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A POINCAR\’E-BENDIXSON TYPE THEOREM
FOR HOLOMORPHIC VECTOR FIELDS

TOSHIKAZU ITO

INTRODUCTION

Let $Z_{1}$ be a linear vector field on the two-dimensional complex space $C^{2}$ :

$Z_{1}=\sum_{j=1}^{2}\lambda_{j}z_{j}\partial/\partial z_{j}$ , $\lambda_{j}\in C$ , $\lambda_{j}\neq 0$ .

We have the following vvell-known

Fact ([1]). If $\lambda_{1}/\lambda_{2}$ does not belong to $R_{-},$ the set of negative real numbers,
then the three-dimensional unit sphere $S^{3}(1)=S^{3}(1:0)$ centered at the
origin $0$ in $C^{2}$ is transverse to the foliation $\mathcal{F}(Z_{1})$ defined by the solutions
of $Z_{1}$ .

We carry’ $S^{3}($ 1 : $0)$ to the sphere $S^{3}(1$ : (2, 2) $)$ centered at the point $(2, 2)$

in $C^{2}$ . Next we deform $S^{3}(1:(2,2))$ to $\overline{S}^{3}(1:(2,2))$ as shown in Figures 5
and 6.

Intuitively it appears that $S^{3}(1:(2,2))$ and $\tilde{S}^{3}(1:(2,2))$ are not trans-
verse to $\mathcal{F}(Z_{1})$ . The above figures suggest to us a topological property of
the transversality between spheres and holomorphic vector fields. This obser-
vation leads us to the following Poincar\’e-Hopf type theorem for holomorphic
vector fields.
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Tlxeorem 1. Let $\Lambda f$ be a subset of C’ , dilleomo$rpl_{1}ic$ to the $2n$-dimension $al$

closed disk $\overline{D}^{2n}(1)$ consisting of all $z$ in $C$ “ $wi$ th $||z||\leq 1$ . We $write\mathcal{F}(Z)$

for the foliation def’ned by $sol$utions of a holo$m$orph$icvector$ field $Z$ in some
neighborhood of M. If the boundary of $M$ is $trans\tau$’erse to $\mathcal{F}(Z)$ , then $Z$

$]$?as only on $e$ singular poin $t$ , say $p$ , in M. Furthermore, the in $dex$ of $Z$ at
$p$ is $eq$ual to on $e$ .

From Theorem 1, we get an answer to the problem suggested by Figures 5
and 6.
Corollary 2. Consider a linear $ve$ctor field in C’ : $Z=\sum_{j=1}^{n}\lambda_{j}z_{j}\partial/\partial z_{j}$ ,
$\lambda_{j}\in C$ , $\lambda_{j}\neq 0$ . If a smooth imbeddin$g\varphi$ of $(2n-1)$ -sphere $S^{2n-1}$ in
$C^{n}-\{0\}$ belongs to the zero element of the homotopy $gro$up $\pi_{2n-1}(C^{n}-\{0\})$ ,
then $\varphi$ is not tran $St^{\gamma}$erse to $\mathcal{F}(Z)$ .

Since the distance function for solutions of a holomorphic vector field $Z$

witb respect to the origin $0$ is subharmonic, each solution of $Z$ is unbounded
except the singular set of Z. Therefore we have formulated a Poincar\’e-
Bendixson type theorem for holomorphic vector fields.

Theorem 3. Let $\Lambda f$ den$ote$ a $su$ bset of $C^{n}$ holomor$pI_{1}ic$ and difTeomorphic
to the $2n$ -dimensional closed disk $\overline{D}^{2n}(1)$ . Let $Z$ be a holomorphic vector
field in some neighborhood of M. If the boundary $\partial M$ of $M$ is transverse
to the foliatio $n\mathcal{F}(Z)$ , then each $sol$ution of $Z$ whicli crosses $\partial M$ tends
to the nnique singular poin $tp$ of $Z$ in $M$ , that is, $p$ is in the closure
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of L. Further, th$e$ restriction $\mathcal{F}(Z)|_{M-\{p\}}$ of $\mathcal{F}(Z)$ to $M-\{p\}$ is $C^{W}-$

difEeomorphi$c$ to th $e$ foliation $\mathcal{F}(Z)|_{\partial Ai}x(0,1$] of $M-\{p\}$ , where $\mathcal{F}(Z)|_{\partial r\backslash I}$

denotes the restriction of $\mathcal{F}(Z)$ to $\partial M$ .

