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A remark on Alperin’s conjecture

Atumi WATANABE
BRAKRE HER
EAT Y2
Let p be a prime number and F be an algebraically closed field of
characteristic p. Let G be a finite group and B be a (p-)block of G

with abelian defect group D and Brauer correspondent B a block of

O)
NG(D). Alperin's weight conjecture states that the number of iso-

morphism classes of irreducible (FG)B-modules is equal to that of

isomorphism classes of irreducible (FNG(D))BO-modules (see [11). So

if Alperin's conjecture is true, then the number of isomorphism

classes of indecomposable (FG)B-modules with source module F{1 } is
G

G(D))BO—
modules with source module F{1 y We generalize this to an arbitrary
G

source module. Let Q be a p-subgroup of G and L be a finitely gene-

equal to that of isomorphism classes of indecomposable (FN

rated indecomposable FQ-module with vertex Q. We denote by Ind(B|L)
the set of isomorphism classes of indecomposable FG-modules which
belong to B and have L as a source module. fnd(B|L) is a finite set.
We denote by |Ind (B|L)| the cardinality. In this paper we prove the

following .

PROPOSITION. Under the above notation, if Alperin’s conjecture

is true, then we have
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ltnd¢BIL)| = 3 ltnd 8 1L%) 1,
X€T (LING/N (D)

where T(L) = (t € No@ | L® gt «c L5 is isomorphic to Ly , L7 =
LQ@%Q z, and where  ranges over a complete set of representatives

for (T(L), NG(D))—doubLe cosets T(L)xNG(D) of G such that D > Qm.
§ 1. Preliminaries.

Let M be a finitely generated right FG-module and put E = EndFGM.
There is a one to one correspondence between the decompositions of M
into direct sums of indecomposable FG-submodules and the decomposit-
ions of E into direct sums of principal indecomposable right modules.
Moreover, if idM = 81 + 82 + ...+ Sn is a decomposition of the
identity map of M into the sum of primitive idempotents of E, then
Si(M) and ej(M) are isomorphic if and only if SiE and ejE are isomor-
phic as E-modules. Hence the number of isomorphism classes of indecom-
posable components of M is equal to that of isomorphism classes of
irreducible E-modules. Let Z(FG) be the center of FG and for z €

Z(FG), zR €E:m—>mz, m € M. Then the map ¢ defined by @(z) = 2

R
is a homomorphism from Z(FG) into Z(E). Let B be a block and assume

that ¢(B) # 0. It is clear that, by the above, the number of isomor-

phism classes of indecomposable components of M belonging to B is

equal to that of isomorphism classes of irreducible E@(B)-modules.
Let Q be a normal abelian subgroup of G and L be a finitely

generated G-invariant indecomposable FQ-module. We put EG =

G

G _ _
Endg. L”, vhere L~ = L®FQ FG. For x € G let E_ = (f € EGI f(L@FQU
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c LQDFQX }. We have

EG=2E
XE€EG/Q

By the assumption there exists a unit ¢x in Ex’ and it holds that Ex

x*

= E1¢x = ¢XE1 and EXEy = Exy‘ Moreover if c € CG(Q), then we can

choose (and do so) ¢c such that ¢C(Léby) = 1®cy, L € L and y € G.

The F-linear map ¢ : FCG(Q)——e‘E defined by ¢(c)

G ¢c’ c € CG(Q) is
an algebra homomorphism. Moreover, for 2z € FCG(Q) N Z(FG), ¢(z) = ZR’
zp * LOXr—> L ® xz = l®zx, L € L and x € G. Let J(E;) be the
radical of E1 and let EG = EG /(J(El)EG). E1/J(E1) = F and J(EI)EG c
J(Ey). For each X € G = G/Q, let ¢ be one of 3;, Yy € Qx. Here E; =
¢y + J(EI)EG' We have

(1) ¢;( ¢§ = a(x, Y)¢i§, X, vy € G,

where a(i, §) € Fx = F - {0}. It is clear that oo is an F-cocycle of

G and E; is isomorphic to the twisted group algebra F(G, o) of G with
cocycle o. We identify EG with F(G, a). Moreover ¢ induces an algebra
isomorphism from FCG(Q) into EG’ because ¢cz = ¢c for ¢ € CG(Q), 2 €

Q. We embed FCG(Q) into EG' Let H be a subgroup of G containing Q. We

_ H., . = ., =
H (= EndFH L) into EG’ and E, into E,. Moreover we have

can embed E H G

By

F (H, aﬁ) and ECG(Q) = FCG(Q).

