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Moduli space and
Complex analytic Gel’fand Fuks cohomology

of Riemann surfaces.

NARIYA KAWAZUMI*

Abstract. Let $C^{\cross}$ be a once punctured compact Riemann surface and
$L(C^{\cross})$ the Lie algebra consisting of all complex analytic vectors on
$C^{\cross}$ . We determine the q-th cohomology group of $L(C^{\cross})$ with values in
the complex analytic quadratic differentials on the p-fold product space
$(C^{\cross})^{p}$ for the case $p\geq q$ . The cohomology group vanishes for $p>q$ ,
and, for $p=q$ , it forms a trivial constant sheaf on the dressed moduli
$M_{g,\rho}$ of compact Riemann surfaces of genus $g$ . (Furthermore the stalk
does not depend on the genus $g.$ ) This induces a natural map of the
cohomology group for $p=q$ into the $(p, p)$ cohomology of the moduli
$M_{g,\rho}$ . We prove the map is a stable isomorphism onto the subalgebra
generated by the Morita Mumford classes $e_{n}=\kappa_{n}’ s$ , which gives an
affirmative evidence for the conjecture: the stabk cohomology algebra
of the moduli of compact Riemann surfaces would be generated by the
Morita Mumford classes.

Let $M_{g}$ denote the moduli space of compact Riemann surfaces of genus
$g\geq 2$ , i.e., the space consisting of all isomorphism classes of complex
structures defined on the closed orientable $C^{\infty}$ surface of genus $g,$ $\Sigma_{g}$ .
It is a $3g-3$-dimensional complex analytic orbifold. It is valuable for
topologists to investigate the space $M_{g}$ because of the isomorphisms

$H^{*}(M_{g}; Q)=H^{*}$ ( $BDiff^{+}\Sigma_{g}$ ; Q)
$=$ {the rational characteristic classes of oriented $\Sigma_{g}$ bundles.}

The stability theorem of Harer [H] asserts that the q-th rational co-
homology group $H^{q}$ ( $M_{9}$ ; Q) does not depend on the genus $g$ , provided
that $q<g/3$ . It enables us to consider the stable cohomology algebra
of the moduli spaces of compact Riemann surfaces $\lim_{garrow\infty}H^{*}$ ( $M_{g}$ ; Q).
In view of a theorem established by Morita [Mo] and Miller [Mi] inde-
pendently, a polynomial algebra in countably many generators denoted
by $e_{n},$ $n\in N_{\geq 1}$ , is embedded into this stable cohomology algebra:

(1) $Q[e_{n};n\geq 1]arrow\lim_{garrow\infty}H^{*}(M_{g};Q)$ .
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Here the class $e_{n}\in H^{2n}$ ( $M_{g}$ ; Q) (or $H^{n,n}(M_{g})$ ) is the n-th Morita Mum-
ford class (the n-th tautological class) defined as follows. Let $C_{g}arrow M_{g}$

be the universal family of compact Riemann surface of genus $g$ and de-
note $e$ $:=c_{1}(T_{C_{g}/M_{g}})\in H^{2}$ ( $C_{g}$ ; Q) (or $H^{1,1}(C_{g})$ ). Applying the fiber
integral to the power of the class $e$ , one defines

(2) $e_{n}$ $:= \int fibere^{n+1}\in H^{2n}$ ( $M_{g}$ ; Q) or $H^{n,n}(M_{g})$

[Mo][Mu]. Our purpose is to give a result which suggests us that the
map (1) should be an isomorphism.

The theory of complex vector bundles is an ideal type for theories
of other fiber bundles. The Grassmannian manifold, which classifies
complex vector bundles, is a homogeneous space and its cohomology is
described by cohomologies of Lie algebras. It suggests us that our mod-
uli space $M_{g}$ would be endowed with some homogeneous structure un-
der suitable modifications, and that its cohomology would be described
through the homogeneous structure.

