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Abstract

The notation of a (non-commutative) regular, graded algebra is introduced
in [AS]. The results of that paper, combined with those in [ATV1], gives a
complete description of the regular graded ring of (global) dimension three.
Further M.Artin [A] defined Quantum Proj for non-commutative graded al-
gebras and studied projective geometry of quautum proj. :

In this paper, we shall explain those results.

1 Regular algebras

Let k be an algebraically closed field of characteristic zero. A graded algebra A will
mean a (connected) N - graded algebra, generated in degree one; thus A = @;>¢ 4,
where A¢ = k is central, dim; A; < oo for all 7, and A is generated as an a,lgeb}a, by
A;. M.Artin and W.Schelter defined the regular graded algebra as follows.

Definition 1 A graded algebra A is regular of dimension d provided that

(1) A has global dimension d; that is every graded (left) A -modules has projective
dimension < d

(2) A has polynomial growth; that is there exists p € R such that dim A, < n” for
alln. :

(8) A is Gorenstein; that is Exté,(k, A) = b4k

These conditions put strong restriction on A. For example, if A is commutative,
and regular, then A must be a polynomial ring. If d = 1, the only such A is the
polynomial ring k[z]. If d = 2, then A is of the form k(z,y) (free algebra of rank
two) with a single quadratic relation, which is either yz — zy = 22, or yz = Azy
for some 0 # A € k. In particular, the quantum plane gives a regular algebra. If
d = 3, then things begin to get interesting. there are 13 class of regular algebras
(for detailed see [AS],|ATV1]), these algebras are of the forms k(z, y) with two cubic
relations, or k(z,y, z) with three quadratic relations. However two such classes are
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of particular interest.

Fix (a,b,c) € P?, and let A = C(z, y, 2) with defining relations
azx? +byz+czy=0
ay’ + b2z +cxz=0

az’ + by +cyr =0

This algebra is very closely related to the subvariety of P2, E say, defied by the
equation (a® + % + ¢®)zyz — abe(z® + y® + 2%) = 0. Usually E is an elliptic curve.
If (a,b,c) = (0,1,—1), then E = P? and A is the polynomial ring. Suppose that
(@, b,c) is such that E is an elliptic curve. Then A is regular algebra, and noetherian
domain. In general, let A be a graded algebra of the form

A= k(xl,"',xr)/(fl7"'1f3)

where f; are homogeneous elements. Then multilinearization of {fy,---, f,} defines
a scheme E in (P"1)*~1. Further projective scheme E define the homogeneous
coordinate ring B. This is isomorphic to @,> '(E, ¢), where ¢ is the invertible
sheaf vartheta(l). Let o be an automorphism of E and denote the pullback o*p by
¢, then we set

B,=T(E,0®@¢" ® - ®¢" )
for all » > 0 and B = @,5q B,. Multiplication of section is defined by the rule that

if a € B,, and b € B, then

a-b=a®b""
If E = Spec(R) and o is an automorphism of E, then B = R[t,t™};0], where
ta = a’t. If A is a regular algebra, then the next theorem is proved in [ATV1].

Theorem 1 If A is a regular algebra of dimension 3, thendim F =1,2. IfdimE =
1, then A/gA = B°, where g is an element of A such that gA = Ag. If dim E = 2,
then A = B,

Next suppose that d = 4. Not all the regular algebras are known for d = 4,
however there is one class that has been studied to some extent. This is a family
of algebras defined by E.Sklyanin [Sk1],[Sk2]. Let (a,8,7) € P? lie on the surface
a+B+7+aBfy=0. Let A= C({a,z,y,2) with defining relations

ar—za = o(yz +2y) zy—yz =az+za

ay-—ya:ﬂ(wz+zx) Yz — 2y = ar + za
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az—za="(ry+yr) 2z—zz=ay+ya

If {e, 8,7} N{0,+1,—1} = 0, then A is a regular algebra of dimension 4, and has
the same Hilbert series as the polynomial ring. Further if (o, 8,7) = (0,6,—6) (6 #
0,—1), then A is a quotient of U,(sl(2)) (quantum group of sl(2)).

2 Quantum Proj

Let A be a finitely generated commutative graded k - algebra which is generated
in degree 1. Let X = Proj(A), and denote by C the quotient category (gr —
A)/T, where (¢gr — A) is the category of finite graded A - modules and 7 is its full -
subcategory of modules of finite length. Serre’s theorem (cf. [Se]) asserts that there
is a natural equivalence of categories

T — (mod — 9)

between the quotient category 9 and the category (mod — 9) of coherent sheaves on
Proj(A). The shift M(u) of module M, defined by M(u), = My, correspond to
the tensor product by the polarizing invertible sheaf:

M~ M(1) = M ®9(1)

This shift operation defines an autoequivalence of C. The class of A - modules
which corresponds to a coherent sheaf M on X is represented by the module

I(M) = Q@ T(X, M(n))

n=0

In particular, I'(¥) = ®,T'(X, ¢®") agree with in a sufficient high degree, where ¢
is a invertible sheaf. Thus Proj(A) can recovered from category C.

M.Artin (cf.[A],[ATV1],[AV]) has used this correspondence to define quantum
Proj.

Definition 2 Let A be a non-commutative graded algebra, generated in degree 1.
Then Proj(A) is the triple (C,9,s), where C = (gr — A)/7, 9 is the object of C
which is represented by the right module A, and s i3 the operation M ~ M(1) on
C induced by the shift of degree on an A - modules.

Suppose that R = C[zo,**,,)/J is a graded quotient ring of the commutative
polynomial ring endowed with its ususal graded structure. Let V(J) C P" be the
projective variety cut out by J. To each point p € V(J) we may associate the



graded R - module M(p) = R/I(p) = C[X], where I(p) is the ideal generated
by the homogeneous polynomials vanishing at p. Since C[X] is a domain, every
proper quatient of M(p) is finite dimensional, whence M(p) is an irreducible object
in Proj(R). This motivates the following definition.

Definition 3 (/A], [ATV2]) A point module is a graded cyclic A - module M with
Hilbert series (1 —t)™1.

A line module is a graded cyclic A - module M with Hilbert series (1 —t)™2

A plane module is a graded cyclic A - module M with Hilbert series (1 —t)™3

By using these modules, projective geometry over graded regular algebras of di-
mension 3 (quantum plane) is expanded (cf. [A]). In the case of dimension 4, projec-
tive geometry of regular algebra which obtained by homogenization of si(2) ([LBS]).

3 Remark and Problem

(1) In the definition of regular algebras, can the Gorenstein condition be changed to
domain ? This is true in the case that gl.dimA < 2 (cf [K1]) and it is known that
regular algebras of dimension < 4 are Noetherian domain (cf. [SS]).

(2) In the non-graded case, is it possible to define a quantum algebraic geomerty ?
One direction has suggested by Manin ([M1],[M2]).
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