma 3.3(Lemma 3 in (Tar)) Let a denote any of a finite number of real
analytic functions and $Z$ any of a finite number of real analytic vector field. Let
$\{a_{(q)}\}$ be recursively defined by;

$a_{(1)}=$ any of the $a’s$

$a_{(q+1)}=a_{(1)}a_{(q)}$ or $Za_{(q)}$ ,

i.e., $a_{(1)}a_{(q)}$ stands for one of the $a’ s$ timers an expression of the form $a_{(q)}$ . Then
locally there exists $K$ such that for all $\alpha$ and for all $q$ ,

$|D^{\alpha}a_{(q)}|\leq KK^{\langle|\alpha|+q)}(|\alpha|+q)!$ .
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Then, as for our norm, we immediately have
Lemma 3.4

$||D^{\alpha}a_{(q)}||_{\langle m)}\leq K’’K^{\langle|\alpha|+q+m)}(|\alpha|+q+m)!$ .
So by choosing a proper $K$ , we have

$||D^{\alpha}a_{(q)}||_{(m)}\leq KK^{(|\alpha|+q)}(|\alpha|+q)!$.
Lemma 3.5(Lemma 4 in (Tarl))

$[T^{r}, \square _{b}]=\sum_{j=1}\dot{d}(\begin{array}{l}rj\end{array})\{Wa_{tJ+1)}W+Wa_{(J+2)}+a_{1J+3)} \}T^{r}j$

Now we bcgin by $csti_{II1}ati_{1l}g||\rho WT^{p}\phi(t)||_{\langle m)}$ and $||\rho T^{p}\phi(t)||_{(’\cdot\cdot)}$ . As for $\rho$ , we
use a general partition of unity, and we rccall $t1_{1}e$ basic estinxate(Estimate (III)).

$||W\rho u||_{(m)}^{2}+K||\rho u||_{(m)}^{2}\leq c_{m}\{||\overline{\partial}_{b}(\rho u)||_{t^{m)}}^{2}+||\overline{\partial}_{b}^{*}(\rho u)||_{(m)}^{2}\}+C_{K,m}||\rho u||^{2}$

namely,

$\leq c_{m}\{ \sum_{1=0}^{m}(\square _{b}^{i}\overline{\partial}_{b}(\rho u), \square _{b}^{i}\overline{\partial}_{b}(\rho u))+\sum_{i=0}^{m}(\square _{b}^{i}\overline{\partial}_{b}^{*}(\rho u), \square _{b}^{i}\overline{\partial}_{b}^{*}(\rho u))\}+C_{K,m}||\rho u||^{2}$.

So in the place of $u$ in this equality, we put $u=T^{p}\phi(t)$ . Then, we have

$\Vert WpT^{p}\phi(t)\Vert_{\langle m)}^{2}+K||pT^{p}\phi(t)\Vert_{t^{m)}}^{2}$

$(***)$
$\leq c_{m}\{$ $\sum_{i=0}^{m}(\square _{b}^{i}\overline{\partial}_{b}(\rho\phi(t)), \square _{b}^{i}\overline{\partial}_{b}(p\phi(t)))$

$+ \sum_{\{=0}^{n}(\square _{b}^{i}\overline{\partial}_{b}^{*}(\rho\phi(t)), \square _{b}^{i}\overline{\partial}_{b}^{*}(\rho\phi(t)))\}’+C_{K,m}||\rho T^{p}\phi(t)||^{2}$

$\leq c_{m}\{\sum_{i=0}^{m}(\square _{b}^{i}\coprod_{b}(\rho T^{p}\phi(t)), \square _{b}^{i}(pT^{p}\phi(t)))\}+C_{K,m}\Vert\rho T^{p}\phi(t)||^{2}$ .

The commutator $[\rho, \coprod_{b}]$ does not make troubles so much. In fact, the above can
be estimated as follows.

