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1 Introduction
In 1986 M. Renardy and D. D. Joseph wrote a paper “ Hopf Bifurcation

in Two- Component Flow “ [1], where they discuss the stability of two- layer
Couette flow. The physical configuration they treated is the following: Two-
layers of viscous incompressible fluids are confined between two parallel plates
and are separated by the interface. Two fluids are of equal density, but have
different viscosities. The upper plate moves at constant speed $U^{*}$ while the
lower is at rest. See Figure 1.

In this configuration there always exists a stationary flow called )
$two$-layer

Couette flow” which has a piecewise linear velocity profile parallel to the plates.
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In [1] they claim that, when $U^{*}$ increases, the above flow becomes unstable
and a bifurcation of the Hopf type is expected. After some computations for
the problem derived by linearization around the above flow, they give a result $($

Theorem 4.1), relying on [3]. There they assume that, at some critical speed
$U^{*}$ $=U_{c^{*}}$ , there is a pair of complex conjugate eigenvalues which cross the
imaginary axis transversally. To utilize the theory of [3], it is crucial to show
the existence of such eigenvalues.

In this article we propose a method to obtain these by reducing the
eigenvalue problem to the boundary value problem for the Orr–Sommerfeld
equation. A number of numerical methods have been developed for dealing
with this equation. (See [4], Section 30. ) Among them we choose a shooting
method to solve the boundary value problem. The eigenvalues are found by
searching the zeros of the determinant of the matrix whose components are
given by the fundamental solutions of the Orr–Sommerfeld equations. We
finally prepare a method to study how the eigenvalue depends on parameters.
Though we here outline our numerical method to obtain the desired eigenvalues,
we will give an analytically rigorous result by taking” a posteori” error estimate
into account.

2 Formulation of the problem
We use the same dimensionless variables as those in [2], Chap. IV. The

velocity of the stationary flow in the dimensionless form is given by $(U(z), 0)$

,where

$U(z)=\{\begin{array}{l}\frac{1}{l_{1}+m(1-l_{1})}z\frac{m}{l_{1}+m(1-l_{1})}(z-1)+1\end{array}$ $for0_{1}\leq z_{Z}\leq l_{1}forl\leq\leq 1$

.
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$m=\mu_{1}/\mu_{2}$ is the viscosity ratio of two fluids. We consider $2D$ disturbances
from this flow. $(u_{j}, w_{j})$ and $h$ denote a small disturbance to the velocity in
fluid $j,$ $j=I$, II and to the interface position, respectively. The equations
governing linear stability are

(2.1) $\frac{1}{\mathcal{R}}\Delta u_{1}-\partial_{x}p_{1}-w_{1}\partial_{z}U-U(z)\partial_{x}u_{1}$ $=$ $\partial_{t}u_{1}$ ,

(2.2) $\frac{1}{\mathcal{R}}\Delta w_{1}-\partial_{z}p_{1}-U(z)\partial_{x}w_{1}$ $=$ $\partial_{t}w_{1}$ ,

(2.3) $\partial_{x}u_{1}+\partial_{z}w_{1}$ $=$ $0$

in $0<z<l_{1}$

and

(24) $\frac{1}{m\mathcal{R}}\Delta u_{2}-\partial_{x}p_{2}-w_{2}\partial_{z}U$ 一 $U(z)\partial_{x}u_{2}$ $=$ $\partial_{t}u_{2}$ ,

(25) $\frac{1}{m\mathcal{R}}\Delta w_{2}-\partial_{z}p_{2}$ 一 $U(z)\partial_{x}w_{2}$ $=$ $\partial_{t}w_{2}$ ,

(26) $\partial_{x}u_{2}+\partial_{z}w_{2}$ $=$ $0$

in $l_{1}<z<1$ .

Here $\mathcal{R}=U^{*}l^{*}\rho/\mu_{1}$ is the Reynolds number based on the fluid $I$ . See Fig.
1 for $\iota*$ . $\rho$ is the density common to both fluids. The conditions at the plates
are
(2.7) $u_{1}=w_{1}=0$ atz $=0$

and
(2.8) $u_{2}=w_{2}=0$ at $z=1$.

The kinematic boundary condition is written as

(29) $w_{1}-U(l_{1}) \frac{\partial h}{\partial x}=\partial_{t}h$ .

