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A modification of Gauss-Newton method for
nonlinear least squares problems
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システム計画研究所 八巻直一 (Naokazu YAMAKI)

1 Introduction
In this paper, we consider numerical methods for minimizing a sum of squares of nonlinear
functions
(1.1) $f(x)= \frac{1}{2}||r(x)||^{2}$ ,

where $m\geq n,$ $r(x)=(r_{1}(x), \ldots, r_{m}(x))^{T},$ $r_{j}$ : $R^{n}arrow R$ are twice continuously differ-
entiable for $j=1,$ $\ldots,$

$m$ , and 1111 denotes the $l_{2}$ norm. We will denote by $x_{*}$ a local
minimizer. This type of problem is among the most commonly occurring and important
applications of nonlinear optimization.

Gradient methods are usualy used for solving this problem. A prototype algorithm
of gradient methods is formed as follows:

[GRAD]

Step $0$ . Given an initial guess $x_{0}\in R^{n}$ . Set $k=0$.

Step 1. If $||\nabla f(x_{k})||$ is very small, then stop. Otherwise, go to Step 2.

Step 2. Construct a matrix $B_{k}\in R^{nxn}$ .
Step 3. Obtain a search direction $d_{k}$ by solving the linear system of equations

(1.2) $B_{k}d=-\nabla f(x_{k})$ .

Step 4. Set $x_{k+1}=x_{k}+\alpha_{k}d_{k}$ for some suitable step size $\alpha_{k}>0$ .
Step 5. Set $k=k+1$ and go to Step 1. $\square$

Setting

$B_{k}= \nabla^{2}f(x_{k})=J(x_{k})^{T}J(x_{k})+\sum_{j=1}^{m}r_{j}(x_{k})\nabla^{2}r_{j}(x_{k})$

in the $al$gorithm [GRAD], we have Newton’s method. Since the complete Hessian matrix
is often expensive to compute, methods have been developed which use only the first
derivative information. Setting $B_{k}=J(x_{k})^{T}J(x_{k})$ in the algorithm [GRAD], we have
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the Gauss-Newton method. This nethod finds a search direction $d_{k}$ by solving the linear
system of equations
(1.3) $J(x_{k})^{T}J(x_{k})d=-J(x_{k})^{\tau}r(x_{k})$ .
We know that the Gauss-Newton method performs very well for zero residual problems
but does not for large residual problems. In other words, the matrix $J(x_{k})^{T}J(x_{k})$ is a good
approximation to the Hessian matrix near the solution for zero residual problems but is
not for the large residual problems. The poor performance of the Gauss-Newton method
for large residual problems is caused by neglecting the second part of the Hessian matrix
$\nabla^{2}f(x)$ . In order to overcome this difficulty, the structured quasi-Newton method was
proposed [3]. This method approximates the second part $\Sigma_{j=1}^{m}r_{j}(x_{k})\nabla^{2}r_{j}(x_{k})$ by some
matrix $A_{k}$ and produces a search direction $d_{k}$ by solving the linear system of equations

(1.4) $(J(x_{k})^{\tau}J(x_{k})+A_{k})d=-J(x_{k})^{T}r(x_{k})$ .
A matrix $A_{k}$ is generated by updating the previous approximation $A_{k-1}$ based on the

idea of the secant method. As a secant condition, Dennis [2] proposed the condition

(1.5) $A_{k}s_{k-1}=q_{k-1}$

with
(1.6) $s_{k-1}=x_{k}-x_{k-1}$ and $q_{k-1}=(J(x_{k})-J(x_{k-1}))^{T}r(x_{k})$ ,
based on the first order approximation to the Taylor series

$( \sum_{j=1}^{m}r_{j}(x_{k})\nabla^{2}r_{j}(x_{k}))s_{k-1}\approx(J(x_{k})-J(x_{k-1}))^{T}r(x_{k})$.