$\leq c_{m}’||\rho’T^{p}\phi(t)||_{(m)}^{2}+(\frac{\epsilon}{C})\Vert\rho WT^{p}\phi(t)||_{(m)}^{2}$

$+C_{\epsilon} \sum_{j=1}^{p}\dot{d}^{\sim}(\begin{array}{l}pj\end{array})\{||\rho a_{(j+1)}WT^{p-j}\phi(t)||_{(m)}^{2}+||\rho a_{(j+3)}T^{p-j}\phi(t)||_{(m)}^{2}\}$

$+\Vert j^{\langle 1)}(\rho)||_{(m)}||WT^{p}\phi(t)\Vert_{(m)}+||j^{\langle 2)}(p)||_{(m)}||T^{p}\phi(t)||_{(n\iota)}$

$+\ldots\ldots\ldots$

$+||j^{(2k+1)}(p)||_{(m)}\Vert WT^{p}\phi(t)||_{(m-k-1)}+||j^{\langle 2k+2)}(p)||_{(m)}||T^{p}\phi(t)\Vert_{(m-k-1)}$

$+\ldots\ldots\ldots$

$+||j^{(2m-1)}(\rho)||_{(m)}||WT^{p}\phi(t)||_{(0)}+||j^{\langle 2m)}(\rho)||_{\langle m)}||T^{p}\phi(t)||_{\langle 0)}$ .
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while these are estimated by

(large $constant$ ) $||j^{(2k+1)}(\rho)||_{(m)}^{2}+(smallconstant)||WT^{p}\phi(t)||_{(m-k-1)}^{2}$

and

(large $constant$) $||j^{\langle 2k+2)}(\rho)||_{(m)}^{2}+(smallc\dot{o}nstant)||T^{p}\phi(t)||_{\langle m-k-1)}^{2}$ ,

(for the notation, see (A2), (A3)). Therefore at most, they are estimated by

$( \frac{C}{\epsilon})||j^{(2m)}(\rho)||_{(m)}^{2}+\epsilon\{||WT^{p}\phi(t)||_{(m)}^{2}+||T^{p}\phi(t)||_{(m)}^{2} \}$.

Namely, it does not bother us. Hence we can neglect this. As X is compact, and
$T$ is globally defined, for $\rho_{i}\in c_{o}\infty$ of small support,

$\Vert\rho’T^{p}\phi(t)\Vert_{\langle m)}\leq\sum^{N}C_{\rho}\Vert\rho;T^{p}\phi(t)||_{\langle m)}$.
$i=1$

And if $K\geq 2(C_{\rho}C+C’)N$ and $\rho$ itself is one of the $\rho;$ , upon summing this
over $i$ , then this error term will be absorbed on the left. Ftirthermore

$(\square _{b}^{m}\rho\coprod_{b}T^{p}\phi(t), \square _{b}^{m}\rho\square _{b}T^{p}\phi(t))$

$=(\coprod_{b}^{m}\rho T^{p}\square _{b}\phi(t), \square _{b}^{m}\rho T^{p}\coprod_{b}\phi(t))+(\coprod_{b}^{m}\rho[\square _{b}, T^{p}]\phi(t), \square _{b}^{m}\rho T^{p}\phi(t))$

$=(\square _{b}^{m}\rho T^{p}\coprod_{b}\phi(t), \square _{b}^{m}\rho T^{p}\phi(t))$

$+( \coprod_{b}^{m}\rho W(\sum_{j=1}^{p}a_{\langle j+1)}WT^{p-j}\phi(t)), \square _{b}^{m}\rho T^{p}\phi(t))$ . (by Lemma 3.5)

By the same way as in (Tarl), we can handle the second term. So we omit this.
We will control the first term.

$T^{p} \coprod_{b}\phi(t)+T^{p}\overline{\partial}_{b}^{*}R_{2}(\phi(t))=T^{p}\square _{b}\mathcal{L}(\sum^{q}\beta_{i}t; )$ .
$i=1$

And so this term can be estimated by;

$|( \coprod_{b}^{m}\rho_{i}T^{p}\Pi_{b}\mathcal{L}(\sum^{q}\beta_{i}t_{i}), \square _{b}^{m}p;T^{p}\phi(t))|$

$i=1$$+|($ .

The first term was already handled by (Tarl). We see the second term which
didn’t appear in (Tarl). The second term becomes

$|(\coprod_{b}^{m}\rho_{i}T^{p}R_{2}(\phi(t)),\square _{b}^{m}\rho_{i}\overline{\partial}_{b}T^{p}\phi(t))|+commutator$ terms
$\leq$ (large $constant$ ) $||\coprod_{b}^{m}\rho_{i}T^{p}R_{2}(\phi(t))||^{2}+(smallconstant)\Vert\square _{b}^{m}\rho_{i}\overline{\partial}_{b}T^{p}\phi(t)||^{2}$

$+commutator$ terms.
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To contro; commutator terms is tedious. But the $met1_{1}od$ is standard. So we
omit this. For the non-linear term $T^{p}R_{2}(\phi(t))$ ,
Lemma3.6 If we choose $C_{1},C_{2}$ sufficiently large, we have

$||T^{p}R_{2}( \phi(t))||_{(m)}\leq(\frac{1}{4})C_{1}C_{2}^{p}p!$ for every $p$ .