As was observed by Kontsevich [Ko] and Beilinson-Manin-Schecht-
man [BMS], the dressed moduli space $M_{g,\rho}$ has an infinitesimal homo-
geneous structure. More precisely, there exists a Lie algebra homomor-
phism of a certain Lie algebra $0_{\rho}$ to the Lie algebra of complex analytic
vector fields on $M_{g,\rho}$ , and the tangent space at each point of $M_{g,\rho}$ is
spanned by vectors coming from the algebra $\mathfrak{d}_{\rho}$ . From the Harer stabil-
ity [H] the dressed moduli $M_{g,\rho}$ has the same stable cohomology as that
of the moduli $M_{g}$ .

Let $\rho>0$ be a positive real number. Following Arbarello, DeConcini,
Kac and Procesi [ADKP], we define the dressed moduli $M_{g,\rho}$ as the
space consisting of all triples $(C,p, z)$ , where $C$ is a compact Riemann
surface of genus $g,$ $p$ is a point of $C$ , and $z$ is a complex coordinate of a
neighbourhood $U$ of $p$ satisfying the conditions

$z(p)=0$ and $z(U)\supset\{z\in C;|z|\leq\rho\}$ .

The space $M_{g,\rho}$ is acted on by the Lie algebra $0_{\rho}$ consisting of all complex
analytic vector fields on the punctured disk $\{z\in C;0<|z|\leq\rho\}$ through
moving the glueing map between $C-\{p\}$ and $\{|z|\leq\rho\}$ . This action is
transitive and the isotropy subalgebra $(\mathfrak{d}_{\rho})_{x}$ at each point $x=(C,p, z)\in$
$M_{g,\rho}$ is equal to the Lie algebra consisting of all complex analytic vector
fields on the open Riemann surface $C-\{p\}$ . Especially the cotangent
space $T_{x^{*}}M_{g,\rho}$ is equal to the space consisting of all complex analytic
quadratic differentials on the open Riemann surface $C-\{|z|\leq\rho\}$ .
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We need compute the cohomology group of the isotropy subalgebra
$(\mathfrak{d}_{\rho})_{x}$ with coefficients in the n-th cotangent space $\wedge^{n}T_{x^{*}}M_{g,\rho}$ . It has
a natural correspondence to the cohomology group of the dressed mod-
uli $M_{g,\rho}$ . Thus we need construct some general theories on cohomology
groups of the Lie algebra of complex analytic vector fields on open Rie-
mann surfaces $U$ with coefficients in the tensors on the product space
$U^{n}$ , i.e., the tensor-valued complex analytic Gel’fand-Fuks cohomology
theory for open Riemann surfaces.

The paper [Ka] is devoted to the basic part of this general theory.
For an open Riemann surface $U$ and a finite subset $S\subset U$ we denote
by $L(U, S)$ the topological Lie algebra consisting of all complex analytic
vector fields on $U$ which have zeroes at all points in $S$ . In a classical
way the computation of the cohomology of $L(U, S)$ with coefficients in
the global tensor fields is reduced to those of the cohomologies with
coefficients in the germs of the tensors. The main result of [Ka] asserts
that the cohomology of $L(U, S)$ with coefficients in the germs of tensors
decomposes itself into the global part derived from the homology of $U$

and the local part coming from the coefficients. Its proof is obtained
by translating the Bott-Segal addition theorem of the $C^{\infty}$ Gel’fand-
Fuks cohomology [BS] into our complex analytic situation. Thus the
computation. is reduced to that in the case when $(U, S)=(C, \{0\})$ and
when the coefficients is the tensor fields on $C^{n}$

It is this case that we investigate in the paper [Kal]. Then the dif-
ficulties concentrate themselves into the origin $0\in C^{n}$ . Now we shall
eliminate the origin. The residual terms which arise from the elimina-
tion can be controlled through a generalization by Scheja of the second
Riemann (Hartogs) continuation theorem [S]. In other words, the elimi-
nation induces a cohomology exact seqence of the Lie algebra $L(C, \{0\})$

with coefficients in the tensors on $C^{n}$ . As an application we obtain an
explicit description of the cohomology algebra of $L(C)$ with coefficients
in the complex analytic functions on $C^{n}$ .