By using this secant condition, Dennis, Gay and Welsch [4] derived the update for $A_{k}$

corresponding to the DFP update, and Al-Baali and Fletcher [1] derived the update for $A_{k}$

corresponding to the BFGS update. Furthermore, in order to follow the good performance
of the Gauss-Newton method in the case of zero residual problems, the former used a sizing
technique and the latter proposed a hybrid method in which their structured quasi-Newton
method was switched to the Gauss-Newton method if needed. Specffically, Dennis et al.
proposed the update

$(1.7)A_{k}$ $=\beta_{k-1}A_{k-1}+_{s_{k-1}^{T}y_{k-1}^{y_{k-1}(q_{k-1}-\beta_{k-1}A_{k-1}s_{k-1})^{T}}}\ovalbox{\tt\small REJECT}(q_{k-1}-\beta_{k-1}A_{k-1}s_{k-1})y_{k-1}^{T}+$

$- \frac{s_{k}^{T_{-1}}(q_{k-1}-\beta_{k-1}A_{k-1}s_{k-1})}{(s_{k-1}^{T}y_{k-1})^{2}}y_{k-1}y_{k-1}^{T}$

with the sizing factor

$\beta_{k-1}=n\dot{u}n(|\frac{s_{k-1}^{T}(J(x_{k})-J(x_{k-1}))^{T}r(x_{k})}{s_{k-1}^{T}A_{k}s_{k-1}}|,$ $1)$ .

On the other hand, Al-Baali and Fletcher combined the update

(18) $A_{k}$ $=A_{k-1}-\ovalbox{\tt\small REJECT}(J(x_{k})^{T}J(x_{k})+A_{k-1})s_{T^{k-1}}s_{k-1}(J(x_{k})^{T}s_{k-1}^{T}(J(x_{k})J(x_{k}^{T})+A_{k-1})s_{k-1^{\backslash }}^{J(x_{k})+A_{k-1})^{T}}$

$+ \frac{z_{k-1}z_{k-1}^{T}}{s_{k-1}^{T}z_{k-1}}$
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and the Gauss-Newton method.
Both the methods perform well in practical computation, but the matrix $J(x_{k})^{T}J(x_{k})+$

$A_{k}$ does not ‘necessarily possess the hereditary positive definiteness when $A_{k}$ is updated
by the preceding formula. Thus it is not guaranteed for the direction $d_{k}$ in (1.4) to be a
descent search direction for $f(x)$ . In order to remedy this difficulty, this paper presents
a method that preserves the positive definiteness of a Hessian approXimation. For this
purpose, we derive a general form of symnetric positive definite matrices that satisfy
the secant condition and apply this general form to Gauss-Newton method for solving
nonlinear least squares problems.

2 A general class of symmetric positive definite ma-
trices

’

Letting $B_{+}$ be an approximation to the Hessian matrix, the secant condition used in
secant methods is generally represented by $B_{+}s=z$ for vectors $s$ and $z$ . This section
presents a general form that satisfies the following condition:

[SSP Condition]

(1) A matrix $B_{+}$ satisfies the secant condition

(2.1) $B_{+}s=z$

for given vectors $s,$ $z\in R^{n}$ such that $s^{T}z>0$ .
(2) A matrix $B_{+}$ is symmetric.

(3) A matrix $B_{+}$ is positive definite. $\square$

Note that the positivity of $s^{T}z$ is a necessary condition for $B_{+}$ to be positive definite.
An approach given here follows the study by Yamaki and Yabe [7]. In order to find a
general form that satisfies the SSP condition, we consider the following problem.
[Problem $A$]
Given vectors $s,$ $z\in R^{n}$ such that $s^{T}z>0$ , find $N+\in R^{mXn}$ that satisfies the secant
condition

$N_{+}^{T}N_{+}s=z$ ,
where $n\leq m$ . $\square$

Then following [7], we obtain the following theorem.

Theorem 1 The matrix $N+\cdot$ given by

(2.2) $N_{+}= \frac{uz^{T}}{\sqrt{s^{T}z}||u||}+(I-\frac{\Phi su^{T}}{s^{T}\Phi^{T}u})\Phi$

is a general solution to [Problem $A$], where $\Phi\in R^{mXn}$ and $u\in R^{m}$ are any matrix and
vector such that $s^{T}\Phi^{T}u\neq 0$ . $\square$
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Therefore, setting $C=\Phi^{T}\Phi$ , we can get a form of a matrix that satisfies the SSP
condition as follows:

(2.3) $B_{+}=C- \frac{Css^{T}C}{s^{T}Cs}+\frac{zz^{T}}{s^{T}z}+(s^{T}Cs)ww^{T}$ ,

where
$w= \frac{\Phi^{T}u}{s^{T}\Phi^{T}u}-\frac{Cs}{s^{T}Cs}$ and $C=\Phi^{T}\Phi$ .