By [3, Theorem 1.11, there exists a finite group G with the foll-
owing properties: (i) G has a p'-subgroup A which is contained in the
center of G. (ii) There is an isomorphism o : a —> G / A. (iii)
There is an F-valued linear character XA of A such that the special
cocycle of G associated with X is cohomologous to o.

For each X € G, let r(x) be an element of G such that 0(x) =

Ar(x). Then & = _U_ Ar(x) and there exist a(x, y) € A such that
X€G
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r(x)r(y) = a(x, y)r(xy), for X, y € G. By the above (iii), there

exists a map & : G —> Fx such that

-1
(2» (X, ¥y) = 3(xX)d(y)8(xy) x(a(x, v)), X, Y € G.

Let el be the primitive idempotent of FA corresponding to Xx. (FA)eA
= Fe, and (FGhe = 3 F(r(xX)e

). Now let 68 be an F-linear map such
A A X€G AT .

that

0 : F(G, o) = EG

O " 6(§)r(i)el, x € G.

_—_ (Fﬁ)el

From (1) and (2), 9 is an algebra isomorphism. For each subgroup H of
G containing Q, let H be a subgroup of & such that o(H) = H / A. @
induces the isomorphism

F(H, ag) = Ej —> (Fﬁ)el.

§ 2. Proof of Proposition.

Step 1. We may assume that Q is normal in G.

Proof. Let ¢ (P, B1| P is a p-subgroup of G and 8 is a block

of NG(P) with BG

by conjugation. Since D is abelian, any element of ¢ is G-conjugate to

NG(P) NG(P) NG(R)
some [P, b "1, P c D. Suppose that [P, b ] and [R, b ] are

N (P) N (R)
G-conjugate : [P, b C 1 =1(R, b2 1% xe€ G. b¥ is a root of

NG(P) X :
b. in CG(D ), and hence there exists y € N

B} and let b be a root of B in CG(D). G acts on ¥

g(P) such that D = pXY

and b = bxy' So Xy € T(b) and P = ny. Let ? be a complete set of

representatives for T(b)-conjugacy classes of subgroups of D, where

- NG(P)
T(b) = (t € NG(D) | b° = b}. ([P, b ] | P € ? forms a complete
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set of representatives for G-conjugacy classes in ¢.

By [2, Theorem 21, we have |Ind(B|L)| = 2 |Ind(B|L)], where 8
8

ranges over the set of BI(NG(Q), B) of blocks of NG(Q) associated

with B. On the other hand, for 8 € BI(NG(Q), B) there'exists P€eY?

Ng (P) a '
and u € G such that [P, b 1 = [Q, Bl . Since |Ind(8|L)]| =
N.(P)
[1nd8Y] LY] = |Ind(b G ILY) |, we can see
NG(P) uP
(3) | Ind(B|LY]| = | Ind (b L "

.

