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SOME PROBLEMS ON THE MODULI OF FIRST
ORDER PDE WITH COMPLETE INTEGRALS
AND WEB GEOMETRY OF THEIR SOLUTIONS

Isa0 NAKAI

Department of Mathematics
Hokkaido University

This note is prepaired for the talk in the work shop on Nilpotent geometry at Kyoto RIMS
November 25-28 1993. The main ingredients are first order PDE with complete integral,
singularity theory of functions on varieties, Web geometry, affine connection of solutions of
PDE, residue of 1-dimensional dynamics, oscillatory integral, etc. Many creatures come into
the stage underlit of clasical mechanics.

The study of the oscillatory integral

I\(q) =/ exp E(f—’q—) dp, peR™F geR"

is one of the main subjects in the quantum physics. It is known that the integral is
asymptotic to 0 in order A\* (log A\)® (Nilsson class) as the wave length A tends to 0 at each
¢ [29]. The stationary phase method suggests that the principal term of the asymptotic
expantion is determined by the geometry of the family of the wave front Dgy C R™ in the
configuration space parametrized by d € R defined as follows: ¢ € Dy if and only if d is
one of the critical values of the function s(*,¢). For example the Airy-Fock function
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(Az; = A7) has the asymptotic expantion
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as A — 0, where %ﬂ%z- is the critical value of the potential function L’i—@#q—) [18]. This
integral is the unique solution to the Airy equation

I" — A3 = 0.
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By the relation Aix(¢) = A/3Ai(5d5) the asymptotics as A — 0 is concentrated to the
local behavior of the solution at oo, where the formal solution has Stokes gap between
positive and negative half lines. This causes to the difference of the above asymptotic
expantion on the positive and negative sides of the ¢-line. The asymptotics of the integral

o) Y 2
/ exp i(p* + qp* + rp) dp

IA(QvT) = A

-0

was studied by Pearcey [25]. The wave front associated to this is modeled on the spherical
optics and the integral approximates the intensity nearby the cusp of the caustics. We call
the family {Dy} the web since the wave fronts form configuration of foliations at generic
points. In this talk some differential geometric properties of the webs are investigated and
the various problems from the web geometrical view point are proposed.

First we apply the singularity theory to our PDE and prove the existence of the
(uni)versal model for almost all webs. From a democratic view point in the singularity
theory of functions we study the generalized oscillatory integrals

"In(g) =/ exp E—‘i(fﬁl dp,  gq€R",
q

where V, is a variety parametrized by ¢ € R™ and s(*, ¢) is a function on V. We show that
all first order PDE are realized as the webs of the generalized oscillatory integrals. In the
complex analytic case a result due to Goryunov [14] tells the complement of the singular
locus (= caustics) of the generalized integrals are Eilenberg-Maclane K(m,1)-space: the
fundamental groups = are finite index subgroups of the symmetric groups S(m). The
order m is given by Milnor number of s(*, ¢) and the index is the local intersection number
of m solutions. Secondly we apply the web geometry to define the affine connection on
the configuration space R™ and show that in some cases the structure of the webs are
determined by their curvature forms. In analyzing the moduli of the normal forms of the
webs a certain residue of dynamics acting on the phase space (d-line) R turns out to give
a formal invariant, .

The webs are defined in another way by first order partial differential equations with
the complete integral s (PDE). A first order partial differential equation (PDE) on R™ is
a subvariety V of the projective cotangent space PT*R"™ (or PT*C,,) furnished with the
canonical contact structure [6]. Our subject is the local topological structure of the PDE
at the singular points of the projection of the variety to the base space R®. So PT*R"
may be replaced by the 1-jet bundle J}(R"™! R) with the contact form w = p dz — dy,
where z,y are respectively the coordinates of R*™! R and p is the coordinate of R*~1*,
the fibre of the projection ev : JY(R®™ 1, R) — R®™ ! x R = R®. Assume V = R",
evoZ(0)=0€ R ! xR and Z: R* — J}(R" } R) is an immersion. The direct image
of the pull back Z*w under the projection ev o Z defines a multi valued 1-form (implicit
differential equation) on the configuration space : the base space R*™! x R. A complete
integral is a germ of non singular smooth function s : R®,0 — R, 0 such that ds A T*w
vanishes identically on a neighbourhocd ¢ ¢ {f2cm now on we assume the existence of the
complete integrals). Then the images Dy = ev 0 I(s~}(d)),d € R, constitute the integral
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submanifolds (possibly singular) of the equation on a neighbourhood of 0 € R*. We call
Dy a solution of the equation and call the family Wz = {D,,d € R} the solution web of
the equation Z. Web geometry [3,9,13] applies to the solution web and defines the various
affine connections on the confuguration space R™. In some cases, this gives a one-to-one
correspondence of the moduli space (function moduli) of PDE and the curvature forms of
their affine connections.

