A remark on Alperin's conjecture

Atumi WATANABE

熊本大学 教養部 渡辺アツミ

Let p be a prime number and F be an algebraically closed field of characteristic p. Let G be a finite group and B be a (p-)block of G with <u>abelian</u> <u>defect</u> group D and Brauer correspondent B_0 , a block of $N_G^{(D)}$. Alperin's weight conjecture states that the number of isomorphism classes of irreducible (FG)B-modules is equal to that of isomorphism classes of irreducible $(FN_G(D))B_0$ -modules (see [1]). So if Alperin's conjecture is true, then the number of isomorphism classes of indecomposable (FG)B-modules with source module $F_{\{1_G\}}$ is equal to that of isomorphism classes of indecomposable $(FN_G(D))B_0$ modules with source module $F_{\{1_G\}}$. We generalize this to an arbitrary source module. Let Q be a p-subgroup of G and L be a finitely generated indecomposable FQ-module with vertex Q. We denote by Ind(B|L) the set of isomorphism classes of indecomposable FG-modules which belong to B and have L as a source module. Ind(B|L) is a finite set. We denote by |Ind(B|L)| the cardinality. In this paper we prove the following .

PROPOSITION. Under the above notation, if Alperin's conjecture is true, then we have

$$|\operatorname{Ind}(B|L)| = \sum_{x \in T(L) \setminus G/N_G(D)} |\operatorname{Ind}(B_0|L^x)|,$$

where $T(L) = \{t \in N_G(Q) \mid L \otimes_{FQ} t \ (\subset L^G) \text{ is isomorphic to } L\}$, $L^x = L \otimes_{FQ} x$, and where x ranges over a complete set of representatives for $(T(L), N_G(D))$ -double cosets $T(L) \times N_G(D)$ of G such that $D \supset Q^x$.

§ 1. Preliminaries.

Let M be a finitely generated right FG-module and put $E = End_{FG}M$. There is a one to one correspondence between the decompositions of M into direct sums of indecomposable FG-submodules and the decompositions of E into direct sums of principal indecomposable right modules. Moreover, if $id_M = E_1 + E_2 + \dots + E_n$ is a decomposition of the identity map of M into the sum of primitive idempotents of E, then $E_i(M)$ and $E_j(M)$ are isomorphic if and only if E_iE and E_jE are isomorphic as E-modules. Hence the number of isomorphism classes of indecomposable components of M is equal to that of isomorphism classes of irreducible E-modules. Let Z(FG) be the center of FG and for $z \in Z(FG)$, $z_R \in E$: $m \longrightarrow mz$, $m \in M$. Then the map ϕ defined by $\phi(z) = z_R$ is a homomorphism from Z(FG) into Z(E). Let B be a block and assume that $\phi(B) \neq 0$. It is clear that, by the above, the number of isomorphism classes of indecomposable components of M belonging to B is equal to that of isomorphism classes of irreducible $E\phi(B)$ -modules.

Let Q be a normal abelian subgroup of G and L be a finitely generated G-invariant indecomposable FQ-module. We put $E_G = \operatorname{End}_{FG} L^G$, where $L^G = L \bigotimes_{FQ} FG$. For $x \in G$ let $E_x = \{f \in E_G | f(L \bigotimes_{FQ} 1)\}$

 $\subset L \bigotimes_{FQ} x$ }. We have

$$E_G = \sum_{x \in G/Q} E_x$$

By the assumption there exists a unit ϕ_X in E_X , and it holds that E_X = $E_1\phi_X$ = ϕ_XE_1 and E_XE_y = E_{Xy} . Moreover if $c \in C_G(Q)$, then we can choose (and do so) ϕ_C such that $\phi_C(l \otimes y) = l \otimes cy$, $l \in L$ and $y \in G$. The F-linear map ϕ : $FC_G(Q) \longrightarrow E_G$ defined by $\phi(c) = \phi_C$, $c \in C_G(Q)$ is an algebra homomorphism. Moreover, for $z \in FC_G(Q) \cap Z(FG)$, $\phi(z) = z_R$, z_R : $l \otimes x \longmapsto l \otimes xz = l \otimes zx$, $l \in L$ and $x \in G$. Let $J(E_1)$ be the radical of E_1 and let $E_G = E_G/(J(E_1)E_G)$. $E_1/J(E_1) \cong F$ and $J(E_1)E_G \subset J(E_G)$. For each $\bar{x} \in \bar{G} = G/Q$, let $\phi_{\bar{x}}$ be one of $\overline{\phi_y}$, $y \in Qx$. Here $\overline{\phi_y} = \phi_y + J(E_1)E_G$. We have

