A POINCARÉ-BENDIXSON TYPE THEOREM FOR HOLOMORPHIC VECTOR FIELDS

Toshikazu Ito

INTRODUCTION

Let Z_1 be a linear vector field on the two-dimensional complex space C^2 :

$$\mathbf{Z}_1 = \sum_{j=1}^{2} \lambda_j z_j \, \partial / \partial z_j \,, \quad \lambda_j \in \mathbf{C} \,, \quad \lambda_j \neq 0.$$

We have the following well-known

Fact ([1]). If λ_1/λ_2 does not belong to \mathbf{R}_- , the set of negative real numbers, then the three-dimensional unit sphere $S^3(1) = S^3(1:0)$ centered at the origin 0 in \mathbf{C}^2 is transverse to the foliation $\mathcal{F}(\mathbf{Z}_1)$ defined by the solutions of \mathbf{Z}_1 .

If λ_1/λ_2 belongs to \mathbf{R}_- , $S^3(1)$ is not transverse to $\mathcal{F}(\mathbf{Z}_1)$.

We carry $S^3(1:0)$ to the sphere $S^3(1:(2,2))$ centered at the point (2,2) in C^2 . Next we deform $S^3(1:(2,2))$ to $\tilde{S}^3(1:(2,2))$ as shown in Figures 5 and 6.

Intuitively it appears that $S^3(1:(2, 2))$ and $\tilde{S}^3(1:(2, 2))$ are not transverse to $\mathcal{F}(\mathbb{Z}_1)$. The above figures suggest to us a topological property of the transversality between spheres and holomorphic vector fields. This observation leads us to the following Poincaré-Hopf type theorem for holomorphic vector fields.

This research was partially supported by the Brazilian Academy of Sciences.

Typeset by AMS-TEX

Theorem 1. Let M be a subset of \mathbb{C}^n , diffeomorphic to the 2n-dimensional closed disk $\overline{D}^{2n}(1)$ consisting of all z in \mathbb{C}^n with $||z|| \leq 1$. We write $\mathcal{F}(Z)$ for the foliation defined by solutions of a holomorphic vector field Z in some neighborhood of M. If the boundary of M is transverse to $\mathcal{F}(Z)$, then Z has only one singular point, say p, in M. Furthermore, the index of Z at p is equal to one.

From Theorem 1, we get an answer to the problem suggested by Figures 5 and 6.

Corollary 2. Consider a linear vector field in \mathbb{C}^n : $\mathbb{Z} = \sum_{j=1}^n \lambda_j z_j \partial/\partial z_j$, $\lambda_j \in \mathbb{C}$, $\lambda_j \neq 0$. If a smooth imbedding φ of (2n-1)-sphere S^{2n-1} in $\mathbb{C}^n - \{0\}$ belongs to the zero element of the homotopy group $\pi_{2n-1}(\mathbb{C}^n - \{0\})$, then φ is not transverse to $\mathcal{F}(\mathbb{Z})$.

Since the distance function for solutions of a holomorphic vector field Z with respect to the origin 0 is subharmonic, each solution of Z is unbounded except the singular set of Z. Therefore we have formulated a Poincaré-Bendixson type theorem for holomorphic vector fields.

Theorem 3. Let M denote a subset of \mathbb{C}^n holomorphic and diffeomorphic to the 2n-dimensional closed disk $\overline{D}^{2n}(1)$. Let \mathbb{Z} be a holomorphic vector field in some neighborhood of M. If the boundary ∂M of M is transverse to the foliation $\mathcal{F}(\mathbb{Z})$, then each solution of \mathbb{Z} which crosses ∂M tends to the unique singular point p of \mathbb{Z} in M, that is, p is in the closure of L. Further, the restriction $\mathcal{F}(\mathbf{Z})|_{M-\{p\}}$ of $\mathcal{F}(\mathbf{Z})$ to $M-\{p\}$ is C^{ω} -diffeomorphic to the foliation $\mathcal{F}(\mathbf{Z})|_{\partial M} \times (0, 1]$ of $M-\{p\}$, where $\mathcal{F}(\mathbf{Z})|_{\partial M}$ denotes the restriction of $\mathcal{F}(\mathbf{Z})$ to ∂M .

