可算個の値の母数で漸近的に確率 1 で正しく推定する一致推定量について

筠波大 数字 佐藤道-(Michikagu Sato)

一致推定量 (弱一致の意味) の収束の速さを考える際に、 受数の値を固定して考えると以下の定理2と定理3のように 極端なことも起こること(定理1はその言いな)に注意する必要がある。

以下、 ⑤ を母数空間、 Bを母数、 (Y, d) を距離空間、 g: ⑥ → Y を写像、 Sn を標本の大きさがれ (i, i, d. で なくてもよい) のときの推定量とする。

定理1 のを固定する。このでき、任意の正数列 ぱか に対して P_{θ} { d (δ_{n} , g(θ)) \leq $1/\ell_{n}$ } \rightarrow D ($n \rightarrow \infty$) となることは、 P_{θ} { δ_{n} = g(θ)} \rightarrow D ($n \rightarrow \infty$) と同値である。

<u>証明</u> $P_{\theta}\{\delta_n=g(\theta)\}\rightarrow 0$ のとき、

 $P_{\theta}\{d(\delta_{n}, g(\theta)) \leq 1/k_{n}\} \geqslant P_{\theta}\{\delta_{n} = g(\theta)\}$ だか3、辺々の limsup をとり、 $P_{\theta}\{d(\delta_{n}, g(\theta)) \leq 1/k_{n}\}$ かのが得3れる。逆を示そう。れを固定する。

 $A_{\mathbf{i}} := \{ d(S_n, g(\theta)) \leq 1/k \}$

となくと、

 $A_1 \supset A_2 \supset \cdots$, $\bigcap_{k=1}^{\infty} A_k = \{ \delta_n = g(0) \}$

lim $P_{\theta}(A_{\ell}) = P_{\theta}\{\delta_n = g(\theta)\}$ となり、各れに対してたれを十分大きくとって

 P_{θ} もんしるn、 $g(\theta) \leq 1/k_n$ $\leq P_{\theta}$ も $n = g(\theta)$ + 1/n たかる、辺々のlimoup をとり、 P_{θ} も $n = g(\theta)$ $\rightarrow 0$ が 得るれる。

定理2 $g(\theta)$ の一致推定量 S_n が存在すると仮定する。 このとき、点列 $\{Q_k\}_{k=1}^{\infty}$ C G が与えられれば、

 $\lim_{n\to\infty} P_{\theta_k} \{ s_n = g(\theta_k) \} = 1$, $k=1, 2, \cdots$ $\chi t_k \equiv g(\theta)$ の一致推定量 s_n が存在する。

証明 各方、名EN に対して

 $\lim_{n\to\infty} P_{\theta_k}(d(\delta_n, g(\theta_k)) \leq 1/j = 1$

だかろ、レjin ENがなって

 $P_{0,k}\{d(\delta_{n},g(\theta_{k}))\leq 1/j\} \geq 1-1/j$ ヤルシンj, h とできる。 $1=\nu_{1,k}<\nu_{2,k}<\cdots$ としてよい、そこで、Jn.た を $\nu_{J_{n,k}}, k\leq n<\nu_{J_{n,k}+1}, k$ で定め、る。を

$$\begin{cases} g(\theta_1) & d(\delta_{n_1} g(\theta_1)) \leq 1/J_{n,1} \leq 1/1 \text{ or } z \neq 0 \\ g(\theta_2) & \pm 1/2 \text{ or } z \neq 0 \\ d(\delta_{n_1} g(\theta_2)) \leq 1/J_{n,2} \leq 1/2 \text{ or } z \neq 0 \\ g(\theta_3) & \pm 0 2 - 1/2 \text{ or } z \neq 0 \\ d(\delta_{n_1} g(\theta_3)) \leq 1/J_{n,3} \leq 1/3 \text{ or } z \neq 0 \\ d(\delta_{n_1} g(\theta_3)) \leq 1/J_{n,3} \leq 1/3 \text{ or } z \neq 0 \end{cases}$$