 $\phi_{\overline{X}} \phi_{\overline{y}} = \alpha(\overline{x}, \overline{y}) \phi_{\overline{x}\overline{y}}, \qquad \overline{x}, \overline{y} \in \overline{G},$ where $\alpha(\overline{x}, \overline{y}) \in F^{\times} = F - \{0\}$. It is clear that α is an F-cocycle of \overline{G} and \overline{E}_{G} is isomorphic to the twisted group algebra $F(\overline{G}, \alpha)$ of \overline{G} with cocycle α . We identify \overline{E}_{G} with $F(\overline{G}, \alpha)$. Moreover ϕ induces an algebra isomorphism from $F\overline{C_{G}(Q)}$ into \overline{E}_{G} , because $\overline{\phi_{CZ}} = \overline{\phi_{C}}$ for $c \in C_{G}(Q)$, $z \in Q$. We embed $F\overline{C_{G}(Q)}$ into \overline{E}_{G} . Let H be a subgroup of G containing Q. We can embed $\overline{E}_{H} = F(H, \alpha_{\overline{H}})$ and $\overline{E}_{C_{G}(Q)} = F\overline{C_{G}(Q)}$.

By [3, Theorem 1.1], there exists a finite group \widetilde{G} with the following properties: (i) \widetilde{G} has a p'-subgroup A which is contained in the center of \widetilde{G} . (ii) There is an isomorphism $\sigma: \overline{G} \longrightarrow \widetilde{G} / A$. (iii) There is an F-valued linear character λ of A such that the special cocycle of \overline{G} associated with λ is cohomologous to α .

For each $\bar{x} \in \bar{G}$, let $r(\bar{x})$ be an element of \bar{G} such that $\sigma(\bar{x}) = Ar(\bar{x})$. Then $\bar{G} = \bigcup_{\bar{x} \in \bar{G}} Ar(\bar{x})$ and there exist $a(\bar{x}, \bar{y}) \in A$ such that

 $r(\bar{x})r(\bar{y}) = a(\bar{x}, \bar{y})r(\bar{x}\bar{y})$, for $\bar{x}, \bar{y} \in \bar{G}$. By the above (iii), there exists a map $\delta: \bar{G} \longrightarrow F^{\times}$ such that

(2) $\alpha(\bar{x}, \bar{y}) = \delta(\bar{x})\delta(\bar{y})\delta(\bar{x}\bar{y})^{-1}\lambda(a(\bar{x}, \bar{y})), \quad \bar{x}, \bar{y} \in \bar{G}.$ Let e_{λ} be the primitive idempotent of FA corresponding to λ . (FA) e_{λ} = Fe_{λ} and $(F\tilde{G})e_{\lambda} = \sum_{\bar{x} \in \bar{G}} F(r(\bar{x})e_{\lambda})$. Now let θ be an F-linear map such that

From (1) and (2), θ is an algebra isomorphism. For each subgroup H of G containing Q, let \widetilde{H} be a subgroup of \widetilde{G} such that $\sigma(\overline{H})=\widetilde{H}$ / A. θ induces the isomorphism

$$F(\bar{H}, \alpha_{\bar{H}}) = \bar{E}_{H} \longrightarrow (F\hat{H})e_{\lambda}.$$

§ 2. Proof of Proposition.

Step 1. We may assume that Q is normal in G.

Proof. Let $\mathcal{G} = \{[P, \beta] \mid P \text{ is a p-subgroup of } G \text{ and } \beta \text{ is a block of } N_G(P) \text{ with } \beta^G = B \}$ and let b be a root of B in $C_G(D)$. G acts on \mathcal{G} by conjugation. Since D is abelian, any element of \mathcal{G} is G-conjugate to some $[P, b]^{N_G(P)}$, $[P, b]^{N_G(P)}$, $[P, b]^{N_G(P)}$, and $[P, b]^{N_G(P)}$, and $[P, b]^{N_G(P)}$, and $[P, b]^{N_G(P)}$, and hence there exists $[P, b]^{N_G(P)}$ such that $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$. So $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ such that $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ be a complete set of representatives for $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ and $[P, b]^{N_G(P)}$ forms a complete $[P, b]^{N_G(P)}$.

set of representatives for G-conjugacy classes in $\boldsymbol{\mathcal{Y}}$.