Adrien Douady proved Theorem 3 in the case n = 2.

From Theorem 3 we get an affirmative answer to a special case of the Seifert conjecture.

Corollary 4. Let Z be a holomorphic vector field in some neighborhood of $\overline{D}^4(1) \subset \mathbb{C}^2$. If the boundary $\partial \overline{D}^4(1) = S^3(1)$ is transverse to $\mathcal{F}(Z)$, then the restriction $\mathcal{F}(Z)|_{S^3(1)}$ to S^3 has at least one compact leaf.

The author wishes to thank César Camacho for valuable discussions.

§1. Definition of transversality between manifolds and holomorphic vector fields

Let $Z = \sum_{j=1}^{n} f_j(z) \partial/\partial z_j$ be a holomorphic vector field in the complex space C^n of dimension n. We identify C^n with the real space \mathbb{R}^{2n} of dimension 2n by the natural correspondence. We have a real representation of Z:

$$Z = \sum_{j=1}^{n} f_j(z) \partial/\partial z_j$$

$$= \sum_{j=1}^{n} (g_j(x, y) + ih_j(x, y)) \frac{1}{2} (\partial/\partial x_j - i \partial/\partial y_j)$$

$$= \frac{1}{2} \left\{ \left[\sum_{j=1}^{n} (g_j(x, y) \partial/\partial x_j + h_j(x, y) \partial/\partial y_j) \right] - i \left[\sum_{j=1}^{n} (-h_j(x, y) \partial/\partial x_j + g_j(x, y) \partial/\partial y_j) \right] \right\}$$

$$= \frac{1}{2} (\mathbf{X} - i\mathbf{Y}), \qquad (1.1)$$

where we set

$$\mathbf{X} = \sum_{j=1}^{n} (g_j(x, y) \partial/\partial x_j + h_j(x, y) \partial/\partial y_j)$$
(1.2)

and

$$\mathbf{Y} = \sum_{j=1} (-h_j(x, y) \partial/\partial x_j + g_j(x, y) \partial/\partial y_j).$$
(1.3)

Let J be the natural almost complex structure of C^n . The vector fields X and Y satisfy the following equations:

$$\mathbf{JX} = \mathbf{Y}, \quad \mathbf{JY} = -\mathbf{X} \quad \text{and} \quad [\mathbf{X}, \mathbf{Y}] = 0. \tag{1.4}$$

Let N be a smooth manifold of dimension 2n-1. We define below the transversality of a smooth map $\Phi : N \to \mathbb{C}^n$ to the foliation $\mathcal{F}(\mathbb{Z})$ determined by solutions of \mathbb{Z} .

Definition 1.1. We say that the map Φ is transverse to the foliation $\mathcal{F}(Z)$ or the holomorphic vector field Z if the following equation is satisfied for each point $p \in N$:

$$\Phi_*(T_pN) + \{\mathbf{X}, \mathbf{Y}\}_{\Phi(p)} = T_{\Phi(p)}\mathbf{R}^{2n},$$

where T_pN and $T_{\Phi(p)}\mathbf{R}^{2n}$ are the tangent space of N at p and the tangent space of \mathbf{R}^{2n} at $\Phi(p)$ respectively, and $\{\mathbf{X}, \mathbf{Y}\}_{\Phi(p)}$ is the vector space generated by $\mathbf{X}_{\Phi(p)}$ and $\mathbf{Y}_{\Phi(p)}$. In particular, if N is a submanifold in \mathbf{C}^n , we say that N is transverse to $\mathcal{F}(\mathbf{Z})$.

For example consider the (2n-1)-dimensional sphere $S^{2n-1}(r)$, consisting of all $z \in \mathbb{C}^n$ with ||z|| = r. $S^{2n-1}(r)$ is tangent to $\mathcal{F}(\mathbf{Z})$ at $p \in S^{2n-1}(r)$ if and only if the following equation is satisfied at p:

$$\sum_{j=1}^{n} f_j(z)\bar{z}_j = \langle \mathbf{X}, \mathbf{N} \rangle - i \langle \mathbf{Y}, \mathbf{N} \rangle = 0, \qquad (1.6)$$

where we denote by $N = \sum_{j=1}^{n} (x_j \partial/\partial x_j + y_j \partial/\partial y_j)$ the usual normal vector field on $S^{2n-1}(r)$. We set $\Sigma = \{z \in \mathbb{C}^n | \sum_{j=1}^{n} f_j(z)\bar{z}_j = 0\}$ and say that Σ is the total contact set of spheres and $\mathcal{F}(Z)$. We denote by $R(z) = \sum_{j=1}^{n} |z_j|^2$ the distance function between $z \in \mathbb{C}^n$ and the origin 0 in \mathbb{C}^n . A critical point of the restriction $R|_L$ of R to a solution L of Z is a contact point of L and the sphere.