Two webs Wz = {D4},Wg = {D}} of PDE’s I, J are C*° equivalent if there exists a
germ of diffeomorphisms % : (R*,0) — (R",0) and %k : (R,0) — (R, 0) such that ¥(Dy) =
D;c( &) for d in a neighbourhood of 0 € R. In other words Wz, W are C* equivalent if
there exists a germ of a contact diffeomorphism dy of the Legendre fibration J}(R"~!,R) —
R™ x R sending the image of 7 to that of J: I,J are strictly C'* equivalent if k is the
identity. We discuss some classification problem of PDE in terms of the geometry of the
solution webs. We say that the solution web Wz is a non singular m-web at ¢ € R" if
the number of d for which D4 passes through ¢ is m, those solutions Dy;,t = 1,...,m,
are smooth and meet in general position at ¢ and Dy forms a non-singular foliation at ¢
as d varies nearby d; for each 7 = 1,...,m. We call the maximum of such d for ¢ nearby
0 € R” the web number. The web number is the topological multiplicity of ev o Z for
generic Z. The singular locus Sing(Wz) of Wr is the set of those ¢ where Wz is not a
nonsingular m-web, m being the web number. By an easy calculation we see that the
C'* equivalence classes of m-webs, n +1 < m, form subsets of infinite codimension in the
jet space of m-tuples of level functions defined at ¢ € R™. So C-classification of the
solution webs fails in the ordinary sense. In fact Arnol’d [2], Carneiro [7], Dufour [12] and
Hayakawa-Ishikawa-Izumiya-Yamaguchi [16] showed that C* classes of some PDE have
moduli of infinite dimension called the function moduli, which are parametrized by the
space of smooth functions defined on the configuration space R™ at 0.

A 7versel PDE” I' (versal unfolding) of a PDE T defined on R™*" has the following

properties.

(1) The solution web Wy is induced from Wz by the natural imbedding R® — R™*"
"transverse” to the solutions of 7',

(2) For a deformation Z; of I, there exists a family of imbeddings ¢; : R® — R™"
transverse to the solutions of 7' by which the solution web Wz, is induced from Wz,

(3) Wz has the web number < n + r and any deformation is trivial

(The imbedding of R™ is not transversal to the Wy in general in the ordinary sense.) The
property (2) suggests that Wz, possesses a certain universality. The classification problem
falls into the following two problems.

(A) Classification of versal PDE’s Wr/.
(B) Geometry of sections of Wy:.

Problem A is reduced to the singularity theory of functions s(x,¢) on varieties V; (see
c.f. [4,14,15, 21,22]). Problem B is closely related to the web geometry of the solution
webs, which is mentioned in the later part this note.

Hayakawa-Ishikawa-Izumiya-Yamaguchi [16] explained a link of the first order PDE’s

with complete integral and thi: singularity thecry -f the so-called generating functions
of legendrian submanifolds using, and classified generic PDE with complete integral on
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the plane as follows. First recall a well known result due to Hérmander and Zakalyukin
[17,24]. Let h : R*** 0 — R™*! 0 a germ of smooth map of corank 1: we may assume
h(z,z) = (z,h.(2)),z € RF,z € R". Assume that (Oh,/9zy,...,0h,/02;)|R™ x 0 is non
singular. Then I(h) is a smooth submanifold of dimension n, on which A restricts to a
finite-to-one and generically immersive mapping to the discriminant set D(h) assuming a
certain generic condition. The Legendre submanifold associated to h is the image of the
map

(z, hy(z), Ohy/Ox1(2),...,0h,/0x4(2))

of £(h) into J}(R™, R), which is nothing but the Nash blow up of the discriminant set
D(h). The family of functions h, is called the generating function. It is known that all
germs of Legendre submanifolds of J!'(R™, R) are obtained in this way (see e.g. [17,24]).

