On Auslander-Reiten components for group algebras of finite groups

Shigeto KAWATA(Osaka City Univ.)河 田 成 人(大阪市立大学理学部)

Throughout G is a finite group and k denotes an algebraically closed field of characteristic p > 0. Let B be a block of the group algebra kG. Let $\Gamma_s(B)$ be the stable Auslander-Reiten quiver of B and Θ a connected component of $\Gamma_s(B)$. Then it is known that if Θ is not a tube and a defect group of B is not a Kleinian four group, Θ is isomorphic to $\mathbb{Z}A_{\infty}$, $\mathbb{Z}D_{\infty}$ or $\mathbb{Z}A_{\infty}^{\infty}$ (see [Bn], [Bs], [E1], [E-S] and [W]). In Section 1, we give some condition which implies that Θ is isomorphic to $\mathbb{Z}A_{\infty}$. In Section 2, we consider a connected component of the form $\mathbb{Z}A_{\infty}$ which contains a simple module.

The notation is almost standard. All kG-modules considered here are finite dimensional over k. For a non-projective indecomposable kG-module W, we write $\mathcal{A}(W)$ to denote the Auslander-Reiten sequence (AR-sequence for short) $0 \rightarrow \Omega^2 W \rightarrow m(W) \rightarrow W \rightarrow 0$ terminating at W, where Ω is the Heller operator, and we write m(W) to denote the middle term of $\mathcal{A}(W)$. Concerning some basic facts and terminologies used here, we refer to [Bn] and [E1].

1. ZA_{∞} -components

The purpose of this section is to show the following theorem.

<u>Theorem 1.1.</u> Let Θ be a connected component of $\Gamma_s(B)$ and M an indecomposable kG-module in Θ . Let P be a vertex of M, S a P-source of M and Δ the connected component of $\Gamma_s(kP)$ containing S. Suppose that Δ is isomorphic to $\mathbb{Z}A_{\infty}$. Then Θ is isomorphic to $\mathbb{Z}A_{\infty}$.

Assume the same hypothesis as in Theorem 1.1. Then since Δ is isomorphic to $\mathbb{Z}A_{\infty}$, P is not cyclic, dihedral, semidihedral or generalized quaternion (see for example [E1]). Moreover Θ is isomorphic to either $\mathbb{Z}A_{\infty}$, $\mathbb{Z}D_{\infty}$ or $\mathbb{Z}A_{\infty}^{\infty}$ since k is algebraically closed. By [Bn, Theorem 2.30.6], if we have an unbounded additive function on Θ , we can conclude that Θ is isomorphic to $\mathbb{Z}A_{\infty}$. Following the argument of [E2, Section 5], we will construct an unbounded additive function.

In order to prove Theorem 1.1, we recall the result of Okuyama and Uno[O-U].

<u>Theorem 1.2([O-U, Theorem]</u>). Let Γ be a connected component of $\Gamma_s(kG)$. Suppose that Γ is not a tube. Then one of the following holds.

(i) All the modules in Γ have the vertices in common.

(ii) We can take $T: X_1 - X_2 - X_3 - \cdots + X_n - \cdots$ in Γ with $\Gamma \cong \mathbb{Z}T$ and $vx(X_1) \leq vx(X_2) \leq vx(X_3) \leq vx(X_4) = vx(X_5) = \cdots = vx(X_n) = \cdots$.

(iii) p = 2, $\Gamma = \mathbb{Z}A_{\infty}^{\infty}$, and only two distinct vertices P and Q occur, with Q < P. Moreover, one of the following holds.

(iiia) |P:Q| = 2 with |Q| > 4, and the modules with vertex Q lie in a subquiver Γ_Q such that both Γ_Q and $\Gamma \setminus \Gamma_Q$ are isomorphic to $\mathbb{Z}A_{\infty}$ as graphs.

(iiib) Q is a Kleinian four group and P is a dihedral group of order 8, and the modules with vertex Q lie in two or four adjacent τ -orbits.

Let $a_k(G)$ be the Green ring. For an exact sequence of kG-modules $\mathcal{G}: 0 \to A \to B \to C \to 0$, let $[\mathcal{G}] \in a_k(G)$ be the element $[\mathcal{G}] = B - A - C$.

Lemma 1.3. Let V and W be non-projective indecomposable kG-modules with the same vertex P, and S a P-source of W. Suppose that there is an irreducible map from V to W. Then for some P-source U of V, there exists an irreducible map from U to S.