We will conclude this section by giving some examples of the contact set $\Sigma \cap S^{2n-1}(r)$ of $S^{2n-1}(r)$ and $\mathcal{F}(\mathbb{Z})$.

Example 1.2. Consider $Z = z_1(2+z_1+z_2)\partial/\partial z_1+z_2(1+z_1)\partial/\partial z_2$ defined in C^2 . The set Sing(Z) of singular points of Z consists of three points: (0, 0), (-2, 0) and (-1, -1). Now Sing(Z) $\cap \overline{D}^4(1)$ consists of (0, 0)only, where $\overline{D}^4(1)$ is the four-dimensional closed disk centered at the origin in C^2 with radius 1. For any r, $0 < r \leq 1$, the contact set $S^3(r) \cap \Sigma$ is empty; that is, $S^3(r)$ is transverse to $\mathcal{F}(Z)$. Therefore, each solution of Z which crosses $S^3(1)$ tends to the origin in C^2 . **Example 1.3.** Let a be a complex number different from zero. Define Z on C^2 by $Z = (2z_1 + az_2^2) \partial/\partial z_1 + z_2 \partial/\partial z_2$. We mention here that one can find in [3] one of the normal forms of holomorphic vector fields in C^2 :

$$\mathbf{Z} = (\lambda_1 z_1 + a z_2^n) \partial / \partial z_1 + \lambda_2 z_2 \partial / \partial z_2, \quad \lambda_1 = n \lambda_2.$$

The singular set Sing(Z) consists of a single point (0, 0). There exists a number $r_0 > 0$ such that

(i) if $0 < r < r_0$, $\Sigma \cap S^3(r)$ is empty:

(ii) if $r = r_0$, $\Sigma \cap S^3(r_0)$ is diffeomorphic to the circle S^1 ;

(iii) if $r_0 < r$, $\Sigma \cap S^3(r)$ is diffeomorphic to the disjoint union $S^1 \coprod S^1$ of two copies of the circle S^1 .

In the case (ii), the circle $\Sigma \cap S^3(r_0)$ consists of degenerate critical points. If L_p is the solution of Z passing through $p \in \Sigma \cap S^3(r_0)$, then $L_p \cap \Sigma$ is a singleton set $\{p\}$.

In the case (iii), one circle of $\Sigma \cap S^3(r)$ consists of minimal points and the other consists of saddle points. In particular, for $p \in \Sigma \cap S^3(r)$ the set $L_p \cap \Sigma$ consists of two points p and q, $p \neq q$. More precisely, one of these two points is a saddle point of $R|_{L_p}$ and the other a minimal point of $R|_{L_p}$.

Example 1.4. One finds in [4] the following example of a one-form ω on C^2 : $\omega = z_2(1 - i - z_1z_2) dz_1 - z_1(1 + i - z_1z_2) dz_2$. We consider here $Z = z_1(1 + i - z_1z_2) \partial/\partial z_1 + z_2(1 - i - z_1z_2) \partial/\partial z_2$ on C^2 . The singular set Sing(Z) consists of a single point, namely (0, 0). If $0 < r < \sqrt{2}$, $\Sigma \cap S^3(r)$ is empty. If $r = \sqrt{2}$, $\Sigma \cap S^3(\sqrt{2})$ is diffeomorphic to the circle S^1 . Indeed $\Sigma \cap S^3(\sqrt{2})$ belongs to the solution $z_1z_2 = 1$ of Z. If $r > \sqrt{2}$, $\Sigma \cap S^3(r)$ is diffeomorphic to the circle S^1 , and consists of saddle points.