P§§Q

where 99 = (P€? | Pis G-conjugate to Q) and uP is an element of G

uP N_.(P) u

with P = Q . We note for P, |Ind(b © | LT

)| does not depend on the

choice of up. For each Qv, v € G, we set ? v © {(Pe€?| P is N.(D)-
conjugate to_Qv} and for P € ? _, denote by u an element of N.(D)
Qv v,P G

G

v,P

such that P = Q . Now, if Q% ¢ Ng(D), z € G, then by applying (3)

for NG(D). B0 and Lz, we have

N.(P)NN (D) zu
(4) lIndB,IL5 ] = 3 lInd((b © Gy LTz Py
PE? 2z
Q
From (3) we have
N,.(P) vu
(5) |Ind(BIL)| = S S lmd @ L VB,

VGNG(Q)\G/NG(D) PG?QV

where v ranges over a complete set of representatives for the
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(NG(Q), NG(D))-double cosets of G. If ?Qv is not empty, then D > Qv

Here we assume that Proposition holds for NG(Q). Then we have for

P € 9Qv,

N,.(P) vu -1

)
G Y'Pyl = [1ndccb

(vu NG(Q)

v.PT YLy |

(6) |Ind(b

-1
' v
. -1 N.(@NN.(D¥ )
= M 1 [Ind((bVY%,p’ » G G yILY) |
v
YET(L)\N,(Q@)/ (N (DY HANL(@))

} NG(P)nNG(D) yvu
2 -1 [Ind ((b yIL

v
yET(L)\NG(Q)/(NG(D )ONG(Q))

v,P

1,

where y ranges over a complete set of representatives for

-1 -1
(T, NG(Dv )nNG(Q))—double cosets T(L)y(NG(Dv )nNG(Q)) of NG(Q)

By substituting (6) in (b) and using (4), we can show

| 1nd(B|L) |

. Ng(PINNG(D)  yvu
2 2 2 -1 | Ind ((b yIL

v PEF v YET(LINNL(Q) /(N IANL(@))

v,P

’

S -1 IInd(BOILyv)l
v
YET(L)\NG(Q)/ (N (DY HAN,(Q))

VENG(Q)\G/NG(D)

S | 1nd (B IL%) |,
X€T (LYNG/N (D)

.

)|
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where D > Qv and D D Q . This completes the proof of step 1.

Step 2. Let 6 be a block of CG(Q) covered by B. We may assume
that T(6) = G, T(6) = (x € G |6% = 6)

Proof. By step 1, Q is normal in G and,CG(Q) is normal in G.

Let B1 be a block of T(6) which covers é and satisfies B? = B.

(B1 = ¢ as elemenfs of FG). Since D is abelian, we may assume that D

is a defect group of 6 and B Let 60 be a Brauer correspondent of ¢,

1
G(D), and (Bl)0 be a Brauer correspondent of Bl’ a

block of T(6)nNG(D). Since there is a one to one correspondence

between the indecomposable FG-modules in B and the indecomposable

a block of CG(Q)nN

FT(6)-modules in B, by induction, we can show

1

7 lInd(B|L)| = S IInd(BilLy)l.
yET(LING/T(6)
On the other hand T(60) = T(&)nNG(D), (Bl)0 covers 60 and BO =
Ng (D)
((Bl)o) . So we have as in (7)
(8) IInd(BOILX)I = S IInd((Bl)OILXZ)I.
zeT(Lx)nNG(D))\NG(D)/T(6O)

Here we assume that Proposition is true for T(6#). Since Q is normal in

G, the following holds

IInd(Bl|Ly)| = S IInd((Bl)OILyw)I.

we(T(Ly)nT(6))\T(6)/(T(6)nNG(D))
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Therefore we have from (7) and (8)

| Ind(B|L)|

= g IInd((Bl)OILyw)l
YET(L)NG/T(6) we(T(LYINT(6)INT(6)/(T(6)NN;(D))

= > |Ind((B1)0|Lu)|
WET (LING/ (T(6)NN (D))

= ) . S IInd((Bl)OILX25|
XET(LING/N (D) 2€ (T(L™XANL(D)I\N (DY/ (T (6NN (D))

= S |Ind(BO|Lx)l.
X€T (L)NG/N (D)

This completes the proof of step 2 and we may assume that B = 6.

Step 3. We may assume that L is G-invariant.