As in [1] we assume the periodicity in the streamwise direction $x$ . We now
introduce the stream functions $\psi_{j},$ $j$ $=$ $I,$ $II$ for each fluid and rewrite the
problem $(2.1)-(2.6)$ in terms of $\psi_{j}$ , where

$u_{j}= \frac{\partial\psi_{j}}{\partial z}$ $w_{j}=- \frac{\partial\psi_{j}}{\partial x}$ , $j=I,$ $II$ .

From the periodicity in x-axis, we assume that $\psi_{j}$ is of the following form:

$\psi_{j}(x, z,t)=\sum\psi_{j,\alpha}(z)\exp(i\alpha x+\sigma t)$ , $j=I,$ $II$ .
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The interface position $h(x,t)$ is also expanded as above. Since we are con-
cerned about only searching the pure imaginary eigenvalues, we stick to some
mode $\alpha>0$ , which is fixed from now on. (2.1) - (2.6) yield the problem for
$\psi_{j,\alpha},$ $j=I,$ $II$ :

(2.10) $L_{I}\psi_{I}=0$ , $0<z<l_{1}$ ,

(2.11) $\psi_{I}(0)=\frac{d\psi_{I}}{dz}(0)=0$ ,

(2.12) $L_{\Pi}\psi_{II}=0$ , $l_{1}<z<1$ ,

(2.13) $\psi_{II}(1)=\frac{d\psi_{II}}{dz}(1)=0$ ,

where

(2.14) $L_{I}=(( \frac{d}{dz})^{2}-\alpha^{2})^{2}-i\alpha \mathcal{R}(U(z)-c)((\frac{d}{dz})^{2}-\alpha^{2})$ ,

(2.15) $L_{\Pi}=(( \frac{d}{dz})^{2}-\alpha^{2})^{2}-i\alpha m\mathcal{R}(U(z)-c)((\frac{d}{dz})^{2}-\alpha^{2})$ .

Here and hereafter we set $\sigma$ $=$ $-i\alpha c$ and omit the subscript $\alpha$ . The
interface conditions at $z=l_{1}$ are the following

(2.16) . $\psi_{I}=\psi_{II}$ ,

(2.17) $\frac{d\psi_{I}}{dz}$ 十 $\frac{1-m}{l_{1}+ml_{2}}h=\frac{d\psi_{II}}{dz}$ $(l_{2}=1-l_{1})$ ,

(2.18) $\frac{d^{2}\psi_{I}}{dz^{2}}+\alpha^{2}\psi_{I}=\frac{1}{m}(\frac{d^{2}\psi_{II}}{dz^{2}}+\alpha^{2}\psi_{II})$ ,

(2.19) 一 $\frac{d^{3}\psi_{I}}{dz^{3}}+(i\alpha \mathcal{R}\frac{l_{1}}{l_{1}+ml_{2}}-i\alpha c\mathcal{R}+3\alpha^{2})\frac{d\psi_{I}}{dz}$

,

$-i \alpha \mathcal{R}\frac{l_{1}}{l_{1}+ml_{2}}\psi_{I}+i\alpha^{3}Sh$

$=- \frac{1}{m}\frac{d^{3}\psi_{II}}{dz^{3}}+(i\alpha \mathcal{R}\frac{l_{1}}{l_{1}+ml_{2}}-i\alpha c\mathcal{R}+\frac{3\alpha^{2}}{m})\frac{d\psi_{II}}{dz}$

$-i \alpha \mathcal{R}\frac{m}{l_{1}+ml_{2}}\psi_{II}$

$S$ in (2.19) is a surface tension number. The interface position $h$ can be
recovered from (2.9) so that we can substitute

$h= \frac{1}{c-U(l_{1})}\psi_{1}$
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in (2.17) and (2.19). For (2.16)-(2.19) see [2].
For convenience we define $C^{4_{-}}$ valued function

$\hat{\varphi}=[\varphi,$ $\frac{d\varphi}{dz}\frac{d^{2}\varphi}{dz^{2}}\frac{d^{3}\varphi}{dz^{3}}]^{T}$

for scalar function $\varphi$ . By use of this notation we can express (2.16) - (2.19) as

(2.20) $Z_{I}\overline{\psi_{I}}=Z_{II}\overline{\psi_{II}}$ ,

where $Z_{I}$ and $Z_{II}$ are $4\cross 4$ matrices.