$\S2$. Proof of Theorem 1

In this section we shall use the same notation as in the previous sections. First, we note that the following property of analytic sets in \mathbb{C}^n : the set of singular points of Z in M consists of isolated finite points. Since the boundary ∂M of M is transverse to $\mathcal{F}(Z)$, there exists a smooth vector field ξ in some neighborhood of ∂M such that

(i) ξ is represented by $aX + bY \neq 0$, where a and b are smooth functions defined in some neighborhood of ∂M ;

(ii) ξ is required to point outward at each point of ∂M .

We obtain a smooth map (a, b) of some neighborhood of ∂M to $\mathbb{R}^2 - \{0\}$. When $n \geq 2$ using obstruction theory (see [9]), we can extend the map (a, b) to a smooth map (α, β) of some neighborhood of M to $\mathbb{R}^2 - \{0\}$ such that the restriction of (α, β) to some neighborhood of ∂M is the map (a, b). There should be no confusion if we use ξ for the extended smooth vector field $\xi = \alpha \mathbf{X} + \beta \mathbf{Y}$. By the definition of ξ on a neighborhood of M, the set $\operatorname{Sing}(\mathbf{Z})$ of the singular points of \mathbf{Z} coincides with that of ξ .

In order to calculate the index of ξ at $p \in \text{Sing}(\mathbb{Z})$, we may think of the vector field ξ as a map $\xi : M \to \mathbb{R}^{2n}$. Similarly we may think of the holomorphic vector field \mathbb{Z} as a map $\mathbb{Z} : M \subset \mathbb{C}^n \to \mathbb{C}^n$ or as a map $\mathbb{Z} : M \subset \mathbb{R}^{2n} \to \mathbb{R}^{2n}$. We say that the vector field \mathbb{Z} is non-degenerate at $p \in \text{Sing}(\mathbb{Z})$ if the Jacobian $\det(D(\mathbb{Z})(p))$ of \mathbb{Z} at p is different from zero. By a direct calculation we obtain the following:

$$det(D(\xi)(p)) = det \begin{pmatrix} \alpha(p)I_n & -\beta(p)I_n \\ \beta(p)I_n & \alpha(p)I_n \end{pmatrix} det(D(\mathbf{Z})(p)) = |det((\alpha(p) + i\beta(p))I_n)|^2 |det \left(\frac{\partial g_j}{\partial x_k}(p) + i\frac{\partial g_j}{\partial y_k}(p)\right)|^2,$$
(2.1)

where det A denotes the determinant of a matrix A and I_n is the identity matrix of $GL(n, \mathbf{R})$. In particular, since $det(D(\mathbf{Z})(p))$ is positive at a non-degenerate singular point $p \in Sing(\mathbf{Z})$, the index of ξ at p is one (see [6]).

In order to calculate the index of ξ at a degenerate singular point $p \in \text{Sing}(\mathbb{Z})$, we recall the following

Proper mapping theorem ([5]). Let $F: \mathbb{C}^n \to \mathbb{C}^n$ be a holomorphic map such that F(0) is equal to 0. Assume that 0 is an isolated point in $F^{-1}(0)$ and $\det(D(F)(0))$ is 0. Then there exists a number $\epsilon > 0$ together with a neighborhood W of 0 such that $F|_W: W \to \Delta(0:\epsilon) = \{ z \in \mathbb{C}^n | ||z|| < \epsilon \}$ is surjective.

Using the proper mapping theorem we find a sufficiently small number $\epsilon > 0$ and a neighborhood W of $p \in \operatorname{Sing}(\mathbb{Z})$ such that $W \cap \operatorname{Sing}(\mathbb{Z})$ is a singleton set. Since there exist regular values y of \mathbb{Z} in $\Delta(0:\epsilon)$, by (2.1), we may select a regular value y of ξ in $\Delta(0:\epsilon_1) = \{ y \in \mathbb{R}^{2n} | ||y|| < \epsilon_1 \}$, $0 < \epsilon_1 < \epsilon$. The set $N_1 = \xi^{-1}(\overline{\Delta}(0:\epsilon_1)) \cap W$ is compact. We then choose a compact set N with $W \supset N \supset N_1$ and a smooth function λ which takes on the value one at $x \in N_1$ and zero at $x \notin N$. Define $\tilde{\xi}$ by $\tilde{\xi}(x) = \xi(x) - \lambda(x)y$. Then $\tilde{\xi}$ is different from zero at each point $x \in N - N_1$; hence $\tilde{\xi}^{-1}(0) \cap W$ is compact and each point $\tilde{p} \in \tilde{\xi}^{-1}(0) \cap W$ is non-degenerate. Now we are ready to calculate the index of the vector field ξ at a degenerate point $p \in \operatorname{Sing}(\mathbb{Z})$:

