oooooooooo
O 8780 19940 64-74

64

An intersection theory for hypergeometric functions
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Thank you very much for inviting me to give a talk in this symposium.
This talk is based on a joint work with Michitake Kita in Kanazawa
University. I would like to thank Keiji Matsumoto for giving us the
opportunity of this collaboration.

1. What are HGF’s ?

- (1.1) Classical HGF’s. -

In this talk, I am talking about hypergeometric functions (HGF’s).
What are HGF’s ? The most classical ones ares the Gauss HGF’s; they
are solutions of the Gauss hypergeometric differential equation

z(1— z)i +{c—(a+b+ l)z}-‘iji —abf=0 on PL
dz? dz

Late in the nineteenth century, P. Appell [Ap] and G. Lauricella [La]
introduced HGF’s of several variables.

"~ P. Appell (1880) —_2 variables, Fy, F,, Fs, Fy,
G. Lauricella (1893) — n variables Fp, F4, Fp, Fc (a century ago!).

The HGF’s have been considered as one of the most important special
functions, because they have quite many applications to various fields
in mathematics as well as in mathematical physics.

(1.2) Aomoto-Gelfand HGF’s.

In 1986, after a series of pioneering works by K. Aomoto, .M. Gel’fand
[Ge] defined a class of HGF’s of several variables. In fact, Aomoto
[Ao] gave essentially the same definition in 1975. Their definitions are
quite natural, simple and beautiful. Recently, mathematics related to
Grassmannian manifolds has been quite active. The Aomoto-Gel’fand
HGF’s are an example of such a Grassmannian mathematics.
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(1.3) Fibrations.
Let M = M(m +1,n+1) be the set of all (m + 1) x (n + 1)-complex
matrices of full rank:

M=Mm+1,n+1)
:={z; (m+1) x (n + 1)-complex matrix of full rank},

with m > n, M = M(m + 1,7 + 1) the set of all matrices in general
position:

M=Mm+1,n+1)

:= {z € M ; zis in general position},

where z is said to be in general position if all (n + 1)-minors of z do not
vanish.

We regard C™*! and C**! as a column vector space with coordinates
Zo Uo
1 Uy
= N U = ’
Zm Un

respectively. These coordinates are regarded also as homogeneous coor-
dinates of the projective spaces P™ and P™, respectively.
Consider a fibration = : £ — M defined by

E=Em+1,n+41):={(z,u) € M xP"; ﬁz;(zu) # 0}

=0

where x : E — M is the projection into the first component. Let
E, : the fiber of E over z € M (”bar” is omitted).
We put
E = —E] M : restriction of the base space of Eto M.
LEMMA 1.3.1. n: E — M is atopological fiber bundle i.e. topologically
locally trivial. :

(1.4) Local systems.
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Let A be an affine parameter space defined by

ap
. a : -
A=Am+1l,n+1):={a= GC"‘+1;Za,-=—(n+1)}.
' i=0
Am

For any a € A, we consider a multi-valued holomorphic section f of
Oz 37(—n — 1) defined by

m

F = f(z,v) = f(z,u;0) := Hzi(zu.)a"

i=0
Since f is homogeneous of degree —m — 1 with respect to u, f is indeed
a "section” of OE/ﬁ(—n —1). Let
L = L : local system on E over the field C such that
each branch of f determines a horizontal local section of £,

L': dual local system of £ on E,

L, := L|g, : restriction of L to each fiber E,,

L; := LY|g, : restriction of L" to each fiber E,.

(1.5) Twisted (co-)homology.
Let
H!'=HI(m+1,n+1;a)
= HYE, L)
: g-th twisted cohomology of (E, £) along the fibers of x : E — M,
H, = ’HZ(m+ 1,n+1;a)
= Hq(EB, L")
: g-th twisted homology of (¥, L") along the fibers of x : E — M.
Namely,

Ho= ) BHYE,,L.), Hy =] HE., L))
ZEM zEM
There are natural projections
x:H'- M T H, — M.
By Lemma 1.3.1, we have the following:
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LEMMA 1.5.1. x: H' > M and x: ’H;’ — M admit natural structures
of local system on M.

(1.6) Hypergeometric functions (HGF’s).
We denote by

%Z®Hq'_’CM1 (C:SO)H-/‘P

the fiberwise pairing of the homology and the cohomology, where Cjs is
the constant system on M with fiber C.

Let du := dugAduy A+ - - Adu, be the standard volume form on C®*1,
The interior product of du by the Euler vector field

id i)
e= z_:u,-b-; : Euler vector field

defines an Op=(n + 1)-valued n-fonﬁ
w=tde on P"
Pulling back this form to E, we obtain an Oz az(n + 1)-valued n-form
along the fibers of x : E — M. We denote it also by w. Put
p(2) = p(2:0) = £(2, 5 2 ).