Next we recall an idea from the paper [16]. Let Z = (Z,,Z,,Z,) : R* —» JY(R""},R) =
R™ 1 x R x R®"1* be a germ of imbedding at 0 € R™ transverse to the contact elements
and assume it admits a complete integral s. Define the germ of Legendre imbedding

I=(T,87yIpa): R" - JHR",R) =R x R x R x R™*

with a function « in R” sa.tisfyingfg = T*w + a ds = 0, where w,& are respactively
the canonical contact forms of the jet spaces J*(R™®™!, R), J}(R™,R). Then by the above
construction of Legendre submanifolds, the image of the 7 is identified with the image of
a map '

(1,...,%n, hy,Oh/021,...,0h:/02,) : Z(x, he) — JH(R™, R).
We identify the divergent diagram

s evol=(I.,I,)
R R" > R xR

with the restriction of the divergent diagram

f=(2:1)"')$n—1yh:t

Tn )
(*) R «——— S(a,h;) » R*™! x R.

Then the integral curve s~(d) C Z(a,h,) is the critical point set of the restriction of
f=(z1,...;0n-1,hy) : R x ¢ x R* - R™ 1 x R. The solution D, is the discriminant
(critical value) set of the restriction, which is the intersection of the discriminant D(z, h;)
with R*™! x d x R.

In this way we are led to the study of the divergent diagrams (*x*) with corank (f,z,) =
1’

%) R Rt L Reei xR

Define the solution by Dy = D(f,s) N R™ x d: the discriminant set of the restriction
fa:s71(d) = R". We denote the family of the solutions D4,d € R by Wy, and call the
solution web of (f,s). On the one hand the diagram (**) can be regarded as a family of
the restrictions of s to the fibres of f,

sqt f7H(¢g) — R
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with the parameter space R”. By definition of the solution web, for ¢ € R® — D(f), ¢ € Dy
if and only if s, has the critical value d.

Let €(n) denote the local ring of the function germs on R™ at 0 and m(n) the maximal
ideal which consists of the function germs vanishing at 0. Similarly to the contact equiv-
alence relation for map germs, we say divergent diagrams (f,s),(g,t) are algebraically
S-equivalent if there exist an R-algebra isomorphism ¢* : Q(g) — Q(f) and a germ of
diffeomorphism y : R,0 — R, 0 such that ¢*(¢) = x o s, and we say strictly algebraically S-
equivalent if y is the identity, where Q(f) = e(n+k)/f+*+m(n). Roughly stating (f,s),(g,t)
are algebraically S-equivalent if the restrictions s,,%, are equivalent.

Two diagrams (f, s),(g,t) are equivalent if there exist germs of diffeomorphisms b,%,%
such that the following diagram commutes

s f

R] Rn-Hc R"

o

R! —— R"t* —— R™.
t g

We denote this diagram by (v, ¥.%) : (f,s) — (g,t) and call the triple an equivalence. By
definition, Y(Wy ) = W, ¢ holds: ¢(Dy) = Df\'(d) for d € R, where D/, denotes the solution
of (g,t). We say (f,s),(g,t) are strictly equivalent if x is the identity. An unfolding of
a diagram (f,s) of dimension s is a pair of a diagram (F,S) and a triple of imbeddings
i = (41,1%2,3) such that 3'is transverse to F' = wo(F, S) and (f, s) is given by the following
commutative diagram of fiber product

Rl S Rn+r+k F , Rn-}-r

|

" R! —— RMF  R™,

8 f

We denote 1 : (f,s) — (F,S) and call ¢ a morphism.

In the manner of Thom-Mather theory we say diagrams (f,s),(g,t) are (strictly) S-
equivalent if they admit unfoldings, which are (strictly) equivalent.

Let 6(n) denote the e(n)-module of germs of smooth vector fields on R™ at 0. For a
map germ f : R"** 0 — R", 0, let §( f) denote the e(n)-module of germs of sections of the
pull back f*TR"™. We say (f,s) is (infinitesimally) stable if the morphism

T(f,s):0(n+k) & 0(n)— 0(s)DI(f)

defined by :
T(f.s)(x,€) = (ts(x), tf(x) —wf(£))

is surjective, where tf,ts denote the diferentials of f,s and wf the pull back by df. The
following is an easy consequence of the deformation theory of singularities of functions.
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Theorem 1. Let {(fi,s:),1 =1....,r} be a generator over R of the module

8(s) @ 6(f)
Im T(f,s)+ f*m(n)(0(s) ®6(f))

Then (f,s) admits the strictly stable unfolding (F,S) : Rt 0 — R+l 0 —
R™*7,0 defined by

F(Z,'U,) = (f(Z) + Zuifia ‘U.), 5(2,7.1;) = S(Z) + Zuisi y 2 € Rn-{-k’ u€eR".