Adrien Douady proved Theorem 3 in the case $n=2$ .
From Theorem 3 we get an affirmatfve answer to a special case of the Seifert

conjecture.

Corollary 4. Let $Z$ be a holomorph$ic$ vector field in some neighborhood of
$\overline{D}^{4}(1)\subset C^{2}$ . If the boundary $\partial\overline{D}^{4}(1)=S^{3}(1)$ is transverse to $\mathcal{F}(Z)$ , then
the $res$ triction $\mathcal{F}(Z)|_{S^{\theta}(1)}$ to $S^{3}$ has at least one compact leaf

The author wishes to thank $C’\infty$ar Camacho for valuable discussions.

\S 1. DEFINITION OF TRANSVERSALITY BETWEEN MANIFOLDS
AND HOLOMORPHIC VECTOR FIELDS

Let $Z=\sum_{j=1}^{n}f_{j}(z)\partial/\partial z_{j}$ be a holomorphic vector field in the complex
space $C$“ of dimension $n$ . We identify $C^{n}$ with the real space $R^{2n}$ of
dimension $2n$ by the natural correspondence. We have a real representation
of $Z$ :

$Z=$

は

$f_{j}(z)\partial/\partial z_{j}$

$j=1$

$= \sum_{j=1}^{n}(g_{j}(x, y)+ih_{j}(x, y))\frac{1}{2}(\partial/\partial x_{j}-i\partial/\partial y_{j})$

$= \frac{1}{2}\{[\sum_{j=1}^{n}(g_{j}(x, y)\partial/\partial x_{j}+h_{j}(x, y)\partial/\partial y_{j})]$

$-i[ \sum_{j=1}^{n}(-h_{j}(x, y)\partial/\partial x_{j}+g_{j}(x, y)\partial/\partial y_{j})]\}$

$= \frac{1}{2}(X-iY)$ , (1.1)

where we set

$X=\sum_{j=1}^{n}(g_{j}(x,.\cdot y)\partial/\partial x_{j}+h_{j}(x, y)\partial/\partial y_{i})$ (1.2)

and

$Y=\sum_{j=1}(-h_{j}(x, y)\partial/\partial x_{j}+g_{j}$
( $x$ , y) $\partial/\partial y_{j}$ ). (1.3)
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Let $J$ be the natural alnost complex structure of $C^{n}$ . The vector fields X
and $Y$ satisfy the following equations:

JX $=Y$ , JY $=-X$ and [X, $Y$] $=0$ . (1.4)

Let $N$ be a smooth manifold of dimension $2n-1$ . We define below
the transversality of a smooth map $\Phi$ : $Narrow C^{n}$ to the foliation $\mathcal{F}(Z)$

determined by solutions of Z.

Definition 1.1. We say that the map $\Phi$ is transverse to the foliation $\mathcal{F}(Z)$

or the holomorphic vector field $Z$ if the following equation is satisfied for each
point $p\in N$ :

$\Phi_{*}(T_{p}N)+\{X, Y\}_{\Phi(p)}=T_{\Phi(p)}R^{2n}$ ,

where $T_{p}N$ and $T_{\Phi(p)}R^{2n}$ are the tangent space of $N$ at $p$ and the tangent
space of $R^{2n}$ at $\Phi(p)$ respectively, and $\{X, Y\}_{\Phi(p)}$ is the vector space
generated by $X_{\Phi(p)}$ and $Y_{\Phi(p)}$ . In particular, if $N$ is a submanifold in $C^{n}.\cdot$ ,
we say that $N$ is transverse to $\mathcal{F}(Z)$ .