<u>Proof.</u> Let $\mathcal{A}(W)$ be the AR-sequence $0 \to \Omega^2 W \to m(W) \to W \to 0$ terminating at W. Then $V \mid m(W)$. By [K2, Lemma 1.6(2)], we have $[\mathcal{A}(W)\downarrow_P] = t(\Sigma_{g \in N/H}[\mathcal{A}(S^g]))$, where $N = \mathbf{N}_G(P)$, $H = \{g \in N \mid S^g \cong S\}$ and t is the multiplicity of M in $S^{\uparrow G}$. This implies that some *P*-source U of V is isomorphic to a direct summand of the middle term m(S) of the AR-sequence $\mathcal{A}(S)$.

<u>Lemma 1.4.</u> Under the same hypothesis as in Theorem 1.1, assume that Θ is isomorphic to either $\mathbb{Z}D_{\infty}$ or $\mathbb{Z}A_{\infty}^{\infty}$. Then;

(1) We have a connected subquiver Ξ of Θ and a tree T_1 :

 $M \leftarrow M_1 \leftarrow M_2 \leftarrow \cdots \leftarrow M_n \leftarrow \cdots$ in Ξ such that $\Xi \cong \mathbb{Z}T_1$ and $P = vx(M) = vx(M_i)$ for all *i*.

(2) We have a tree $T_2: U_1 \leftarrow \cdots \leftarrow U_m \leftarrow S \leftarrow S_1 \leftarrow \cdots \leftarrow S_n \leftarrow \cdots$ in Δ such that $\Delta \cong \mathbb{Z}T_2$ and S_i is a *P*-source of M_i for all *i* (*m* may be zero, and in this case *S* lies at the end of Δ).

Proof. (1) follows immediately from Theorem 1.2.

(2) By Lemma 1.3, we have *P*-sources S_i of M_i and a subquiver $S \leftarrow S_1 \leftarrow \cdots \leftarrow S_n \leftarrow \cdots$ in Δ . Thus we have only to show that $S_{i+1} \not\equiv \Omega^2 S_{i-1}$ for all $i \geq 1$. Assume contrary that $S_{i+1} \cong \Omega^2 S_{i-1}$ for some *i*. Let r_i be the multiplicity of S_i in $M_i \downarrow P$. By [K2, Lemma 1.6(2)], we have $[\mathscr{A}(M_i) \downarrow_P] = t_i (\Sigma_{g \in NH} [\mathscr{A}(S_i^{s})])$, where $N = \mathbb{N}_G(P)$, H = $\{g \in N \mid S_i^s \cong S_i\}$ and t_i is the multiplicity of M_i in $S_i \uparrow^G$. Since Δ is isomorphic to $\mathbb{Z}A_{\infty}$, it follows that $r_{i-1} + r_{i+1} \leq t_i \leq r_i$ and $r_{i+1} < r_i$. On the other hand, we have $[\mathscr{A}(M_{i+1}) \downarrow_P] =$ $t_{i+1} (\Sigma_{g \in N/H} [\mathscr{A}(S_{i+1}^{s})])$, where t_{i+1} is the multiplicity of M_{i+1} in $S_{i+1} \uparrow^G$. This implies that $r_i \leq$ $t_{i+1} \leq r_{i+1}$, a contradiction.

<u>Proof of Theorem 1.1.</u> We continue to use the same notation in Lemma 1.4. Let Q be a minimal *p*-subgroup of G such that $M \downarrow_Q$ is not projective. Since M is not projective, $M \downarrow_Q$ is periodic from [C, Lemma 2.5]. By the Mackey decomposition $M \downarrow_Q | (S \uparrow^G) \downarrow_Q \cong$ $\bigoplus_{g \in P \setminus G/Q} (S^g \downarrow_{P^g \cap Q}) \uparrow_Q$. Since $M \downarrow_Q$ is not projective, $S^g \downarrow_{P^g \cap Q}$ is not projective for some $g \in$ G. Then $S^g \downarrow_{P^g \cap Q} | M \downarrow_{P^g \cap Q}$ and thus $M \downarrow_{P^g \cap Q}$ is not projective. This implies that Q = $P^g \cap Q$ and $Q < P^g$ by our choice of Q. Therefore we may assume that Q < P and $S \downarrow_Q$ is periodic and non-projective (if necessary, replace P, S and Δ by P^g , S^g and Δ^g). We claim that Q satisfies the following two conditions for any indecomposable kG-module W in Θ (and any kP-module V in Δ): (A1) W and V are not Q-projective; (A2) $W \downarrow_Q$ and $V \downarrow_Q$ are not projective. Indeed, since both $M \downarrow_Q$ and $S \downarrow_Q$ are periodic and non-projective, it follows that for any W in Θ and any V in Δ , $W \downarrow_Q$ and $V \downarrow_Q$ are periodic and non-projective, and thus both W and V are not Q-projective. Let $d_Q(W)$ (resp. $d_Q(V)$) be the number of non-projective indecomposable direct summands of $W \downarrow_Q$ (resp. $V \downarrow_Q$). Then d_Q is an additive function on Θ and also on Δ (see, e. g., [O], [E-S] and [K3]). Note that d_Q commutes with $\tau = \Omega^2$.