=1 =1

Stable diagrams possess the following properties.

(1) s is non singular,

(2) f is stable as a map germ, i.e. for any deformation g of f a germ of ¢ at an (2',u’)
nearby the origin is equivalent to the germ f,

(3) (f,s): R"** 0 — R"*1 0 is stable as a map germ,

(4) the rectriction fy : s71(0),0 — R",01is stable as a map germ. In particular a solution
web of a strictly stable-divergent diagram is a one parameter family of discriminant sets
of stable map germs f;. The restriction s, has at most n critical values and the following
conditions are equivalent.

(1) The web Wy , is a non singular m-web at a g,

(i1) The first projection 7 : D(f,s) — R™ is a non singular m-sheet covering over ¢,

(i1i) sq : f~(g) — R is a Morse function with m distinct critical values.

The next theorem is fundamental in the singularity theory of composite map germs

Theorem 2. Let (f,s),(g,t) : R**,0 — R"*1 0 — R™,0 be strictly stable divergent
diagrams. Then

(1) (f,3),(g,t) are strictly equivalent if and only If strictly algebraically S-equivalent.

(2) (f,s),(g,t) are equivalent if and only if algebraically S-equivalent.

This reduces Problem (A) to the classification of germs of functions on varieties. In
the complex analytic case the tuples of the critical values of s, defines a mapping of the-
configuration space C™ onto the quotient space C™/S(m) of C™ by the permutation group
S(m), m being the web number.

Define the R*-equivalence relation of functions germs of varieties to be generted by
the S-equivalence and the relation s, ~ s, + ¢,¢ € R. A result due to Gryunov [14] is
interpreted as follows.

Theorem 3. Let (f,s): C"t* 0 — C"*1,0 — C™ be a strictly stable divergent diagram.
Then the singular locus Sing(W; ) of the solution web of the PDE associated to the
diagram is a germ of a hypersurface. If the diagram is simple, i.e. sg is simple in the sense
of the singularity of functions, the complement of Sing(Wy ;) is a I(w,1) space. Here 7 is
a finite index subgroup of the braid group S(m), m being the web number, and the index
of 7 is the intersection number of Dy, --- Dy, for generic distinct di,...,dm close to 0.

This suggests a relation to the ADE problem. Now we explain the relation of the function

moduli and versal PDE. Let ¢ : (f,s) — (F,S),(F,S) : Rr*tr+k , Rrtr+l , RH7 g
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morphism into a strictly stable unfolding of dimension s given in Theorem 1. Given a
deformation (f,,s,),v € R" of (f,s) = (f,,8,), define the unfolding (F',S") of (F,S) with
the parameter v by F' = (F + (fo — f, o), v),S' = S+ (s, —3). Then by Theorem
1, (F',S") is stable and by Theorem 2 strictly equivalent to the trivial unfolding of (F, S)
of dimension r. The composition of the trivialization of (F",S’) and the projection of the
trivial family to (F,S) restricts to the subfamily (f.,s») to give a morphism into (F,S).
By this idea we obtain

Theorem 4 (Function moduli). Let (f,,s,),v € R” be a smooth family of divergent
diagrams. Then (f,,s,) is strictly equivalent to a germ of (f,s') at an z, € R"*¥ nearby

0, where s!, is of the form

si(z) = Soi14(z) = s0(2) + Zav,]-(z) - 85(2)

i=1

=so(z) + Z Bo i(f(2)) - s5(2).

j=1
The second term in the theorem is called function moduli.

Theorem 5 (Versality theorem). Let (g,t) be strictly algebraically S-equivalent to an
(f,s) and assume f, g are stable and f is minimal: f is not equivalent to a trivial unfolding
of an f'. Then (g,t) is strictly equivalent to a diagram (f,s'),s' € M, where M is the
€(n)-module generated by s;,i=1,...,7.

Example (Verslity and function moduli).