For example consider the $(2n-1)$-dimensional sphere $S^{2n-1}(r)$ , consisting
of all $z\in C^{n}$ with $||z||=r$ . $S^{2n-1}(r)$ is tangent to $\mathcal{F}(Z)$ at $p\in S^{2n-1}(r)$

if and only if the following equation is satisfied at $p$ :

$\sum_{j=1}^{n}f_{j}(z)\overline{z}_{j}=\langle X , N\rangle-i(Y, N)=0$ , (1.6)

where we denote by $N=\sum_{j=1}^{n}(x_{j}\partial/\partial x_{j}+y_{j}\partial/\partial y_{j})$ the usual normal vector
field on $S^{2n-1}(r)$ . We set $\Sigma=\{z\in C^{n}|\sum_{j=1}^{n}f_{j}(z)\overline{z}_{j}=0\}$ and say that $\Sigma$

is the total contact set of spheres and $\mathcal{F}(Z)$ . We denote by $R(z)= \sum_{j=1}^{n}|z_{j}|^{2}$

the distance function between $z\in C^{n}$ and the origin $0$ in $C^{n}$ . A critical
point of the restriction $R|_{L}$ of $R$ to a solution $L$ of $Z$ is a contact point of
$L$ and the sphere.

We will 6onclude this section by giving some examples of the contact set
$\Sigma\cap S^{2n-1}(r)$ of $S^{2n-1}(r)$ and $\mathcal{F}(Z)$ .
Example 1.2. Consider $Z=z_{1}(2+z_{1}+z_{2})\partial/\partial z_{1}+z_{2}(1+z_{1})\partial/\partial z_{2}$ defined
in $C^{2}$ . The set Sing(Z) of singular points of $Z$ consists of three points:
$(0 , 0)$ , $(-2,0)$ and $(-1, -1).\cdot$ Now Sing $(Z)\cap\overline{D}^{4}(1)$ consists of $(0,0)$
only, where $\overline{D}^{4}(1)$ is the four-dimensional closed disk centered at the origin
in $C^{2}$ with radius 1. For any $r,$ $0<r\leq 1$ , the contact set $S^{3}(r)\cap\Sigma$ is
empty; that is, $S^{3}(r)$ is transverse to $\mathcal{F}(Z)$ . Therefore, each solution of $Z$

which crosses $S^{3}(1)$ tends to the origin in $C^{2}$ .
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Example 1.3. Let $a$ be a complex number different $hom$ zero. Define $Z$

on $C^{2}$ by $Z=(2z_{1}+az_{\sim^{)}}^{2})\partial/\partial z_{1}+z_{2}\partial/\partial z_{2}$ . We mention here that one can
find in [3] one of the normal forms of holomorphic vector fields in $C^{2}$ :

$\tilde{Z}=(\lambda_{1}z_{1}+az_{2}^{n})\text{\^{o}}/\partial z_{1}+\lambda_{2}z_{2}\partial/\partial z_{2}$ , $\lambda_{1}=\tau\iota\lambda_{2}$ .

The singular set Sing(Z) consists of asingle point $(0,0)$ . There exists a
number $r0>0$ such that
(i) if $0<r<r_{0)}\Sigma\cap S^{3}(r)$ is empty:
(ii) if $r=r_{0},$ $\Sigma\cap S^{3}(r_{0})$ is diffeomorphic to the circle $S^{1}$ ;
$(i\ddot{u})$ if $r_{0}<f$ $\Sigma\cap S^{3}(r)$ is diffeomorphic to the disjoint union $s^{1}LI^{S^{1}}$ of
two $copi\infty$ of the circle $S^{1}$ .

In the caee $(\ddot{u}),$ .the circle $\Sigma\cap S^{3}(r_{0})$ consists of degenerate critical points.
If $L_{p}$ is the solution of $Z$ passing through $p\in\Sigma\cap S^{3}(r_{0})$ , then $L_{p}\cap\Sigma$ is
asingleton set $\{p\}$ .

In the case $(\ddot{u}i)$ , one circle of $\Sigma\cap S^{3}(r)$ consists of minimal points and
the other consists of saddle points. In particular, for $p\in\Sigma\cap S^{3}(r)$ the set
$L_{p}\cap\Sigma$ consists of two points $p$ and $q,$ $p\neq q$ . More precisely, one of these
two points is a $s$addle point of $R|_{L_{p}}$ and the other aminimal point of $R|_{L_{p}}$ .