で定める。

名を固定すると、十分大きいれに対して $1/J_{n,h} \leq 1/h$ でなり、 $g(\theta_e) \neq g(\theta_k)$ 、 $\ell \leq h$ となる ℓ を $\ell_1, \ell_2, \cdots, \ell_m$ とすると、

だから、十分大きいれに対しては、 (1)(2) より 「ん(8n, g(0k)) $\leq 1/J_{n,k}$ ならば d(8n, g(0kr)) $> 1/J_{a,kr}$ $\forall r = 1, \dots, m$

 $P_{\theta_{k}}\{\delta_{n}'=g(\theta_{k})\}$ $\geq P_{\theta_{k}}\{d(\delta_{n},g(\theta_{k}))\leq 1/J_{n,k}\}$ (n:+%t) $\geq 1-1/J_{n,k}\to 1$ $(n\to\infty)$

である。ここで1番目の不等号は(3)、2番目はJng の定義による。

後って、

 $\lim_{n\to\infty} P_{0k} \{ \delta_n' = g(O_k) \} = 1$, d=1, 2, … は示された。 まとは δ_n' がg(O) の一致推定量でなることを言えばよい。

 $B \in \mathcal{O}$ $x \ge > 0$ E 国定する。M $\varepsilon 1/M < \varepsilon/2$ $x \in S$ t > 1 t >

を示そう。 るれーるんのときは自明だから、否のときを言う、るんの定義より、

 $d(S_{n}, g(O_{4})) \leq 1/J_{n,k} \leq 1/k$ (5) となる最小のをがまって、 $S_{n}' = g(O_{k})$ でまり、 L < Mのと さはカラNラレM, た たかう $J_{n,k}$ の定義より $M \leq J_{n,k}$ 、 ま って $1/J_{n,k} \leq 1/M$ であり、これと (5) かる、

16) $d(\delta_n, g(\theta_2)) \leq 1/M$ である。 名》M ならば (5) から明らかに (6) が成り立 7. 発って (b) は任意の名に対して成り立ち、これとM のとりかから. (7) $d(\delta_n, g(\delta_k)) \leq \epsilon/2$ でもり、径って、 d (8/, g(8)) [(5)の直後より] $=d(g(\theta_4),g(\theta))$ $\leq d(g(\theta_k), \delta_n) + d(\delta_n, g(\theta))$ 「仮定と(7) より] ≤ 8/2 + 8/2 = 8 でなる。後って (4)が示された。これより、カタルに対して $P_{R} \{ d(S_{n}, g(\theta)) \leq \varepsilon \}$ $\geq P_{\theta}\{d(\delta_n, g(\theta)) \leq \varepsilon/2\} \rightarrow 1 \quad (n \rightarrow \infty)$ たから、かはg(0)の一致推定量である。 定理3 $g(\theta)$ の一致推定量S、が存在するC仮定する。 このとき、点列イクをとこうしてが与えるれ、次の正則条件 「各名に対してはALRYにかなって、 18: g(8)=74)= リALLであれるALL上での g(8)の一様-致推定量である.」

が満たされると仮定する。このとき、 g(8)= 7% となるた

が存在するようなすべての日に対して

 $\lim_{n\to\infty} P_{\theta} \{ \delta_n = g(\theta) \} = 1$ となる $g(\theta)$ の一致推定量 δ_n' が存在する。

証明 $A_{4,\ell} \neq \emptyset$ C(TLN). 番号をつけかえて、 $\{A_{4,\ell}: A, \ell \in N\} = \{B_4: \ell \in N\} \times f3$. 各点, 是に対して

lim P_{θ} { $d(\delta_n, g(\theta)) \leq 1/j$ } = 1 ($\theta \in B_2$ 上で一様に)

たかろ、レガるEN(月にようない)があって、

 $P_{\theta}\{d(S_{n},g(\theta))\leq 1/j\}\geq |-1/j|$ カスタル $\theta\in B_{k}$ でもり、まとは $\mathcal{L}_{k}\in B_{k}$ として定理2と同様に証りできる。