$$\operatorname{index}_{p} \xi = \sum_{\bar{p} \in \bar{\xi}^{-1}(0) \cap W} \operatorname{index}_{\bar{p}} \tilde{\xi}$$

= the number of elements of $\tilde{\xi}^{-1}(0) \cap W \ge 1$, (2.2)

where $index_p \xi$ denotes the index of ξ at p.

On the other hand, by the Poincaré-Hopf theorem we have the following:

$$1 = \chi(M) = \sum_{p \in \operatorname{Sing}(\mathbb{Z}) \cap M} \operatorname{index}_p \xi, \qquad (2.3)$$

where $\chi(M)$ denotes the Euler number of M. From (2.2) and (2.3) we conclude that the number of elements of Sing(Z) in M is one. This completes the proof of Theorem 1.

§3. Proof of Theorem 3

We continue to use the same notation.

Since M is holomorphic, diffeomorphic to the 2n-dimensional closed disk $\bar{D}^{2n}(1)$, we give a proof of Theorem 3 for $\bar{D}^{2n}(1)$. Using a Möbius transformation, we can assume that the sole singular point of Z in $\bar{D}^{2n}(1)$ is the origin 0. We define a function F in some neighborhood of \bar{D}^{2n} minus the origin 0 by

$$F(z) = \frac{\sum_{j=1}^{n} f_j(z)\bar{z}_j}{\sum_{j=1}^{n} |z_j|^2}.$$

Since the boundary $S^{2n-1}(1)$ of $\overline{D}^{2n}(1)$ is transverse to $\mathcal{F}(\mathbb{Z})$, the restriction $F|_{S^{2n-1}(1)}$ of F to $S^{2n-1}(1)$ takes on the values in $\mathbb{C} - \{0\}$. Consider a complex line l_z through a point $z \in S^{2n-1}(1)$: $l_z = \{tz \in \mathbb{C}^n | t \in \mathbb{C}\}$. We define a holomorphic function $\tilde{F}(t:z)$ in some neighborhood of $\overline{D}^2(1:0) = \{t \in \mathbb{C} | |t| \leq 1\}$ by

$$\tilde{F}(t:z) = \begin{cases} \frac{\sum_{j=1}^{n} f_j(tz) \bar{t} \bar{z}_j}{t \bar{t}}, & \text{if } t \neq 0\\ \sum_{j, k=1}^{n} \frac{\partial f_j}{\partial z_k}(0) z_k \bar{z}_j, & \text{if } t = 0. \end{cases}$$

Then the degree of $\tilde{F}|_{|t|=1}$ is zero, because $F|_{S^{2n-1}(1)}$ is homotopic to a constant map. Hence, for any $z \in S^{2n-1}(1)$, $\tilde{F}(t:z)$ is not zero; that is, the only element of $\Sigma \cap \bar{D}^{2n}(1)$ is the origin 0 in \mathbb{C}^n . In other words, $S^{2n-1}(r)$, $0 < r \leq 1$, are transverse to $\mathcal{F}(\mathbb{Z})$. Let $\tilde{N} \in T\mathcal{F}(\mathbb{Z})$ be the vector field of the projection of N to $T\mathcal{F}(\mathbb{Z})$. The set of singular points of \tilde{N} in $\bar{D}^{2n}(1)$ is the singleton set $\{0\}$ in \mathbb{C}^n . Then each solution of Z which crosses $S^{2n-1}(1)$ tends to 0 along the orbit of \tilde{N} . Furthermore, the restricted foliation $\mathcal{F}(\mathbb{Z})|_{S^{2n-1}(r)}$ of $S^{2n-1}(r)$ is C^{ω} -diffeomorphic to the foliation $\mathcal{F}(\mathbb{Z})|_{S^{2n-1}(1)}$ of $S^{2n-1}(1)$ by the correspondence along orbits of \tilde{N} . This completes the proof of Theorem 3.