Consider the following (non versal) differential equation in the z;y-plane
(1) | y=ay' +(y)>

This defines a nonsingular variety V = {y = z1p+p3} € JY(R,R), on which the projection
ev to the base space restricts to the Whitney cusp mapping. The variety V is not transverse
to the contact elements at the singular locus. This equation admits the family of algebraic
solutions y = zy29 + 23, with the parameter z, € R. The variety V is the image of the
imbedding Z(21,22) = (x;,2122 + 23,22) and the complete integral is given by s = z.
This admits the Legendre imbedding into J!(R?,R) defined by Z(zy,z2) = (1, %2, 212 +
T3, 2,21 + 323), which is given by the generating function h,(z) = 22 4+ z,z5 + z3.
Now we will construct the versal unfolding of (1). The divergent diagram

s=z3 F=(z1,hz)
Re— R — 5 R?

is not strictly stable i.e. a deformation is not strictly equivalent to the trivial unfolding.
By Theorem 5.1, this admits the stable unfolding with one parameter

S=1‘2

—

F"—‘(zl ,u,hr,u)

3
» R3,

R-’L
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where Ay 4(2) = 2% + 21(z2 — u) + (22 — u)®. The singular locus £(F,S) of the map
(F,S) : R* > R® x R is the z;2ou-space defined by z = 0, on which the above divergent
diagram restricts to the integral diagram

S=1‘2 F
R +—— S(F,8)=R> —— R®,

and the restriction of F is given by F(x1,z2,u) = (21,u,21(ze — u) + (z2 — u)?). The
level surfaces of the complete integral s = z5 in R® pjoject by F to the solutions in the
z1yu-space R?, which satisfy the following versal PDE

(2) { Y= T1Ye, +(y11) 1}

Yu = —T1 — 3(Yz; )

By definition F~1(21,u,y) C R x u x R = R? is the parallel translation of f~!(z;,y) C
R? by (u,0) € R?. Identifying F~(21,u,y) with f~!(z;,y) naturally, the restrictions
Sz1,y> 9z, u,y Of the complete integral x4 satisfy s;, y +u = Sz, u 4. Let ¢ be the imbedding
of xiy-space into xjuy-space defined by i(z1,y) = (z1,¢(z1,y),y) and j the imbedding
of x1xy2-space into xjzouz-space defined by j(z1,22,2) = (21,22, ¢(21, hs(2)),2). These
imbeddings define the divergent diagram (g,t) by Foj =iog andt = Soj. Clearly f = g.
By definition S;, 4(z1.4),y = a1,y + #(21,y) : 7 (21,y) — R. This shows that ¢ restricts
to s + ¢(f) on X(g,t). The second term ¢(f) is the function moduli. The solutions of the
equation (1) are the transverse intersections of the solutions of this equation (2) with the
r1y-plane naturally imbedded in z;yu-space, and any deformation of (1) is obtained by a
suitable deformation of the natural imbedding.
Generic PDE’s with complete integrals are classified in [16] as follows.

Theorem 6 [16]. The diagrams (*) (f,s) : R « Z(f,s) — R? associated to generic dif-
ferential equation in xy-plane are equivalent to one of the following five forms as divergent
diagrams.

(0) f(z,z) = (z,2), s(z,2) =2,

(1) f(z,2) = (2%, ) s(z,2) = z + a,

(2) f(z,z) = (2%,2), s(z,2)=2%+z,
(3)f(z,‘)=(z3+x:,1 s(z,x) =z + ¢(f),

(4) 7z 2) = (2 +2z,2), s(ez) = 32 + Jaz? 4 (1),

(5) f(z,2) = (2% + 222,: ), s(z,z) = 22 + ¢(f),

where ¢ 1s an arbitrary smooth function defined on a neighbourhood of the origin in the
zy-plane.

In the above list the normal forms has at most "one” function moduli. This is explined
as follows. Let 7 be a PDE on R™, 7' its (mini) versal PDE on R®*® with smallest
s, and let (f,s),(F,S) be their associated divergent diagrams. Define the partition S
of the configuration space R™*¢ by the R*t-equivalence class of the singular points of
the restrictions S(4 4),(g,u) € R**. If s, = S, is R*-simple, then by the definition of
simplicity, S is locally finite stratification by submanifolds and generic perturbations of
the natural imbedding of R" into R™** are transversal to §. This transversality means
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that the extended family s, . = s, +¢,(¢ € R",c € R) is a versal family and the unfolding
(f',s"), (f' = (f,¢),s' = s +c), of dimension 1 is stable by the criterion in Theorem 1.
By the property of stable diagrams, this has the web number at most n + 1 hence (f, s)
has the web number at most n + 1 and by the argument of versality of stable diagrams
(f,s) has at most one function moduli of type #(f). Therefore it would be important to

estimate the codimension ¢ of the union of non R*-simple functions of varieties. Theorem
6 assirts that ¢ > 3.

Theorem 7. For n < ¢, generic PDE’s have the web number less than or equal ton + 1
and at most one function moduli of type ¢(f).