Now Θ is isomorphic to either $\mathbb{Z}A_{\infty}$, $\mathbb{Z}D_{\infty}$ or $\mathbb{Z}A_{\infty}^{\infty}$. Assume by way of contradiction that Θ is isomorphic to either $\mathbb{Z}D_{\infty}$ or $\mathbb{Z}A_{\infty}^{\infty}$. Then by [Bn, Lemma 2.30.5] any additive function on Θ which commutes with Ω^2 is bounded. On the other hand, since Δ is isomorphic to $\mathbb{Z}A_{\infty}$, an additive function d_Q on Δ is unbounded. Since $S_i \downarrow_Q | M_i \downarrow_Q$ by Lemma 1.4, it follows that $d_Q(S_i) \leq d_Q(M_i)$ for all *i*. This implies that an additive function d_Q on Θ is unbounded, a contradiction.

<u>Corollary 1.5.</u> Assume that k is algebraically closed and let Θ be a connected component of $\Gamma_s(kG)$. Let M be an indecomposable kG-module in Θ , P a vertex of M and S a P-source of M. Suppose that P is not cyclic, dihedral, semidihedral or generalized quaternion and that the k-dimension of S is not divisible by p. Then Θ is isomorphic to $\mathbb{Z}A_{\infty}$.

<u>Proof.</u> By [K2, Theorem 2.1], the connected component of $\Gamma_s(kP)$ containing S is isomorphic to $\mathbb{Z}A_{\infty}$. Hence the result follows by Theorem 1.1.

In particular we have the following.

<u>Corollary 1.6.</u> Let B be a block of kG whose defect group is not cyclic, dihedral, semidihedral or generalized quaternion and M a simple module in B of height 0. Then M lies in a $\mathbb{Z}A_{\infty}$ -component.

<u>Remark.</u> In [E2], Erdmann proved that if a p-group P is not cyclic, dihedral, semidihedral or generalized quaternion, then there are infinitely many kP-modules of

dimension 2 or 3 lying at the ends of $\mathbb{Z}A_{\infty}$ -components ([E2, Propositions 4.2 and 4.4]). Consequently she showed that for a wild block *B* over an algebraically closed field, the stable Auslander-Reiten quiver $\Gamma_s(B)$ has infinitely many $\mathbb{Z}A_{\infty}$ -components ([E2, Theorem 5.1]).

2. ZA_{∞} -components and simple modules

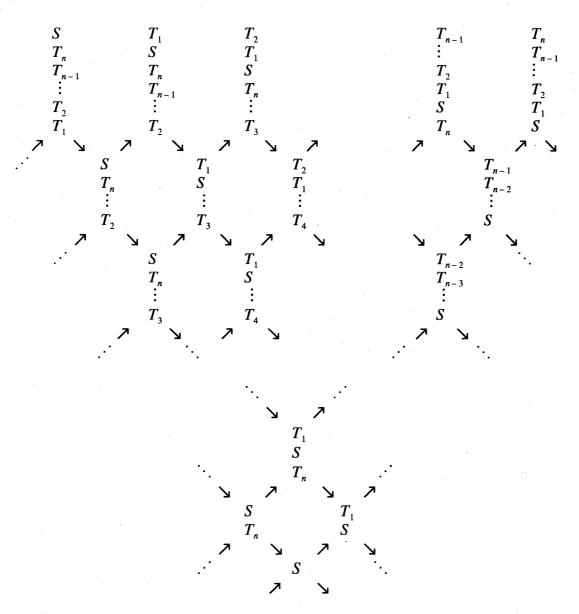
In this section we consider a $\mathbb{Z}A_{\infty}$ -component which contains a simple module. Note that if B is a wild block (i. e., a defect group of B is not cyclic, dihedral, semidihedral or generalized quaternion), then $\Gamma_s(B)$ has a $\mathbb{Z}A_{\infty}$ -component containing a simple module by Corollary 1.6.