Proof To estimate $T^{p}R_{2}(\phi(t))$ , we must estimate $T^{p}\{(W\phi(t))\phi(t)\}$ . Namely,

$T^{p}\{(W\phi(t))\phi(t)\}=(T^{p}(W\phi(t)))\phi(t)+(\begin{array}{l}p1\end{array})(T^{p-1}(W\phi(t))(T\phi(t))$

$+(\begin{array}{ll} pp -1\end{array})(T(W\phi(t)))(T^{p-1}\phi(t))+(W\phi(t))(T^{p}\phi(t))$

$+ \sum_{r=2}^{p-2}(\begin{array}{l}pr\end{array})(T^{r}(W\phi(t)))(T^{p-r}\phi(t)))$ .

Since $\phi(0)=0$ , we can assume that $||\phi(t)||_{(m)},\Vert W\phi(t)||_{(m)}$ are sufficiently small
if we choose $\epsilon$ sufficiently small. So the first term, the second term, the third
term, and the fourth term can be absorbed in the left of $(***)$ . Now we see
how to control the other term. By induction, we see

$\Vert T^{k}(W\phi(t))\Vert_{(m)},$ $||T^{k}\phi(t)||_{\langle m)}$ le $C_{1}C_{2}^{k-2}(k-2)!$ if $k\geq 2$ .

$k=2$ case is OK, if we choose $C_{1}$ sufficiently large. We assume $k=p- 1$ case. Now
wc see $p$ case. By $m\geq n$

$\Vert\sum_{r=2}^{p-2}(\begin{array}{l}pf\end{array})(T’(W\phi(t)))(T^{p-\prime}\phi(t))||_{(m)}$

$\leq\sum_{r=2}^{p-2}(\begin{array}{l}pr\end{array})||T^{r}(W\phi(t))||_{\langle m)}\Vert T^{p-r}\phi(t)||_{(m)}$

(3.6.1)

$\leq\sum_{r=2}^{p-2}(\begin{array}{l}pr\end{array})C_{1}C_{2}^{r-2}(r-2)!C_{1}C_{2}^{p-r-2}(p-r-2)!$

$\leq\sum_{r=2}^{p-2}(\begin{array}{l}pr\end{array})C_{1}^{2}C_{2}^{p-4}(r-2)!(p-r-2)!$

And

$\sum_{r=2}^{p-2}(\begin{array}{l}pr\end{array})(r-2)!(p-r-2)!=\sum_{r=2}^{p-2}\frac{p(p-1)(p-2)!}{r(r-1)(p-f)(p-r-1)}$
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While if $r\leq[_{2}^{p}]$ $p-r\geq E2$ $p-r-1\geq E2$ Hence

$\sum_{r=2}^{p-2}\frac{p(p-1)(p-2)!}{r(r-1)(p-r)(p-r-1)}$

$= \sum_{r=2}^{[\epsilon]}\frac{2p(p-1)(p-2)!}{r(r-1)(p-r)(p-r-1)}$

$1_{2}^{f}1$

$\leq\sum_{r=2}\frac{8}{r(r-1)p^{2}}\cross p(p-1)(p-2)$ !

$\leq 8\frac{p-1}{p}(p-2)!$

$\leq 8(p-2)!$

Hence
(3.6.1) $\leq(\frac{8C_{1}}{C^{2}})C_{1}C_{2}^{p-2}(p-2)$ !

So if we $c1_{1}ooscarrow^{\epsilon_{C^{C_{2}}}}\leq 1$ , tlxen wc have our estintatc. So wc can control

$||T^{p}\phi(t)||_{(m)},$ $||WT^{p}\phi(t)||_{(m)}$ .

For $||W^{I}T^{p}\phi(t)||_{(m)},$ $|I|\geq 2$ , following the Tartakoff’s method, namely using
Ehrenpreis’s localizing function with careful study of the non-linear term as in
Lemma 3.6, we have our estimate.
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