Now we return to the dressed moduli $M_{g,\rho}$ . By the result in [Ka] the
computation of the cohomology group $H^{q}((\Phi_{\rho})_{x} ; \wedge^{p}T_{x^{*}}M_{g,\rho})$ for each
point $x\in M_{g,\rho}$ is reduced to that of the group $H^{q}(W_{1} ; \wedge^{p}Q)$ , where
$W_{1}$ $:=L(C, \emptyset)$ and $Q$ is the $W_{1}$ module of complex analytic quadratic
differentials on C. From the cohomology exact sequence in [Kal] follows
$H^{q}(W_{1} ; \wedge^{p}Q)=0$ and so $H^{q}((0_{\rho})_{x}; \wedge^{p}T_{x^{*}}M_{g,\rho})=0$ for $q<p$ .

In [Ka2] we reconstruct the Chern class $e$ of the relative tangent bundle
$T_{C_{9}/M_{g}}$ and the fiber integral of the power $e^{n+1},$ $\kappa_{n}\in H^{n}((0_{\rho})_{x}$ $;\wedge^{n}T_{x^{*}}$

$M_{g,\rho})$ , under our Lie algebro-cohomological framework. We prove that
the algebra $\oplus_{p>0}H^{p}((0_{\rho})_{x}; \wedge^{n}T_{x^{*}}M_{g,\rho})$ is generated by these classes
$\kappa_{n}’ s,$ $n\geq 1,$ $an(T$ that the class $\kappa_{n}$ has a natural correpondence to the
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n-th Morita-Mumford class $e_{n}\in H^{n,n}(M_{g,\rho})$ . It follows from the Miller-
Morita theorem stated above that the classes $\kappa_{n}’ s$ are algebraically in-
dependent. Consequently we obtain

THEOREM. For each point $x\in M_{g,\rho}$ we have $H^{q}((0_{\rho})_{x} ; \wedge^{p}T_{x^{*}}M_{g,\rho})=0$,
if $p>q$ , and

$\bigoplus_{p\geq 0}H^{p}((0_{\rho})_{x}; \wedge^{p}T_{x}^{*}M_{g,\rho})=C[\kappa_{n};n\geq 1]$
.

The sheaf of germs of n-forms on $M_{g,\rho},$ $\Omega_{M_{g,\rho}}^{n}$ , is a sheaf of $0_{\rho}$ modules.
Hence the standard complex $C^{*}(0_{\rho};\Omega_{M_{g,\rho}}^{n})$ of the Lie algebra $\mathfrak{d}_{\rho}$ is a
cochain complex of sheaves on $M_{g,\rho}$ . We denote by $H^{*}(0_{\rho} : \Omega_{M_{g,\rho}}^{n})$

the cohomology sheaf on $M_{g,\rho}$ of this cochain complex. Taking into
consideration a geometric interpretation of the Frobenius reciprocity law
[B], we put a general hypothesis:

HYPOTHESIS.

$H^{*}(0_{\rho};\Omega_{M_{g,\rho}}^{n})_{x}=H^{*}((0_{\rho})_{x}; \wedge^{n}T_{x}^{*}M_{g)\rho})$ $(\forall x\in M_{g,\rho})$

The hypothesis seems to be true. Although the author has no proof
of this assertion at present, he believes that it shall be justified under
some suitable modifications. So we denote by $H_{\Phi_{\rho}}^{n,*}(M_{g,\rho})$ the hyperco-
homology of the cochain complex of sheaves $C$“ $(\Phi_{\rho};\Omega_{M_{g,\rho}}^{n})$ and call it the
$0_{\rho}$ -equivariant $(n, *)$ -cohomology of $M_{g,\rho}$ . Our results are reformulated
as follows.

COROLLARY. Under the above hypothesis we $h$ave

$\bigoplus_{p\geq q}H_{\Phi}^{p_{p}q}(M_{g,\rho})=C[e_{n};n\geq 1]$
.

This suggests that it is reasonable to conjecture that the stable coho-
mology algebra of the moduli of compact Riemann surfaces is generated
by the Morita-Mumford classes $e_{n}’ s$ .
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