注意 (i) 定理3の正則条件は、特に「 $\Theta = \bigcup_{i=1}^{\infty} K_{\ell}$ で、 δ_n は各 K_{ℓ} 上での g(Q) の一様一致推定量でなる。」が成り立ては満たされる。これは特に「 Θ はのコンパクトで δ_n はg(Q) の易所一様一致推定量でなる。」が成り立てば満たされる。

- (ii) 正則条件を省いてはなるない(後述の例1、例2)。
- (iii) 別な正則条件の下で、 174/2-1 を非丁算無限個の値に変えてはなるない(次の定理4)。

定理4 (i) (小標本論) Xの分布はAによるないおるの有限測度以に関して絶対連簇とすると、推定量を=S(X)にっ

いて、 $\{g(0): P_0\{\delta=g(0)\}\neq 0\}$ は高々可算である。
(ii) (大標本論) 各れに対して、 $\{X_1,\cdots,X_n\}$ の分布は $\{X_n\}$ によるないれるの有限測度 $\{X_n\}$ に関して絶対連続とすると、推定量 $\{X_n\}=\{X_n\}$ について、 $\{X_n\}=\{X_n\}$

 $\{g(\theta): P_{\theta}\{\delta_n = g(\theta)\} \rightarrow 0 \ (n \rightarrow \infty)\}$ は高々了算でなる。

証明 (i) レをとり直して確率測度としてよい。

 $S:=\{g(\theta): P_{\delta}\{\delta=g(\theta)\}\neq 0\}$ とする。 26Sとすると、 8 が まって $g(\theta)=7$ 、 2 、 2 が まって $g(\theta)=7$ 、 2 、 2 で まる。 2 といる 2 で まる。 2 は 2 で

 $g(\theta) = 0 \Rightarrow \lim_{n \to \infty} P_{\theta} + R_n = g(\theta) > 0$ (8) Yなるものは存在しない。 [存在したとする。 j=1, 2, …に対して、 $2^{-j}-2^{-j-2}< R_n < 2^{-j}+2^{-j+2}$ のときは $R_n=2^{-j}$ と定義し直すと、これも条件を満たし、

 $g(\theta) = 2^{-\beta} \implies \lim_{n \to \infty} P_{\theta} \{ R_n = 2^{-\beta} \} = 1$ z'ta 3.

すると、まず $Q^{(1)} = \{2^{-1}, 2^{-1}, \cdots\}$ に対して Y があって $P_{Q^{(1)}} \{R_n = 2^{-1}\} > 1 - 2^{-1}$ $\forall n \geqslant \nu_1$ であり、特に

 $P_{\theta}^{(1)} \{ R_{\nu_1} = 2^{-1} \} > 1 - 2^{-1}$

でなり、今 P_{α} $\{X_1 = \cdots = X_{\nu_1} = 2^{-1}\} = 1$ だから、

 $P_{\rho}(1)$ $\{R_{V_1} = 2^{-1} | X_1 = \cdots = X_{V_1} = 2^{-1} \} > 1 - 2^{-1}$ である。今、 $P_{\rho}\{A|B\}$ が ρ によるない場合 $P\{A|B\}$ と書くことにすると、 R_{V_1} は X_{1} , \cdots , X_{V_1} に基づく確率化推定量だかる、

 $P\{R_{4}=2^{-1}|X_{1}=\cdots=X_{4}=2^{-1}\}>1-2^{-1}$ である。次に $B^{(2)}=\{2^{-1},\cdots,2^{-1},2^{-2},2^{-2},\cdots\}$ に対し 第4項

てながあって、

 $P_{\rho(2)}\{R_n=2^{-2}\}>1-2^{-2}$ ヤカラン2でする。 $\nu_1 < \nu_2 \times C \subset T \times U$. 特に $P_{\rho(2)}\{R_{\nu_2}=2^{-2}\}>1-2^{-2}$