This n-form along the fibers determines an element of H™(E;,L,) at
each z € M.

DEFINITION 1.6.1: A hypergeomelric function of type (m + 1,24 1;)
is a (germ of) function of the form

F(zi0)= [ o)

where ¢(z) is a horizontal local section of x : H, — M.

LeEmMMA 1.6.2. The HGF F(z;a) is (continued to) a multi-valued holo-
morphic fanction on M with regular singularities along M \ M.

2. Some properties of HGF’s.

(2.1) Relation with classical HGF’s.

Our HGF’s are functions of matrix arguments. By a reduction of
arguments, our HGF’s of special type reduce to the classical HGF’s. -
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LEMMa 2.1.1.

(1) The (4,2)-type reduces to the Gauss HGF.

(2) The (m+1,2)-type reduces to the Lauricella HGF Fp of (m— 2)-
variables.

The Lauricella hypergeometric series of n-variables is defined by
Fp = Fp(a;by,...,bajc;21,...,24)

_ Z (a,‘m1 + "'+mn)(b1)m1).'.(b"’mn)zm1 ceagg™n
(e,my + -+ 4+ my)my!- - my,! ’ "

where the sum is taken over all nonnegative integers my,...,m, and
(aym) :=a(a+1)---(a+m—-1). HR®;), ({=1,...,n) and R(c - b)

are positive, then Fp admits the following Euler integral representation:

FD =COnSt./"'/ IIu?‘"l(l—Z-u,-)c'b'l(l-—Zt,—z,-)‘“dtl'--dtm
a4 i i
where

b:= Zb;,

const. := I‘(c)
= T(b1) - T(ba)T(c — b)’

A= {(u1,...,u,) ER" : u.'ZO,Zu,-Sl}.

‘The HGF’s admit group actions and the reduction of arguments is
made by using these group actions.

(2-2) Group actions. .
Groups we are concerned are:
GL = GL(n+1) : complex general group,
H =H(m+1) : complex (m + 1)-torus

ho
h,
= {h: . ; h,’ECx}

hum

Actions are given by

ExGL—E, ((zu),9)~ (29,97 "0),
HxE—E, (h,(z,4)) — (hz,u).

These actions induce the following group covariance of the HGF’s:



LemMmMma 2.2.1.
(1) F(zg;a) = (detg)~'F(z;a), (g9 € GL),
(2) F(hz;a) = h*F(z; ), (9 € H),
where h* = hg°h$* - - -hS™. '
Put

G=G(m+1,n+1):=M/GL, G=M/GL.
Then G is the Grassmannian manifold of (m+1,n +1)-type and Gis a

Zariski open subset of G.

REMARK 2.2.2: (1) The GL-covariance (1) implies that the HGF’s are
multi-valued holomorphic sections of the anti-determinant line bundle
over G.

(2) As for the H-covariance (2), we note that

H\ M : configuration space of (m + 1)-hyperplanes in P*,

H\ M/GL : configurations of (m + 1)-hyperplanes in P
up to Aut(P™).

(2.3) Gel’fand system.

LeMMA 2.3.1. The HGF F = F(z;a) satisfies the following system of
PDE’s:

Dk=o zki Fuj = —6; F (0<i,j<n)
Y iz 2kiFai = an F (0<k<m)
Fuiin = Frigng (0<4,<n,0<k,h <m)
where
p = OF oo OF
kj - F;) 2ij ) hi;hj - az’“. 0zh,' .

This system, called the Gel’fand system, is a regular holonomic sys-
tem.

3. Exterior product structure.

(3.1) Segre embedding.
The Segre embedding:

Segre
M(m+1,2) ——s M(m+1,n+1)
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is defined by

_ . n—1 n—-2_ 2
W—(wio ‘wn)'—’z—("’% W;p Wi1 Wy Wy =°°° "’?1)'

This is indeed an embedding, because we have the formula:

)
iy
z| | = nonzero const. II w (z.,, ) ,
: r<q e
in

where the left-hand side is the (n + 1)-minor of z determined by the
ig-th, #1-th, ..., i,,-th columns of z, the right-hand side being defined in
a similar manner. We would like to consider the pull-back of the local
systems H(m+1,n+1;a) and Hy (m+1,n+1;a) on M(m+1,n+1)
by the Segre embedding:

Segre*HY(m + 1,n + 1;a), Segre*H,(m + 1,n + 1; ).