Example 1.4. One finds in [4] the following example of a one-form $\omega$ on
$C^{2}$ : $\omega=z_{2}(1-i-z_{1}z_{2})dz_{1}-z_{1}(1+i-z_{1}z_{2})dz_{2}$ . We consider here
$Z=z_{1}(1+i-z_{1}z_{2})\partial/\partial z_{1}+z_{2}(1-i-z_{1}z_{2})\partial/\partial z_{2}$ on $C^{2}$ . The singular set
Sing(Z) consists of a single point, namely $(0 , 0)$ . If $0<f<\sqrt{2}$ , $\Sigma\cap S^{3}(r)$

is empty. If $r=\sqrt{2},$ $\Sigma\cap S^{3}(\sqrt{2})$ is diffeomorphic to the circle $S^{1}$ . Indeed
$\Sigma\cap S^{3}(\sqrt{2})$ belongs to the solution $z_{1}z_{2}=1$ of Z. If $r>\sqrt{2},$ $\Sigma\cap S^{3}(r)$ is
diffeomorphic to the disjoint union $s^{1}I$] $S^{1}$ of two copies of the circle $S^{1}$ ,
and consists of saddle points.

\S 2. PROOF OF THEOREM 1

In this section we shall use the same notation as in the previous sections.
First, we note that the following property of analytic sets in $C^{n}$ : the set

of singular points of $Z$ in $M$ consists of isolated finite points. Since the
boundary $\partial M$ of $M$ is transverse to $\mathcal{F}(Z)$ , there exists a smooth vector
field $\xi$ in some neighborhood of $\partial M$ such that

(i) $\xi$ is represented by $aX+bY\neq 0$ , where $a$ and $b$ are smooth functions
defined in some neighborhood of $\partial M$ ;
(ii) $\xi$ is required to point outward at each point of $\partial M$ .

We obtain a smooth map $(a, b)$ ofsome neighborhood of $\partial M$ to $R^{2}-\{0\}$ .
When $n\geq 2$ using obstruction theory (see [9]), we can extend the map $(a, b)$

to a smooth map $(\alpha, \beta)$ of some neighborhood of $M$ to $R^{2}-\{0\}$ such that
the restriction of $(\alpha, \beta)$ to some neighborhood of $\partial M$ is the map $(a , b)$ .
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There should be no confusion if we use $\xi$ for the extended smooth vector
field $\xi=\alpha X+\beta Y$ . By the definition of $\xi$ on a neighborhood of $M$ , the set
Sing(Z) of the singular points of $Z$ coincides with that of $\xi$ .

In order to calculate the index of $\xi$ at $p\in$ Sing(Z) , we may think of
the vector field $\xi$ as a map $\xi$ : $Marrow R^{2n}$ . Similarly we may think of
the holomorphic vector field $Z$ as a map $Z$ : $M\subset C^{n}arrow C^{n}$ or as a map
$Z$ : $AI\subset R^{2n}arrow R^{2n}$ . We say that the vector field $Z$ is non-degenerate at
$p\in Sing(Z)$ if the Jacobian $\det(D(Z)(p))$ of $Z$ at $p$ is different from zero.
By a direct calculation we obtain the following:

$\det(D(\xi)(p))=\det(_{\beta(p)I_{n}^{n}}^{\alpha(p)I}$ $-\beta(p)I_{n}\alpha(p)t_{n})\det(D(Z)(p))$

(2.1)
$=| \det((\alpha(p)+i\beta(p))t_{n})|^{2}|\det(\frac{\partial g_{j}}{\partial x_{k}}(p)+i\frac{\partial g_{j}}{\partial y_{k}}(p))|^{2}$,

where $\det$ $A$ denotes the determinant of a matrix $A$ and $I_{n}$ is the identity
matrix of $GL(n, R)$ . In particular, $\sin$ce $\det(D(Z)(p))$ is positive at a non-
degenerate singular point $p\in Sing(Z)$ , the index of $\xi$ at $p$ is one (see [6]).

In order to calculate the index of $\xi$ at a degenerate singular point $p\in$

Sing(Z), we recall the following

Proper mapping theorem ([5]). Let $F$ : C’ $arrow\backslash C^{n}$ be a holomorphic map
such that $F(0)$ is equal to $0$ . Assume that 0.is an isolated point in $F^{-1}(0)$

and $\det(D(F)(O))$ is $0$ . Then there exists a number $\epsilon>0$ together with a
neighborhood $W$ of $0$ such that $F|_{W}$ : $Warrow\triangle(O:\epsilon)=\{z\in C^{n}|||z||<\epsilon\}$

is surjective.