であり、

$$P_{\theta^{(2)}} \left\{ \begin{array}{l} X_1 = \cdots = X_{k_1} = 2^{-1} \\ X_{k_1+1} = \cdots = X_{k_2} = 2^{-2} \end{array} \right\} = 1$$

たから、

$$P_{\theta^{(2)}}\left\{R_{\nu_2}=2^{-2} \left| \begin{array}{c} X_1=\cdots=X_{\nu_1}=2^{-1} \\ X_{k+1}=\cdots=X_{\nu_2}=2^{-2} \end{array} \right\} > 1-2^{-2} \end{array}\right\}$$

で、前と同様に、

$$P\left\{R_{\nu_{2}}=2^{-2} \left| \begin{array}{c} X_{1}=\cdots=X_{\nu_{1}}=2^{-1} \\ X_{\nu_{1}+1}=\cdots=X_{\nu_{2}}=2^{-2} \end{array} \right\} > 1-2^{-2} \right\}$$

である。同じことをくり返して、レ1 < レ2 < … があって、

$$P \left\{ R_{\nu_{j}} = 2^{-j} \mid X_{1} = \cdots = X_{\nu_{k}} = 2^{-1} \right\} > 1 - 2^{-j}$$

$$X_{\nu_{j+1}} = \cdots = X_{\nu_{k}} = 2^{-j}$$

$$X_{\nu_{j+1}} = \cdots = X_{\nu_{k}} = 2^{-j}$$

$$j = 1, 2, 3, \cdots$$

となる、後、て、

に対しては、
$$g(0^*)=0$$
で、
 $P_{0^*} \{ R_{V_j} = 2^{-j} \} > 1 - 2^{-j}$
従って、

 $P_{\theta^*} \{ R_{Y_j} = 0 \} \leq 2^{-j}$

liminf $Pa* \{R_n = 0\} = 0$ となり矛盾でなる。]

なか、この例では (8) で liminf を limsupにしてはな うない、も、と評しくは、非確率化推定量 8% で、g(8)の強 一致推定量であって、

 $g(\theta) = 0 \Rightarrow$ 無限個へれに対して $P_{\theta} \{ S'_n = g(\theta) \} = 1$ となるものが存在する。

 $\begin{bmatrix} S_n' := \begin{cases} 0 & X_1 > X_n, X_2 > X_n, \dots, X_{n-1} > X_n \text{ or } t \\ S_n (= X_n) & \text{2 or } t \end{bmatrix}$

とする。 $\delta_n = \theta_n$ てしてよい。 $g(\theta) \neq 0$ なる十分大きいれに対して $\delta_n = g(\theta)$, そって $\delta_n' = \delta_n \Rightarrow g(\theta)$ であり、 $g(\theta) = 0$ なる $\theta_n > 0$, $\theta_n \to 0$ たがる、 $\{\delta_n'\}$ は (定数列で) 無限個の九に対して 0×0 なる。 1 なわち無限値のれに対して 1 で、また $|\delta_n'| \leq \delta_n = g(\theta)$ 1 = 1 で、また $|\delta_n'| \leq \delta_n = \theta_n \to 0$ よって $|\delta_n'| \to 0$ で $|\delta_n'| \to$

例2 (ハハd,の例) ①, gld) を例1と目じものとし、 K_1, K_2, \dots を λ . λ . λ . τ $P_0 \{ K_n = k \} = 2^{-k} \{ k = 1, 2, 3, \dots \}$ とし、 $P_0 \{ Y_n = 0 \} | K_n = k \} = 1$, $X_n = (K_n, Y_n)$ とする。このとき X_1, X_2, \dots はんんd.