The following theorem guarantees that the preceding result is a general form that
satisfies the SSP condition.

Theorem 2 The matrix $B_{+}$ given by $(2,3)$ is a general form that satisfies the $SSP$ con-
dition, where $\Phi$ is any column full rank matrix. $\square$

In the remainder of this section, from (2.3), we will give a matrix family that corre-
sponds to the Broyden family for secant methods and its factorized form. RecaU that the
Broyden family is formed by the linear combination of the BFGS and the DFP updates.
So following [6], for $\phi\geq 0$ , we set

(24) $u=(1- \sqrt{\phi})\frac{\Phi s}{s^{T}Cs}+\sqrt{\phi}\frac{(\Phi^{T})^{\uparrow Z}}{s^{T}z}$ .

If a matrix $\Phi$ is of column full rank, its Moore-Penrose generalized inverse can be formed
as $(\Phi^{T})\dagger=\Phi C^{-1}$ . Thus we obtain the Broyden-like matrix family and its factorized form
as follows:
(2.5) $B_{+}^{B\tau oyden}=C- \frac{Css^{T}C}{s^{T}Cs}+\frac{zz^{\tau}}{s^{T}z}+\phi(s^{T}Cs)vv^{T}$ ,

where
$v= \frac{z}{s^{T_{Z}}}-\frac{Cs}{s^{T}Cs}$

and

(2.6) $N_{+}^{Broyden}$ $= \Phi+(1-\sqrt{\phi})(\frac{\Phi s}{s^{T}Cs})(\sqrt{\lambda}z-Cs)^{T}$

$+ \sqrt{\phi}\Phi(\sqrt{\lambda}c^{-1_{Z}}-s)(\frac{z}{s^{T_{Z}}})^{T}$ ,

where $\phi\geq 0$ , and

$\lambda=[(1-\phi)\frac{s^{T}z}{s^{T}Cs}+\phi\frac{z^{T}C^{-1}z}{s^{T_{Z}}}]^{-1}$ .

Note that the cases $\phi=0$ and $\phi=1$ in (2.5) correspond to a BFGS and a DFP updates,
respectively.
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3. An application of a general form to Gauss-Newton
method

In this section, we apply our general form to solving nonlinear least squares problems.
As stated in Section 1, the structured quasi-Newton methods are not guaranteed for the
direction $d_{k}$ in (1.4) to be a descent search direction for $f(x)$ . In order to remedy this
difficulty, we apply a Broyden-like family in (2.5) to the Gauss-Newton method and obtain
a method that satisfies the SSP condition. In this case, a generated matrix preserves the
positive defniteness and possess the information on the second part of the Hessian matrix
$\nabla^{2}f(x)$ . By doing so, we expect the modified form becomes a better approximation to
the Hessian matrix than the matrix $J(x_{k})^{T}J(x_{k})$ in the Gauss-Newton method for both
of zero and large residual problems. For this purpose, following (1.5), we consider the
following secant condition
(3.1) $B_{k}s_{k-1}=z_{k-1}$ ,

with
(3.2) $z_{k-1}=J(x_{k})^{T}J(x_{k})s_{k-1}+(J(x_{k})-J(x_{k-1}))^{T}r(x_{k})$.

If the Jacobian matrix $J(x_{k})$ is of column fdl rank, the matrix $J(x_{k})^{T}J(x_{k})$ is sym-
metric positive definite. Thus setting

$\Phi=J(x_{k})$ , $s=s_{k-1}$ and $z=z_{k-1}$

in (2.5) and (2.6), we obtain a Broyden-type family and its factorized form as follows:

Broyden-type family:

(3.3) $B_{k}^{Broyden}$ $=$ $J(x_{k})^{T}J(x_{k})- \frac{J(x_{k})^{T}J(x_{k})s_{k-1}s_{k-1}^{T}J(x_{k})^{T}J(x_{k})}{s_{k-1}^{T}J(x_{k})^{T}J(x_{k})s_{k-1}}$