Using the proper mapping theorem we find a sufficiently small number
$\epsilon>0$ and a neighborhood $W$ of $p\in Sing(Z)$ such that $W\cap Sing(Z)$ is a
singleton set. Since there exist regular values $y$ of $Z$ in $\Delta(0 : \epsilon)$ , by (2.1),
we may select a regular value $y$ of $\xi$ in $\Delta(0 : \epsilon_{1})=\{y\in R^{2n}|||y||<\epsilon_{1}\}$ ,
$0<\epsilon_{1}<\epsilon$ . The set $N_{1}=\xi^{-1}(\overline{\Delta}(0 : \epsilon_{1}))\cap W$ is compact. We then
choose a compact set $N$ with $W\supset N\supset N_{1}$ and a smooth function $\lambda$

which takes on the value one at $x\in N_{1}$ and zero at $x$ $\not\in N$ . Define
$\tilde{\xi}$ by $\tilde{\xi}(x)=\xi(x)-\lambda(x)y$ . Then $\tilde{\xi}$ is different from zero at each point
$x\in N-N_{1}$ ; hence $\overline{\xi}^{-1}(0)\cap W$ is compact and each point $\tilde{p}\in\tilde{\xi}^{-1}(0)\cap W$

is non-degenerate. Now we are ready to calculate the index of the vector field
$\xi$ at a degenerate point $p\in Sing(Z)$ :

$index_{p}\xi=$ $- \sum$
$indeX_{p}^{\wedge}\tilde{\xi}$

$\overline{p}\in\epsilon^{-\iota}(O)\cap W$

$=$ the number of elements of $\tilde{\xi}^{-1}(O)\cap W\geq 1$ , (2.2)

where $index_{p}\xi$ denotes the index of $\xi$ at $p$ .
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On‘ the other hand, by the Poin$c$ ar\’e-Hopf theorem we have the following:

$1= \chi(M)=\sum_{p\epsilon Sing(Z)\cap M}index_{p}\xi$
, (2.3)

where $\chi(M)$ denotes the Euler nulnber of $M$ . From (2.2) and (2.3) we
conclude that the number ofelements of Sing(Z) in $M$ is one. This completes
the proof of Theorem 1.

\S 3. PROOF OF THEOREM 3
We continue to use the same notation.
Since $M$ is holomorphic, diffeomorphic to the $2n$-dimensional closed disk

$\overline{D}^{2n}(1)$ , we give a proof of Theorem 3 for $\overline{D}^{2n}(1)$ . Using a M\"obius transfor-
mation, we can assume that the sole singular point of $Z$ in $\overline{D}^{2n}(1)$ is the
origin $0$ . We define a function $F$ in some neighborhood of $\overline{D}^{2n}$ minus the
origin $0$ by

$F(z)= \frac{\sum_{j--1}^{n}f_{j}(z)\overline{z}_{j}}{\sum_{j=1}^{n}|z_{j}|^{2}}$ .

Since the boundary $S^{2n-1}(1)$ of $\overline{D}^{2n}(1)$ is transvers$e$ to $\mathcal{F}(Z)$ , the restric-
tion $F|_{S^{2\cdot-1}(1)}$ of $F$ to $S^{2n-1}(1)$ takes on the.values in $C-\{0\}$ . Consider
a complex line $l_{z}$ through a point $z\in S^{2n-1}(1)$ : $l_{z}=\{tz\in C" |t\in C\}$ .
We define a holomorphic function $\overline{F}$ ( $t$ : z) in some neighborhood of $\overline{D}^{2}(1$ :
$0)=\{t\in C||t|\leq 1\}$ by

$\tilde{F}(t:z)=\{\begin{array}{l}\frac{\sum_{j=l}^{n}f_{j}(tz)\overline{t}\overline{z}_{j}}{t\overline{t}}\sum_{j_{l}k=1}^{n}\frac{\partial f_{j}}{\partial z_{k}}(0)z_{k}\overline{z}_{j}\end{array}$
$ift=0ift\neq 0$

.