Proof. By step 2, B is a block of CG(Q) and hence B is a block of
T(L). Similarly Bo is a block of T(L)nNG(D) and BO is a Brauer corre-
spondent of B as a block of T(L). Let N be an indecomposable FG-modu-

le with source module L. Then there exists an indecomposable FT(L)-
G

module NO with source module L such that N = NO . N0 is uniquely
(up to isomorphism) determined by N, and N= NB if and only if N0 =
NOB. Conversely if NO is an indecomposable FT(L)-module with source

module L, then NOG is an indecomposable FG-module with source module
L. Hence the number of isomorphism classes of indecomposable (FG)B-
modules with source module L is equal to that of isomorphism classes
of indecomposable (FT(L))B-modules with source module L. Similarly,

(D))B,-modu-

the number of isomorphism classes of indecomposable (FNG 0
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les with source module L is equal to that of isomorphism classes of
indecomposable (F(T(L)nNG(D))BO-modules with source moduie L. So if
Proposition is true for T(L), we have |Ind(B|L)| = |Ind(B,lL)|. By

the way, since T(6) = G and D is a defect group of &6 (see step 2), we

T(L)NG(D). Hence Proposition holds for B. So

we may assume that T(L) = G.

have G = CG(Q)NG(D)

Step 4. Conclusion.

Proof. Under the assumption that Q is normal in G, B is a block
of C,(Q) and that L is G-invariant, we will show |Ind(B|L)| =
IInd(BOIL)I, using results and notations in §1. Since any indecompo-
sable FG-module with source module L is a component of-LG and an
indecomposable component of LG has L as a source module by the
assumption, we have _

[Tnd(BIL)| = |Irr(F(G, o)Bl,
where Irr(F(G, a)B) is the set of isomorphism classes of irreducible
F(G, a)B-modules and B is a block of FEETE) corresponding to B.
Similarly we have

IInd(BOIL)I = IIrr(F(NG(D), a)BO)l,

(D)) corresponding to B.. We note B0

where B0 is a block of F(CG(Q)nNG

is a Brauer correspondent of B as a block of CG(Q5.

0

Let B = 0(B). 1f B = _3 ag X, aire F, then B =
X€CL(Q)

> a=8(X)r(x)e.. Since D is a defect group of B as a block of

- X A

xECG(Q)

Cq(@ and A is a central p'~-subgroup of G, a defect group D of B as a

block of CE(Q) is a p-subgroup of CE(Q) such that o(D) = DA/A. We see

~

~ —~—
Na(ﬁ)/A = Ng(D) and ((CG(Q)ONC(ﬁ))/A = Co(QNNL(D). Let ﬁo =
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—~

0 is a block of CG(Q)nNG

Since EO is a Brauer correspondent of B as a block of C;(Q), we can

G(EO). B (D) and D is a defect group of EO‘

show that ﬁo is a Brauer correspondent of B as a block of CE(Q).

Let Bl’ B A En be the blocks of G which cover B. Since B

9
belongs to Z(F(é. o)), and B belongs to Z(FG), the following holds.

(9) B = ﬁl + ﬁz e+ ﬁn.

Therefore we have

(10) | 1nd(B|L)| | Irr(F(G, cOB)| = |Irr«(FG B))|

0 _
> IIrr((Fa)ﬁi)l.
i=1

because F(G, a)B and (FG)B are isomorphic by 6. By the assumption

that B is a block of CG(Q) and‘since D is abelian, p & |G :CG(Q)I

and hence p 4+ IG : CE(Q)I. So D is a defect group of ﬁi. Let (ﬁi)0

a Brauer correspondent of Fi which is a block of Nﬁ(ﬁ)‘ From (9),

B, = (Bl)o + (Ez)o + ....+(§n)0.

0
Applying (10) for NG(D) and BO’ we have
n
(11 IInd(BOIL)I = izlllrr((FNa(ﬁ))(ﬁi)o)l.

Now if Alperin's conjecture is true, then IIrr((FG)Bi)I =
lIrr(FNa(ﬁ))(ﬁi)o)l, hence from (10) and (11), |Ind(B|L)| =

IInd(BOIL)I. This completes the proof of Proposition.
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