3 Method of analysis
We are’ now in a position to characterize the eigenvalue $\sigma=-i\alpha c$. If we

can find a nontrivial solution $(\psi_{I}, \psi_{II})$ to (2.10), (2.11), (2.12), (2.13) and (2.20)
for some $\sigma$ , we call this value an eigenvalue of our linearized problem. Since
the equation (2.10) is of the fourth order, The fundamental solutions of this
ODE consist of four linearly independent solutions. As two of these we can take
$\exp(-\alpha z)$ and $\exp(\alpha z)$ by the form of $L_{I}$ . As other two we can take the solutions
$f_{I,1}$ and $f_{I,2}$ with the initial conditions $\overline{f_{I,1}}(0)$ $=$ $[0,0,1,0]^{T}$ and $\overline{f_{I,2}}.(0)$ $=$

$[0,0,0,1]^{T}$ , respectively. Since the eigenfunction $(\psi_{I}, \psi_{II})$ must satisfy (2.11),
the first component must be represented as a linear combination $C_{1}f_{I,1}$ $+$

$C_{2}f_{I,2}$ . By same reasoning the second must be represented as $\psi_{II}=C_{3}f_{II,1}+$

$C_{4}f_{II,2}$ , where $f_{II,1}$ and $f_{II,2}$ are the solutions of (2.12) with the initial conditions
$f_{II,1}(1)-$ $=$ $[0,0,1,0]$ and $\overline{f_{I,2}}(1)$ $=$ $[0,0,0,1]$ , respectively. Therefore (2.20)
takes the form

$C_{1}Z_{I}\overline{f_{I,1}}(l_{1})+C_{2}Z_{I}\overline{f_{I,2}}(l_{1})=C_{3}Z_{II}\overline{f_{II,1}}(l_{1})+C_{4}Z_{II}\overline{f_{II,2}}(l_{1})$ .

Hence, in order that $\sigma$ becomes an eigenvalue, it is necessary and sufficient
that the $4\cross 4$ matrix

(3.1) $[Z_{I}\overline{f_{I,1}}(l_{1}),$ $Z_{I}\overline{f_{I,2}}(l_{1}),$ $Z_{II}\overline{f_{II,1}}(l_{1}),$ $Z_{II}\overline{f_{II,2}}(l_{1})]$

becomes singular. Set $\mathcal{F}$ $=$ $\det$ of (3.1). Since we set $\sigma$ $=$ $-i\alpha c$ and
are interested in only pure imaginary eigenvalues, we restrict $c$ to be real. So
we regard $\mathcal{F}$ as a C-valued function of $(c, \mathcal{R})\in R^{2}$ . We can now reduce our
eigenvalue problem to find zero of $\mathcal{F}(c, \mathcal{R})$ . Since $\mathcal{F}$ is C-valued, we can regard
$\mathcal{F}(c, \mathcal{R})\mathcal{F}as=real(c, \mathcal{R})+iimag(c, \mathcal{R})$

as an $R^{2}$-valued function. Thus, regarding

$[_{imag(c,\mathcal{R})}real(c,\mathcal{R})]$ : $R^{2}-R^{2}$ ,
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we can apply the Newton-Raphson method:

$\{\begin{array}{l}c_{n+1}\mathcal{R}_{n+1}\end{array}\}$ $=$ $\{\begin{array}{l}c_{n}\mathcal{R}_{n}\end{array}\}$
$\{\begin{array}{ll}\frac{\partial}{\partial c}(real) \frac{\partial}{\partial \mathcal{R}}(real)\frac{\partial}{\partial c}(imag) \frac{\partial}{\partial \mathcal{R}}(imag)\end{array}\}\{\begin{array}{l}real(c_{n},\mathcal{R}_{n})imag(c_{n},\mathcal{R}_{n})\end{array}\}$

to solve $\mathcal{F}(c, \mathcal{R})$ $=$ $0$ . The values $\overline{f_{I}}(l_{1})$ $\sim\overline{f_{II}}(l_{1})$ are obtained by numer-
ical integration. In order to find the derivatives of $\mathcal{F}(c, \mathcal{R})$ $=$ $real(c, \mathcal{R})+$

$iimag(c, \mathcal{R})$ we differentiate the equations and the boundary conditions with
respect to $c$ and $\mathcal{R}$ and solve these numerically.
An example: We obtain $\det=$ 9.42964 $E-08+i(-8.70205E-09)$ at
$\alpha$ $=$ 1.0, $m$ $=$ 0.5, $l_{1}$ $=$ 0.5, $S$ $=$ 0.0031598565 and $(\sigma \mathcal{R})$ $=$

$(0.593171\cross i, 9.9996984943046)$ .