<u>Proposition 2.1.</u> Let M be a simple kG-module and Θ a connected component containing M. Suppose that $\Theta \cong \mathbb{Z}A_{\infty}$ and M does not lie at the end. Then ;

(1) For some simple modules T_1, T_2, \dots, T_n , the projective covers P_i of T_i are uniserial of length n + 2 and the Loewy series for P_i 's are as follows for some simple module S:

$$P_{1}:\begin{pmatrix} T_{1} \\ S \\ T_{n} \\ T_{n-1} \\ \vdots \\ P_{1}:\begin{pmatrix} T_{1} \\ S \\ T_{n} \\ T_{n-1} \\ \vdots \\$$

- (2) A part of Θ or $\Omega\Theta$ is as follows for (n + 1)(n + 2)/2 uniserial modules:



In particular the Cartan matrix of the block containing M is as follows:

$$\begin{pmatrix} 2 & 1 & 1 & \cdots & 1 & 0 & \cdots & 0 \\ 1 & 2 & 1 & \ddots & \vdots & \vdots & & \vdots \\ 1 & 1 & \ddots & \ddots & 1 & 0 & & \vdots \\ \vdots & & & 2 & 1 & 0 & \cdots & 0 \\ 1 & 1 & \cdots & 1 & * & & \\ 0 & 0 & \cdots & 0 & & & \\ \vdots & & & \vdots & & \\ 0 & \cdots & \cdots & 0 & & & \end{pmatrix}.$$

In [T], Thushima studied blocks *B* of *p*-solvable groups in which the Cartan integer $c_{\text{opp}} = 2$ for some $\phi \in \text{IBr}(B)$. From [T, Theorem], we have

<u>Corollary 2.5</u>. Assume that G is p-solvable and B is a wild block of kG. Let M be a simple module in B. Suppose that M lies in a $\mathbb{Z}A_{\infty}$ -component. Then M lies at the end of its component. In particular simple modules in B of height 0 lie at the end of $\mathbb{Z}A_{\infty}$ -components.

Also using the result of Tsushima[T, Lemma 3], we have

<u>Corollary 2.6.</u> Assume that G has a non-trivial normal p-subgroup and B is a wild block of kG. Let M be a simple module in B. Suppose that M lies in a $\mathbb{Z}A_{\infty}$ -component. Then M lies at the end of its component. In particular simple modules in B of height 0 lie at the end of $\mathbb{Z}A_{\infty}$ -components.

References

- [Bn] D. J. Benson, Modular Representation Theory: New Trends and Methods, Lecture Notes in Math. 1081, Springer, 1984.
- [Bs] C. Bessenrodt, The Auslander-Reiten quiver of a modular group algebra revisited, Math. Z. 206 (1991), 25–34.
- [C] J. F. Carlson, The dimensions of periodic modules over modular group algebras, Illinois J. Math. 23 (1979), 295–306.
- [E1] K. Erdmann, Blocks of Tame Representation Type and Related Algebras, Lecture Notes in Math. 1428, Springer, 1990.
- [E2] K. Erdmann, On Auslander-Reiten components for wild blocks, in "Representation Theory of Finite Groups and Finite-Dimensional Algebra," Progress in Math.95, 371–387, Birkhäuser, 1991.
- [E-S] K. Erdmann and A. Skowroński, On Auslander-Reiten components of blocks and self-injective biserial algebras, Trans. A. M. S. 330(1992), 165–189.
- [K1] S. Kawata, Module correspondence in Auslander-Reiten quivers for finite groups, Osaka J. Math. 26 (1989), 671-678.
- [K2] S. Kawata, On Auslander-Reiten components for certain group modules, Osaka J. Math. 30 (1993), 137–157.
- [K3] S. Kawata, On Auslander-Reiten components for certain group modules and an additive function, Proc. of 26th Symposium on Ring Theory 1993.
- [O] T. Okuyama, On the Auslander-Reiten quiver of a finite group, J. Algebra 110 (1987), 425-430.
- [O-U] T. Okuyama and K. Uno, On the vertices of modules in the Auslander-Reiten quiver II, preprint.
- [T] Y. Tsushima, A note on Cartan integers for *p*-solvable groups, Osaka J. Math. 20 (1983), 675-679.
- [W] P. J. Webb, The Auslander-Reiten quiver of a finite group, Math. Z. 179 (1982), 97-121.