By [2, Theorem 2], we have $|\operatorname{Ind}(B|L)| = \sum_{\beta} |\operatorname{Ind}(\beta|L)|$, where β ranges over the set of $\operatorname{Bl}(N_G(Q), B)$ of blocks of $N_G(Q)$ associated with B. On the other hand, for $\beta \in \operatorname{Bl}(N_G(Q), B)$ there exists $P \in \mathcal{P}$ and $u \in G$ such that $[P, b^{N_G(P)}] = [Q, \beta]^u$. Since $|\operatorname{Ind}(\beta|L)| = |\operatorname{Ind}(\beta^u|L^u)| = |\operatorname{Ind}(b^{N_G(P)}|L^u)|$, we can see

(3)
$$|\operatorname{Ind}(B|L)| = \sum_{P \in \mathcal{P}_{Q}} |\operatorname{Ind}(b^{N_{G}(P)}|L^{u_{P}})|,$$

where $^{\circ}Q$ = $\{P \in \mathcal{F} \mid P \text{ is } G\text{-conjugate to } Q\}$ and u_P is an element of G with $P = Q^{UP}$. We note for P, $|Ind(b^{N_G(P)} \mid L^{UP})|$ does not depend on the choice of u_P . For each Q^V , $v \in G$, we set $\mathcal{F}_{Q^V} = \{P \in \mathcal{F} \mid P \text{ is } N_G(D)\text{-conjugate to } Q^V\}$ and for $P \in \mathcal{F}_{Q^V}$, denote by $u_{V,P}$ an element of $N_G(D)$ such that $P = Q^{VU}_{V,P}$. Now, if $Q^Z \subset N_G(D)$, $z \in G$, then by applying (3) for $N_G(D)$, B_O and L^Z , we have

(4)
$$|\operatorname{Ind}(B_0|L^2)| = \sum_{P \in \mathcal{P}_Q^Z} |\operatorname{Ind}((b^{N_G(P) \cap N_G(D)})|L^{Zu_Z,P})|.$$

From (3) we have

(5)
$$|\operatorname{Ind}(B|L)| = \sum_{v \in N_G(Q) \setminus G/N_G(D)} \sum_{P \in \mathcal{P}_Q v} |\operatorname{Ind}(b^{N_G(P)} vu_{v,P})|,$$

where v ranges over a complete set of representatives for the

 $(N_G(Q), N_G(D))$ -double cosets of G. If $\mathcal{P}_Q v$ is not empty, then $D\supset Q^V$. Here we assume that Proposition holds for $N_G(Q)$. Then we have for $P\in \mathcal{P}_Q v$,

(6)
$$|Ind(b^{N_G(P)}|_L^{vu_{v,P}})| = |Ind((b^{(vu_{v,P})^{-1}})_G^{N_G(Q)})|_L)|$$

$$= \sum_{\mathbf{y} \in T(L) \setminus N_{\mathbf{G}}(Q) / (N_{\mathbf{G}}(D^{\mathbf{v}^{-1}}) \cap N_{\mathbf{G}}(Q))}^{\left[\operatorname{Ind}((b^{(\mathbf{v}u}v, P)^{-1})^{N_{\mathbf{G}}(Q) \cap N_{\mathbf{G}}(D^{\mathbf{v}^{-1}})}) | L^{\mathbf{y}})\right]}$$

$$= \sum_{\mathbf{y} \in T(L) \setminus N_{\mathbf{G}}(Q) / (N_{\mathbf{G}}(D^{\mathbf{v}^{-1}}) \cap N_{\mathbf{G}}(Q))} |Ind((b^{N_{\mathbf{G}}(P) \cap N_{\mathbf{G}}(D)})|_{L}^{\mathbf{y} \vee \mathbf{u}_{\mathbf{v}}, P})|,$$