The function moduli of type ¢(f) has two meanings. The first one is seen by the obvious
calculation

A(q)=/‘ exPi(S(p,q) J; ¢0 f(q) dp

= exp 12200 X/ exp 2220 4
Ve

A A

The function moduli changes only the phase of the oscillatory integral. In particula the
zero of the integral does not change. On the other hand the web structure of the wave
fronts D4 changes topologically [11,12] and futhermore the contour of the phase function d
(multi valued) on R” form a quasi periodic (Penrose) tiling [30], which changes vigorously.
The structure of those fine structure seems not yet well understood. Here we propose the
approach from the web geometry.

n + l-webs of codimension 1 on R" is one of the well-deveropped parts of the web
geometry historically studied by Lie Darboux, Blashke, Chern, ... [3,9,13]. To give a
brief introduction we assume n = 2. Assume that a germ of 3-web W = (F;, Fp, F3) of
R? is given by nonsingular 1-forms w;,ws,w3 in general position. Since w; are linearly
dependent we may assume w; + w2 + ws = 0 by multiplying units to those 1-forms. It is
easy to see that there exists the unique 1-form 6 such that dw; = 6 A w; for 7 = 1,2, 3.

0 6

The derivative (W) = d6 is independent of the choice of w; and called the web curvature
form. If the curvature form vanishes identically, W is diffeomorphic to the (hexagonal)
web defined by parallel lines with three distinct directions. (The affine connections and
web curvatures are defined also for n 4+ 1-webs of R™. See the book [3,13] for the details.)

Assume that a solution web Wz of a PDE 7 on R? has the web number 3 and has
function moduli ¢(f). On the nonsingular locus of Wz the web curvature form K(Wrg) is
defined. Clearly the web curvature form is independent of the right equivalence s — x o s
with a germ of diffeomorphism y of R. Therefore we obtain the morphism

The affine connection on R? associated to W is defined by the connection form 9 0).

right

I : Function moduli/ ~ — Web curvature.
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Proposition 8. Let (f,s) be the normal forms in Theorem 6 (3) - (5). Then there exists
a germ of analytic (respectively formal) diffeomorphism x in case (3) (resp. in cases (4),
(5)) such that, respectively,

(3) x o ¢ vanishes identically on the discriminant locus D(f) = {27u? + 4v3 = 0},

(4) xo¢ = +v+ av® on the double point locus = v-axis, a € R,

(5) xoé==+v+ av? on the cusp point locus = v-axis, a € R.

The proposition is proved by normalizing the dynamics on the range R of s, which sends
a critical value of the function s, to the other critical value for those g, respectively, in
D(f) and v-axis. The potential function s, in Case (3) for ¢ = (0,a) is of the form

sqp) =¢* + a® + 4(a),

which has the critical values ¢(a) and ¢(a)+ a*. Assume that ¢ is nonsingular. Then the
dynamics which sends the first to the later is smoothly conjugate to the diffeomorphism

@ + (67 @)

It is known (28] that germs of diffeomorphism-h of R, 0 (as well as C) are formally classified
by their residue. Here we introduce the (reduced) residue Res(f) =res(f)+ i— (where f
is k-flat), which is defined by

fOk — f(27\‘\/———1 Res(f)),

in other words, writing formally as f = exp x with a formal vector field x on R,

exp OF y = exp (2mv/—1 res(x)) x.

Here (OF stands for the "analytic” continuation of the iteration f* of ¢-times, ¢ being a
complex number, along the k-fold anti clockwise cycle from 0 to a nearby point in the time
space C. The residue of our dynamics a + 1(¢7!(a))? is a formal invariant under the right
equivalence. (It is proved in [20] that the formal conjugacy is realized by C'*°-conjugacy
by a result due to Takens.) Introducing in this way the residue seems an adhoc invariant,
although, the following Proposition 9 suggests there might be an ”intrinsic” definition in
terms of the web curvature form as well as the affine connection of the solutions. '

Proposition 9. For the webs of the normal form in (3),
(1)  Function moduli/ ~'8" = {4 | ¢ =0 on D(f)},
(2) the web curvature form K(Wr) extends analytically to R?,

(3) K is a bijection of the reduced function moduli and the set of germs of analytic
2-forms.

The statement in (1) follows from Proposition 8 (3). The statement (2) follows from the
theory of invariant forms. The statement (3) is shown by a direct calculation and remains
valid for some other cases. This work is in progress involving the Gauss map of the webs
determined by the frame of the tangent space by the differential of the phase function s.
Finally I would propose the following questions.
(1) Is K injective?
(2) Study the singularities of K(Wr).
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