§4. A SPECIAL CASE OF SEIFERT CONJECTURE

The notation used in the Introduction, 1 and 3 carries over in the present section.

We first recall the Seifert conjecture. Consider the vector field $\mathbf{e} = z_1 \partial/\partial z_1 + z_2 \partial/\partial z_2$ on \mathbf{C}^2 . All leaves of the restricted foliation $\mathcal{F}(\mathbf{e})|_{S^3(1)}$ of $S^3(1)$ are fibres of the Hopf fibration $S^3 \to S^2$. On the other hand, consider the vector field $\mathbf{e}_{\epsilon} = (z_1 + \epsilon z_2) \partial/\partial z_1 + z_2 \partial/\partial z_2$, where the number ϵ is sufficiently small. Then the restricted foliation $\mathcal{F}(\mathbf{e}_{\epsilon})|_{S^3(1)}$ of $S^3(1)$ has one closed orbit $|z_1| = 1$ but all other leaves are diffeomorphic to \mathbf{R}^1 . In [8] H. Seifert proved the following

Theorem (H. Seifert). A continuous vector field on the three-sphere which differs sufficiently little from $\mathcal{F}(\mathbf{e})|_{S^3(1)}$ and which sends through every point exactly one integral curve, has at least one closed integral curve.

The Seifert conjecture says "every non-singular vector field on the threedimensional sphere S^3 has a closed integral curve".

In [7] Paul Schweitzer constructed a counterexample to the Seifert conjecture: There exists a non-singular C^1 vector field on S^3 which has no closed integral curves.

In this section we investigate a certain property of a non-singular vector field on S^3 induced by a holomorphic vector field in some neighborhood of $\overline{D}^4(1)$ which is transverse to $S^3(1)$. This will prove Corollary 4.

Proof of Corollary 4. Using a Möbius transformation, we can assume that the only singular point of Z in $\overline{D}^4(1)$ is the origin. First, we note that the existence of a separatrix of Z at 0 was proved by C. Camacho and P. Sad [2]. Let L be a separatrix of Z at 0. There is a sufficiently small number $\epsilon > 0$ together with a holomorphic function f defined in $D^4(\epsilon)$ such that $D^4(\epsilon) \cap \overline{L} = \{f = 0\}$. Then for each ϵ_1 , $0 < \epsilon_1 < \epsilon$, $S^3(\epsilon_1) \cap L$ is a circle. Since $\mathcal{F}(\mathbf{F})|_{S^3(\epsilon_1)}$ is C^{ω} -diffeomorphic to $\mathcal{F}(\mathbf{F})|_{S^3(1)}$, the latter has at least one compact leaf. This completes the proof of Corollary 4.

References

- 1. C. Camacho, N. H. Kuiper and J. Palis, The topology of holomorphic flows with singularity, Publ. Math. I.H.E.S. 48 (1978), 5-38.
- 2. C. Camacho and P. Sad, Invariant varieties through singularities of holomorphic vector fields, Ann. of Math. 115 (1982), 579-595.
- 3. C. Camacho and P. Sad, Topological classification and bifurcations of holomorphic flows with resonances in C^2 , Invent. Math. 67 (1982), 447-472.
- 4. C. Camacho, A. Lins Neto and P. Sad, Foliations with algebraic limit sets, Ann. of Math. 136 (1992), 429-446.
- 5. R. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., 1965.
- 6. J. Milnor, Topology from the differential viewpoint, The University Press of Virginia, Charlottesville, 1965.

- 7. P. Schweitzer, Counterexamples to Seifert conjecture and opening closed leaves of foliations, Ann. of Math. 100 (1974), 386-400.
- 8. H. Seifert, Closed integral curves in 3-space and isotopic two-dimensional deformations, Proc. Amer. Math. Soc. 1 (1950), 287-302.
- 9. N. Steenrod, The topology of fibre bundles, Princeton University Press, Princeton, 1951.

Department of Natural Sciences, Ryukoku University, Fushimi-ku Kyoto 612 Japan