$+ \frac{z_{k-1}z_{k-1}^{T}}{s_{k-1}^{T}z_{k-1}}+\phi_{k-1}(s_{k-1}^{T}J(x_{k})^{T}J(x_{k})s_{k-1})v_{k-1}v_{k-1}^{T}$ ,

where
$v_{k-1}= \frac{z_{k-1}}{s_{k-1}^{T}z_{k-1}}-\frac{J(x_{k})^{T}J(x_{k})s_{k-1}}{s_{k-1}^{T}J(x_{k})^{T}J(x_{k})s_{k-1}}$

and

$(3.4\mu_{+}^{Broyden}$

$=J(x_{k})+(1- \sqrt{\phi_{k-1}})(\frac{J(x_{k})s_{k-1}}{s_{k-1}^{T}J(x_{k})^{T}J(x_{k})s_{k-1}}I(\sqrt{\lambda_{k-1}}z_{k}$
一

$1^{-J(x_{k})^{T}J(x_{k})s_{k}}$
一

$1)^{T}$

$+ \sqrt{\phi_{k-1}}J(x_{k})(\sqrt{\lambda_{k-1}}(J(x_{k})^{T}J(x_{k}))^{-1}z_{k-1}-s_{k-1})(\frac{z_{k-1}}{s_{k-1}^{T}z_{k-1}}I^{T}$ ,

where $\phi_{k-1}\geq 0$ , and

$\lambda_{k-1}=((1-\phi_{k-1})\frac{s_{k-1}^{T}z_{k-1}}{s_{k-1}^{T}J(x_{k})^{T}J(x_{k})s_{k-1}}+\phi_{k-1}\frac{z_{k-1}^{T}(J(x_{k})^{T}J(x_{k}))^{-1}z_{k-1}}{s_{k-1}^{T}z_{k-1}})^{-1}$ .
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Furthermore, as members of this family, we have a BFGS-type form and a DFP-type form
as follows:

BFGS-type form: The case $\phi_{k-1}=0$ yields

(3.5) $B_{k}^{BFGS-type}=J(x_{k})^{\tau}J(x_{k})- \frac{J(x_{k})^{T}J(x_{k})s_{k-1}s_{k-1}^{T}J(x_{k})^{T}J(x_{k})}{s_{k}^{T_{-1}}J(x_{k})^{T}J(x_{k})s_{k-1}}+\frac{z_{k-1}z_{k-1}^{T}}{s_{k-1}^{T}z_{k-1}}$

and

$L_{k}^{BFGS-type}=J(x_{k})+( \frac{J(x_{k})s_{k-1}}{s_{k-1}^{T}J(x_{k})^{T}J(x_{k})s_{k-1}}I(\tau_{k}z_{k-1}-J(x_{k})^{T}J(x_{k})s_{k-1})^{T}$ ,

where

DFP-type form: The case $\phi_{k-1}=1$ yields

(3.6) $B_{k}^{DFP-ty\mu}$ $=$ $J(x_{k})^{T}J(x_{k})- \frac{J(x_{k})^{T}J(x_{k})s_{k-1}z_{k-1}^{T}+z_{k-1}s_{k-1}^{T}J(x_{k})^{T}J(x_{k})}{s_{k-1}^{T}z_{k-1}}$

$+(1+ \frac{s_{k-1}^{T}J(x_{k})^{T}J(x_{k})s_{k-1}}{s_{k-1}^{T}z_{k-1}})\frac{z_{k-1}z_{k-1}^{T}}{s_{k-1}^{T}z_{k-1}}$

and

$L_{k}^{DFP-type}=J(x_{k})+J(x_{k})( \tau_{k}(J(x_{k})^{T}J(x_{k}))^{-1}z_{k-1}-s_{k-1})(\frac{z_{k-1}}{s_{k-1}^{T}z_{k-1}}I^{T}$ ,

where

Note that the forms (3.5) and (3.6) are respectively the GN-BFGS and the GN-DFP
proposed by Al-Baali and Fletcher [1]. In the case where we use the factorized form, the
search direction $d_{k}$ is a solution to the linear system of equations

$L_{k}^{T}L_{k}d=-J(x_{k})^{T}r(x_{k})$ .

4 Some properties
The family (3.3) has the following favorable properties:

(a) Since it satisfies the secant condition (3.1) with (3.2), this method has more infor-
mation on the Hessian matrix than the Gauss-Newton method.