We finally propose a method to calculate $\partial^{\partial\sigma}\pi$ . Let $L_{j}^{*}j=I,$ $II$ be the
formal adjoint of (2.14) and (2.15) respectively. Set

$\overline{Q_{I}}=\overline{Q_{II}}=\{\begin{array}{llll}1 0 0 00 1 0 0\end{array}\}$ .

Then the boundary conditions (2.11)- (2.13) are rewritten as

$\overline{Q_{I}}\overline{\psi_{I}}(0)=\overline{Q_{II}}\overline{\psi_{II}}(1)=\{\begin{array}{l}00\end{array}\}$ .

Let $Q_{j}$ be the $4\cross 4$ nonsingular matrix obtained from $\overline{Q_{j}}$ by adding two
row vectors $(j=I, II)$ . Since $Z_{I}$ and $Z_{II}$ are of rank 4, we can find $4\cross 4$

nonsingular matrices $J_{j}$ and $K_{j}(j=I, II)$ so that, for smooth functions
$f_{j},$ $g_{j}(j=I, II)$ , it holds that

(3.2) $(L_{I}fI, g_{I})_{L^{2}(0,l_{1})}-(fi, L_{I}^{*}g_{I})_{L^{2}(0,l_{1})}+$

$(L_{II}f_{II}, g_{II})_{L^{2}(l_{1},1)}-(f_{II} , L_{II}^{*}g_{II})_{L^{2}(1_{1},1)}$

$=(Q_{I}\overline{h}(0),$ $J_{I}\overline{g_{I}}(0))_{C^{4}}+(Z_{I}\overline{f_{I}}(l_{1}),$ $K_{I}\overline{g_{I}}(l_{1}))_{C^{4}}$

$+(-Z_{II}\overline{f_{II}}(l_{1}),$ $K_{II}\overline{g_{II}}(l_{1}))_{C^{4}}+(Q_{II}\overline{f_{II}}(1),$ $J_{II}\overline{g_{II}}(1))_{C^{4}}$ .
We can show that, if the boundary value problem (2.10), (2.11), (2.12), (2.13),
and (2.20) has a nontrivial solution, then the “adjoint” problem

(3.3) $L_{I}^{*}\psi_{I}^{*}=0$ , $0<z<l_{1}$ ,
(3.4) $L_{II}^{*}\psi_{II}^{*}=0$ ; $l_{1}<z<1$ ,

(3.5) $\overline{J_{I}}\overline{\psi_{I^{*}}}(0)=\overline{J_{II}}\overline{\psi_{II^{*}}}(1)=\{\begin{array}{l}00\end{array}\}$ ,

(3.6) $K_{I}\overline{\psi_{I^{*}}}(l_{1})=K_{II}\overline{\psi_{II^{*}}}(l_{1})$ .
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also has a nontrivial solution. Here ZI is the $2\cross 4$ matrix which consists of the
lower two row vectors of $J_{j}$ ( $j=I$, II). After differentiating (2.10) and (2.12)
with respect to $\mathcal{R}$ , take $L^{2}$ inner product of the resulting equations with $\psi_{I}^{*}$ and
$\psi_{II}^{*}$ respectively. By using (3.2), we can derive

(3.7) $(i\alpha(U-c)(\psi_{I}’’-\alpha^{2}\psi_{I}),$ $\psi_{I}^{*})_{L^{2}}+$

$(i\alpha m(U-c)(\psi_{II}^{n}-\alpha^{2}\psi_{II}),$ $\psi_{II}^{*})_{L^{2}}$

$- \frac{\partial c}{\partial \mathcal{R}}\{i\alpha \mathcal{R}(\psi_{I}^{u}-\alpha^{2}\psi_{I},$ $\psi_{I}^{*})_{L^{2}}+i\alpha m\mathcal{R}(\psi_{II}^{n}-\alpha^{2}\psi_{II},$ $\psi_{\Pi}^{*})_{L^{2}}\}$

$=(Z_{I} \overline{\frac{\partial\psi_{I}}{\partial \mathcal{R}}}(l_{1})-Z_{II}\frac{\overline{\partial\psi_{II}}}{\partial \mathcal{R}}(l_{1}),$ $K_{I}\overline{\psi_{I}^{*}}(l_{1}))_{C^{4}}$ .

From this equality we can calculate $\frac{\partial\sigma}{\partial \mathcal{R}}$ numerically.
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