Then the $\dot{d}egree$ of $\tilde{F}|_{|t|=1}$ is zero, because $F|_{S^{2\mathfrak{n}-1}(1)}$ is homotopic to a
constant map. Hence, for any $z\in S^{2n-1}(1),\tilde{F}$ ( $t$ : z) is not zero; that is,
the only element of $\Sigma\cap\overline{D}^{2n}(1)$ is the origin $0$ in $C^{n}$ . In other words,
$S^{2n-1}(r),$ $0<r\leq 1$ , are transverse to $\mathcal{F}(Z)$ . Let $\tilde{N}\in T\mathcal{F}(Z)$ be the
vector field of the projection of $N$ to $T\mathcal{F}(Z)$ . The set of singular points
of $\tilde{N}$ in $\overline{D}^{2n}(1)$ is the singleton set $\{0\}$ in $C^{n}$ . Then each solution of $Z$

which crosses $S^{2n-1}(1)$ tends to $0$ along the orbit of $\tilde{N}$ . Furthermore, the
restricted foliation $\mathcal{F}(Z)|_{S^{2n-1}(r)}$ of $S^{2n-1}(r)$ is $C^{\iota\nu}$ -diffeomorphic to the
foliation $\mathcal{F}(Z)|_{S^{2n-1}(1)}$ of $S^{2n-1}(1)$ by the correspondence along orbits of
$\tilde{N}$ . Tbis completes the proof of Theorem 3.



8

\S 4. A SPECIAL CASE OF SEIFERT CONJECTURE

The notation used in the Introduction, \S 1 and \S 3 carries over in the present
section.

We first recall the Seifert conjecture. Consider the vector field $e=z_{1}\partial/\partial z_{1}$

$+z_{2}\partial/\partial z_{2}$ on $C^{2}$ . All leaves of the restricted foliation $\mathcal{F}(e)|_{S^{3}(1)}$ of $S^{3}(1)$

are fibres of the Hopf fibration $S^{3}arrow S^{2}$ . On the other hand, consider
the vector field $e_{\epsilon}=(z_{1}+\epsilon z_{2})\partial/\partial z_{1}+z_{2}\partial/\partial z_{2}$ , where the number $\epsilon$ is
sufficiently small. Then the restricted foliation $\mathcal{F}(e)|_{S^{3}(1)}$ of $S^{3}(1)$ has one
closed orbit $|z_{1}|=1$ but all other leaves are diffeomorphic to $R^{1}$ . In [8]
H. Seifert proved the following

Theorem (H. Seifert). A continuouS vector field on the three-sphere which
differs sufficiently little from $\mathcal{F}(e)|_{S^{3}(1)}$ and which sends through every point
exactly one integral curve, has at least one closed integral curve.

The Seifert conjecture says “every non-singular vector field on the three-
dimensional sphere $S^{3}$ has aclosed integral curve”.

In [7] Paul Schweitzer constructed acounterexample to the Seifert conjec-
ture: There exists a $non-singular\cdot C^{1}$ vector field on $S^{3}$ which has no closed
integral curves.

In this section we investigate acertain property of anon-singular vector
field on $S^{3}$ induced by aholomorphic vector$\cdot$ field in some neighborhood of
$\overline{D}^{4}(1)$ which is transverse to $S^{3}(1)$ . This will prove Corollary 4.

Proof of CoroUary 4. Using aM\"obius transformation, we can aaeume that
the only singular point of $Z$ in $\overline{D}^{4}(1)$ is the origin. First, we note that the
existence of a $separatr\dot{L}X$ of $Z$ at $0$ was proved by C. Camacbo and P. Sad
[2]. Let $L$ be aseparatrix of $Z$ at $0$ . There is asufficiently small number
$\epsilon>0$ together with aholomorphic function $f$ defined in $D^{4}(\epsilon)$ such that
$D^{4}(\epsilon)\cap\overline{L}=\{f=0\}$ . Then for each $\epsilon_{1},0<\epsilon_{1}<\epsilon,$ $S^{3}(\epsilon_{1})\cap L$ is acircle.
Since $\mathcal{F}(F)|_{S^{3}(e_{1})}$ is $C^{w}$-diffeomorphic to $\mathcal{F}(F)|_{S^{3}(1)}$ , the latter hae at least
one compact leaf. This completes the proof of CoroUary 4.
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