where y ranges over a complete set of representatives for $(T(L), \ N_G(D^{V^{-1}}) \cap N_G(Q)) - double \ cosets \ T(L)y(N_G(D^{V^{-1}}) \cap N_G(Q)) \ of \ N_G(Q).$ By substituting (6) in (5) and using (4), we can show

$$= \sum_{\mathbf{v}} \sum_{\mathbf{P} \in \mathcal{P}_{\mathbf{Q}^{\mathbf{v}}}} \sum_{\mathbf{y} \in \mathbf{T}(\mathbf{L}) \setminus \mathbf{N}_{\mathbf{G}}(\mathbf{Q}) / (\mathbf{N}_{\mathbf{G}}(\mathbf{D}^{\mathbf{v}^{-1}}) \cap \mathbf{N}_{\mathbf{G}}(\mathbf{Q}))} | \mathbf{Ind}((\mathbf{b}^{\mathbf{N}_{\mathbf{G}}(\mathbf{P}) \cap \mathbf{N}_{\mathbf{G}}(\mathbf{D})}) | \mathbf{L}^{\mathbf{y} \mathbf{v} \mathbf{u}_{\mathbf{v}}, \mathbf{P}}) |$$

$$= \sum_{\mathbf{v} \in N_{\mathbf{G}}(\mathbf{Q}) \setminus \mathbf{G}/N_{\mathbf{G}}(\mathbf{D})} \sum_{\mathbf{y} \in \mathbf{T}(\mathbf{L}) \setminus N_{\mathbf{G}}(\mathbf{Q}) / (N_{\mathbf{G}}(\mathbf{D}^{\mathbf{v}}) \cap N_{\mathbf{G}}(\mathbf{Q}))} | \operatorname{Ind}(\mathbf{B}_{0} | \mathbf{L}^{\mathbf{y}\mathbf{v}}) |$$

$$= \sum_{x \in T(L) \setminus G/N_G(D)} |Ind(B_0|L^x)|,$$

where D \supset Q V and D \supset Q . This completes the proof of step 1.

Step 2. Let 6 be a block of $C_G(Q)$ covered by B. We may assume that T(6) = G, $T(6) = \{x \in G \mid 6^x = 6\}$

Proof. By step 1, Q is normal in G and $C_G(Q)$ is normal in G. Let B_1 be a block of $T(\ell)$ which covers ℓ and satisfies $B_1^G = B$. $(B_1 = \ell \text{ as elements of } FG). \text{ Since D is abelian, we may assume that D is a defect group of <math>\ell$ and B_1 . Let ℓ_0 be a Brauer correspondent of ℓ , a block of $C_G(Q)\cap N_G(D)$, and $(B_1)_0$ be a Brauer correspondent of B_1 , a block of $T(\ell)\cap N_G(D)$. Since there is a one to one correspondence between the indecomposable FG-modules in B and the indecomposable $FT(\ell)$ -modules in B_1 by induction, we can show

(7)
$$|\operatorname{Ind}(B|L)| = \sum_{y \in T(L) \setminus G/T(\delta)} |\operatorname{Ind}(B_1|L^y)|.$$

On the other hand $T(\ell_0) = T(\ell) \cap N_G(D)$, $(B_1)_0$ covers ℓ_0 and $B_0 = ((B_1)_0)^{N_G(D)}$. So we have as in (7)

(8)
$$|\operatorname{Ind}(B_0|L^X)| = \sum_{z \in T(L^X) \cap N_G(D) \setminus N_G(D) / T(\delta_0)} |\operatorname{Ind}((B_1)_0|L^{XZ})|.$$

Here we assume that Proposition is true for $T(\boldsymbol{\ell})$. Since Q is normal in G, the following holds

$$|\operatorname{Ind}(B_1|L^y)| = \sum_{w \in (T(L^y) \cap T(\ell)) \setminus T(\ell) / (T(\ell) \cap N_G(D))} |\operatorname{Ind}((B_1)_0|L^{yw})|.$$