でなり、max $\{K_1, \dots, K_n\} = K_{J_n} = K_n^* \times 53 \times$ 、 $S_n(X_1, \dots, X_n) = Y_{J_n}$ は g(B) の 強一致 推定量である。 [各 名に対して $P\{K_n \leq \ell_1\}_n\} = 1$ だから、 P_0 - q.e. で $K_n^* \to \infty$ 、また $K_n^* \leq K_n^* \leq \dots$ で まり、よ、て $S_n = Y_{J_n} = 0$ $K_n^* \to g(B)$ で ある。]

しか(例1の条件 (8) を満たすg(8)の(確率化)一致推定量尺。は存在しない。

[存在したとする。ひを (X1, X2, …) と独立で (0, 1) 上の一様分布に従う確率変数とし (これは実際に確率化する 手続きでする。) Rn は (X1, …, Xn, V) の函数として よい。後,てRn は (K1, …, Kn, Q1, …, gkn, V) の函 数としてよい。そこで、

 $R_{s}^{*} := \begin{cases} R_{s} & K_{n} \leq k & \forall n = 1, \dots, k \text{ arg} \\ 0 & \text{ and } \end{cases}$

とするて (「その他」は実は本質的ではない。)、 R_{2}^{*} は $(K_{1}, \dots, K_{2}, U, \Omega_{1}, \dots, \Omega_{2})$ の函数で、 (K_{1}, \dots, K_{2}, U) の分布は θ によるないので R_{2}^{*} は $(\Omega_{1}, \dots, \Omega_{2})$ に基づく確率化推定量 (\mathcal{E}_{2}, T) での推定主)で、

 $P\{K_n \leq k \quad \forall n=1,\dots,k\}$ $= (P\{K_1 \leq k\})^{k}$

$$= \left\{ \frac{\frac{1}{2} \left(1 - \frac{1}{2^{\frac{1}{2}}}\right)}{1 - \frac{1}{2}} \right\}^{\frac{1}{2}} = \left(1 - \frac{1}{2^{\frac{1}{2}}}\right)^{\frac{1}{2}} \rightarrow 1 \quad (\cancel{2} \rightarrow \infty)$$
 (9)

であり、一般の日に対して、

 $P_{\theta}\{|R_{\theta}^{*}-g(\theta)|>\varepsilon\}$

+ $P_{a}\{|R_{4}^{*}-g(\theta)|>\epsilon$ かっ非「 $K_{n}\leq k$ $n=1,\dots,k_{n}\}$

< Po{ | R2-g(0) | > €} + P{# Kn ≤ h vn=1, ..., k)

= 2 - $P_0\{|R_2-g(\theta)| \le \varepsilon\} - P\{K_n \le k \forall n=1,\dots,k\}$

→0 (丸→∞) (R4の一致性と(9)による.)

たから、 R_s^* は $g(\theta)$ の一致推定量で、また、 $g(\theta)=0$ となる $g(\theta)$ に対しては、上と同様の計算により、

Po { Ri + g (8) }

 $\leq 2 - P_0 \{ R_2 = g(\theta) \} - P \{ K_n \leq L \forall n = 1, \dots, L \}$ t = 0

 $P_{\theta}\left\{R_{\epsilon}^{*}=g(\theta)\right\}$

 $> P_0 \{R_{\underline{z}} = g(\underline{\theta})\} + P\{K_{\underline{z}} \leq \underline{\delta} \quad n=1,\dots,\underline{\ell}\} - 1$ であり、辺々のliminfをてるて、 $R_{\underline{z}}$ が(8)を満たすことて(9)により、

liminf $P_{\theta}\{R_{k}^{*}=g(\theta)\}$ > liminf $P_{\theta}\{R_{k}=g(\theta)\}>0$ Y to 10 1 几矛盾する。]

なな liminf を limoup にしてよいかどうかは不明である。

注意 Zehmann (1983、p.335) には、 $Sn \notin g(\theta)$ の 一致推定量とすると、 $\{f_n\}$ が十分速くのに発散すれば $P_{\theta}\{|S_n-g(\theta)|\leq \alpha/f_n\}\rightarrow 0$ となると書かれているが、定 理1、定理2よりこれは誤りである。

参考文献

Lehmann, E. L. (1983). Theory of Point Estimation. John Wiley & Sons, Inc., New York.