They are local systems on M(m + 1,2). Are there any relation between
them and the HGF’s of type (m +1,2) ?
(3.2) Reduction of the base ring.

Until now, £ = L, (a € A) has been considered as a local system
over the complex number field C.

L =L, (a € A): defined over C — until now.
We put

c; = exp(2xv/—1qa;) € C*, (i=0,1,...,m).
Since ) o; = 0, we have
(*) coC1  Cm = 1.
Now let R be a subring of C such that

Q[caﬂ,clil,...,cil] CRCC.

m



Then the local system £ = L, can be defined over the ring R. So, from
now on, we assume that £ is defined over R.

L =L, : defined over R — from now on.

This reduction of the base ring will enable us to study HGF’s more
precisely. This is especially the case when the parameter o € A takes a
special value in a number-theoretical sense.

(3.3) Exterior product structure.

Let Ig be the ideal of R generated by 1 —cp,1 —c1,...,1 —cmp:

= iR(l - ).

i=0

REMARK 3.3.1: In fact, I is generated by 1 — ¢;,1 — ¢c32,...,1 — cm,
because () implies

l1—¢
—1= 3
co ; CIcz T c"
The following theorem is the main result of this talk:

THEOREM 3.3.2. Assume Ir = R.
(1) There exist canonical isomorphisms of R-modules:

n 1 . _
Segre*Hi(m + 1,n + 1; @) ~ { A+ 1, 250) (g=n)
0 (g#n)

e | )
Segre*H) (m + 1,n+ 1;a) = { AH; (m+1,20) (g=mn)
0 (¢ # n)

(2) Let

Him +1,2;a) : any fiber of x : HY(m + 1,2;a) — M(m + 1,2),
HJ(m+1,2;a) : any fiber of x : H](m +1,2;a) - M(m +1,2).

Then we have

Hi(m+1,2%e)=0=H/(m+1,2;a) (g#1),
H'(m+1,2;0)~V ~H/(m+1,2;a) (=~ : not canonical),
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where V is an R-module defined by

e
72 m
V={r=]| ER"';Zr,-(l——c;)=0}
i=1
?m

REMARK 3.3.3: (1) Recall that

:Hi(m+1,n+1;a) > M(m+1,n+1),
x:H/(m+1,n+1la) > M(m+1,n+1)

are local systems of R-modules on M(m +1,n+1). Hence, by ”analytic
continuation”, Theorem 3.3.2 determines the R-module structure of the
fiber over any point z € M(n + 1,m + 1) of these local systems.

(2) ¥ L is trivial, then there exists no such ring R that satisfies the
assumption of Theorem 3.3.2.

(3) X L is not trivial, i.e. there exists an i (1 < i < m) such that
¢; # 1, then the ring

1
R:=Q[cf!,f,... 2t ]

satisfies the assumption of Theorem 3.3.2. In this case, V is a free R-
module of rank m — 1, and hence

H*(m + 1,2 + 1;a) and Hl(m + 1,7 + 1;a) are local systems of free
R-modules of rank
m-—1
n
on M(m+1,n+1).
(4) If there exist rational numbers 7, 7;,...,7, € Q such that

m

Z‘r,'(l - C,') = 1,

i=1

then the ring ‘
R:= Q[cft, 2, ...,

satisfies the assumption of Theorem 3.3.2.
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ExAMPLE 3.3.4: We give a simple example of Remark 3.3.3,(4); if
_m+1

Qg = ——p—, a; =

2

i

i=1,2,...,m).

then we have
2x/—1

m

R = Qfexp(ZY 0],

(3.4) Concluding remarks.

Recall that the HGF of type (m + 1,2) is Lauricella’s classical HGF
Fp. So Theorem 3.3.2 implies that, roughly speaking, the HGF of type
(m+1,n+1) restricted to the Segre image is the n-th "ezterior product”
of the Lauricella Fp:

HGF(m + 1,7 + 1)[segre = AFp

I am not going to explain what this means exactly, because I do not
have enough time.

Anyway, the properties of the Lauricella Fp have been known exten-
sively. So we can say that our HGF’s are known on the Segre image.
Let us draw the following picture (see Figure 1).

H"(Ez,-Lzo) Hn(Ez,lz)
Ha(E;,, L;) Ha(E;. 1))

Figure 1.
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In order to know the global behaviour of the HGF’s, we have to find

their monodromy groups. To do so, it is convenient to take a point on
the Segre image as a base point of the fundamental groups. Finding the
monodromy has been made by K. Matsumoto, T. Sasaki, N. Takayama,
M. Yoshida [MSTY] and others.

I would like to stop my talk here. Thank you very much.
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