Therefore we have from (7) and (8)

|Ind(B|L)|

$$= \sum_{\mathbf{y} \in T(L) \setminus G/T(\delta) \ \mathbf{w} \in (T(L^{\mathbf{y}}) \cap T(\delta)) \setminus T(\delta)/(T(\delta) \cap N_{\mathbf{G}}(D))} |Ind((B_1)_0|L^{\mathbf{y}\mathbf{w}})|$$

$$= \sum_{\mathbf{u} \in T(L) \setminus G/(T(\delta) \cap N_{G}(D))} |Ind((B_{1})_{0}|L^{\mathbf{u}})|$$

$$= \sum_{\mathbf{x} \in \mathbf{T}(\mathbf{L}) \setminus \mathbf{G}/\mathbf{N}_{\mathbf{G}}(\mathbf{D})} \sum_{\mathbf{z} \in (\mathbf{T}(\mathbf{L}^{\mathbf{X}}) \cap \mathbf{N}_{\mathbf{G}}(\mathbf{D})) \setminus \mathbf{N}_{\mathbf{G}}(\mathbf{D}) / (\mathbf{T}(\boldsymbol{\ell}) \cap \mathbf{N}_{\mathbf{G}}(\mathbf{D}))} |\mathbf{I}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}} |\mathbf{I}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}} |\mathbf{I}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}} |\mathbf{I}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}} |\mathbf{I}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}} |\mathbf{I}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}} |\mathbf{I}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X}^{\mathbf{Z}}}||_{\mathbf{L}^{\mathbf{X$$

$$= \sum_{\mathbf{x} \in T(L) \setminus G/N_G(D)} | \operatorname{Ind}(B_0|L^{\mathbf{x}})|.$$

This completes the proof of step 2 and we may assume that B = 6.

Step 3. We may assume that L is G-invariant.

Proof. By step 2, B is a block of $C_G(Q)$ and hence B is a block of T(L). Similarly B_0 is a block of $T(L)\cap N_G(D)$ and B_0 is a Brauer correspondent of B as a block of T(L). Let N be an indecomposable FG-module with source module L. Then there exists an indecomposable FT(L)-module N_0 with source module L such that $N = N_0^G$. N_0 is uniquely (up to isomorphism) determined by N, and N = NB if and only if $N_0 = N_0^G$. Conversely if N_0 is an indecomposable FT(L)-module with source module L, then N_0^G is an indecomposable FG-module with source module L. Hence the number of isomorphism classes of indecomposable (FG)B-modules with source module L is equal to that of isomorphism classes of indecomposable $(FN_G(D))B_0$ -modu-

les with source module L is equal to that of isomorphism classes of indecomposable $(F(T(L)\cap N_G(D))B_0$ -modules with source module L. So if Proposition is true for T(L), we have $|Ind(B|L)| = |Ind(B_0|L)|$. By the way, since T(6) = G and D is a defect group of 6 (see step 2), we have $G = C_G(Q)N_G(D) = T(L)N_G(D)$. Hence Proposition holds for B. So we may assume that T(L) = G.

Step 4. Conclusion.

Proof. Under the assumption that Q is normal in G, B is a block of $C_G(Q)$ and that L is G-invariant, we will show $|\operatorname{Ind}(B|L)| = |\operatorname{Ind}(B_0|L)|$, using results and notations in §1. Since any indecomposable FG-module with source module L is a component of L^G and an indecomposable component of L^G has L as a source module by the assumption, we have

 $|Ind(B|L)| = |Irr(F(\bar{G}, \alpha)\bar{B}|,$

where $Irr(F(\bar{G}, \alpha)\bar{B})$ is the set of isomorphism classes of irreducible $F(\bar{G}, \alpha)\bar{B}$ -modules and \bar{B} is a block of $F\overline{C_G(Q)}$ corresponding to B. Similarly we have

 $|\operatorname{Ind}(B_0|L)| = |\operatorname{Irr}(F(\overline{N_G(D)}, \alpha)\overline{B}_0)|,$

where \bar{B}_0 is a block of $F(\overline{C_G(Q)\cap N_G(D)})$ corresponding to B_0 . We note B_0 is a Brauer correspondent of B as a block of $C_G(Q)$.

Let $\widetilde{B} = \theta(\overline{B})$. If $\overline{B} = \sum_{\overline{x} \in \overline{C_G}(Q)} a_{\overline{x}} \overline{x}$, $a_{\overline{x}} \in F$, then $\widetilde{B} =$

 $\frac{\sum}{\bar{x} \in \overline{C}_{G}(Q)} \ a_{\bar{x}}^{\delta} \delta(\bar{x}) r(\bar{x}) e_{\lambda}. \ \text{Since \bar{D} is a defect group of \bar{B} as a block of }$

 $\overline{C_G(Q)}$ and A is a central p'-subgroup of \widetilde{G} , a defect group \widetilde{D} of \widetilde{B} as a block of $C_{\widetilde{G}}(Q)$ is a p-subgroup of $C_{\widetilde{G}}(Q)$ such that $\sigma(\overline{D}) = \widetilde{D}A/A$. We see $N_{\widetilde{G}}(\widetilde{D})/A = N_{\widetilde{G}}(D)$ and $((C_{\widetilde{G}}(Q)\cap N_{\widetilde{G}}(\widetilde{D}))/A = C_{\widetilde{G}}(Q)\cap N_{\widetilde{G}}(D)$. Let $\widetilde{B}_0 =$

 $\theta(\bar{B}_0)$. \tilde{B}_0 is a block of $C_G(Q)\cap N_G(D)$ and \tilde{D} is a defect group of \tilde{B}_0 . Since \bar{B}_0 is a Brauer correspondent of \bar{B} as a block of $\overline{C_G(Q)}$, we can show that \tilde{B}_0 is a Brauer correspondent of \tilde{B} as a block of $C_G^{\sim}(Q)$.

Let \widetilde{B}_1 , \widetilde{B}_2 ,..., \widetilde{B}_n be the blocks of \widetilde{G} which cover \widetilde{B} . Since \overline{B} belongs to $Z(F(\overline{G},\alpha))$, and \widetilde{B} belongs to $Z(F\widetilde{G})$, the following holds.

$$\widetilde{B} = \widetilde{B}_1 + \widetilde{B}_2 + \dots + \widetilde{B}_n.$$

Therefore we have

(10)
$$|\operatorname{Ind}(B|L)| = |\operatorname{Irr}(F(\overline{G}, \alpha)\overline{B})| = |\operatorname{Irr}((F\widetilde{G})\widetilde{B}))|$$

$$= \sum_{i=1}^{n} |\operatorname{Irr}((F\widetilde{G})\widetilde{B}_{i})|,$$

because $F(\overline{G}, \alpha)\overline{B}$ and $(F\widetilde{G})\widetilde{B}$ are isomorphic by θ . By the assumption that B is a block of $C_G(Q)$ and since D is abelian, $p \nmid |G|:C_G(Q)|$ and hence $p \nmid |\widetilde{G}|:C_G^{\circ}(Q)|$. So \widetilde{D} is a defect group of \widetilde{B}_i . Let $(\widetilde{B}_i)_0$ be a Brauer correspondent of \widetilde{B}_i which is a block of $N_{\widetilde{G}}(\widetilde{D})$. From (9),

$$\widetilde{\mathbf{B}}_0 = (\widetilde{\mathbf{B}}_1)_0 + (\widetilde{\mathbf{B}}_2)_0 + \dots + (\widetilde{\mathbf{B}}_n)_0.$$

Applying (10) for $N_G(D)$ and B_O , we have

(11)
$$|\operatorname{Ind}(B_0|L)| = \sum_{i=1}^{n} |\operatorname{Irr}((\operatorname{FN}_{\widetilde{G}}(\widetilde{D}))(\widetilde{B}_i)_0)|.$$

Now if Alperin's conjecture is true, then $|\operatorname{Irr}((F\widetilde{G})\widetilde{B}_i)| = |\operatorname{Irr}(FN_{\widetilde{G}}(\widetilde{D}))(\widetilde{B}_i)_0|$, hence from (10) and (11), $|\operatorname{Ind}(B|L)| = |\operatorname{Ind}(B_0|L)|$. This completes the proof of Proposition.

References

- [1] J.L. Alperin: Weights for finite groups, Proc. Symp. Pure Math., 47(1987), 369-379.
- [2] J.A. Green: A transfer theorem for modular representations, J. Algebra, 1(1964), 73-84.
- [3] J.F. Humphreys: Projective modular representations of finite groups, J. London Math. Soc. (2), 16(1977), 51-66.