(b) If $s_{k-1}^{T}z_{k-1}>0$ , it preserves the positive definiteness. This implies that the method
produces a descent search direction.
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(c) This method is invariant for the scaling such as $\tilde{x}=Mx$ for $M$ nonsingular. In fact,
for a hnear transformation $M$ , set

$\tilde{x}=Mx$ , $\tilde{f}(\tilde{x})=f(x)$ and $\tilde{r}(\tilde{x})=r(x)$ .

Then we have

$\tilde{J}(x_{k}^{\sim})$ $=$ $J(x_{k})M^{-1}$ ,
$\tilde{s}_{k}$ $=$ $Ms_{k}$ ,
$\tilde{z}_{k}$ $=$ $(M^{T})^{-1}z_{k}$ ,

$\tilde{v}_{k-1}$ $=$ $\frac{\tilde{z}_{k-1}}{\tilde{s}_{k-1}^{T}\tilde{z}_{k-1}}-\frac{\tilde{J}(\tilde{x}_{k})^{T}\tilde{J}(\tilde{x}_{k})\tilde{s}_{k-1}}{\tilde{s}_{k-1}^{\mathcal{I}}\tilde{J}(\tilde{x}_{k})^{T}\tilde{J}(\tilde{x}_{k})\tilde{s}_{k-1}}$.

Since the s.caled matrix $\tilde{B}_{k}$ is written by

$\tilde{B}_{k}$ $=$ $\tilde{J}(\tilde{x}_{k})^{T}\tilde{J}(\tilde{x}_{k})-\frac{\tilde{J}(\tilde{x}_{k})\tilde{J}(\tilde{x}_{k})s_{k-1}s_{k-1}\tilde{J}(\tilde{x}_{k})^{T}\tilde{J}(\tilde{x}_{k})}{\tilde{s}_{k-1}^{T}\tilde{J}(\tilde{x}_{k})^{T}\tilde{J}(\tilde{x}_{k})\tilde{s}_{k-1}}+\frac{\tilde{z}_{k-1}\tilde{z}_{k-1}^{T}}{s_{k-1}^{T}\tilde{z}_{k-1}\sim}$

$+\phi_{k-1}(\tilde{s}_{k-1}^{T}\tilde{J}(\tilde{x}_{k})^{T}\tilde{J}(\tilde{x}_{k})\tilde{s}_{k-1})\tilde{v}_{k-1}\tilde{v}_{k-1}^{T}$

$=$ $(M^{T})^{-1}J(x_{k})^{T}J(x_{k})_{s_{k-1}J(x_{k})^{T}J(x_{k})s_{k-1}}M^{-1}-\ovalbox{\tt\small REJECT}(M^{T})^{-1}J(x_{k})_{\tau^{J(x_{k})s_{k-1}s_{k-1}^{T}J(x_{k})^{T}J(x_{k})M^{-1}}}^{T}$

$+ \frac{(M^{T})^{-1}z_{k-1}z_{k-1}^{T}M^{-1}}{s_{k-1}^{T}z_{k-1}}+\phi_{k-1}(s_{k-1}^{T}J(x_{k})^{T}J(x_{k})s_{k-1})(M^{T})^{-1}v_{k-1}v_{k-1}^{T}M^{-1}$

$=$ $(M^{T})^{-1}B_{k}M^{-1}$ ,

the linear system of equations

$\tilde{B}_{k}\tilde{d}=-\tilde{J}(\tilde{x}_{k})^{T}\tilde{r}(\tilde{x}_{k})$

yields

$\tilde{d}_{k}$ $=$
$-\tilde{B}_{k}^{-1}\tilde{J}(\tilde{x}_{k})^{T}\tilde{r}(\tilde{x}_{k})$

$=$ $-MB_{k}^{-1}M^{T}(M^{T})^{-1}J(x_{k})^{T}r(x_{k})$

$=$ $Md_{k}$ .

This implies
$\tilde{x}_{k+1}=\tilde{x}_{k}+\tilde{d}_{k}=Mx_{k+1}$ .

(d) If the magnitude of the residual vector $r(x_{k})$ is very small, we may regard $z_{k-1}\approx$

$J(x_{k})^{\mathcal{I}}J(x_{k})s_{k-1}$ and we may have $B_{k}^{Broyden-type}\approx J(x_{k})^{T}J(x_{k})$ . This implies that
this method may perform as well as the Gauss-Newton method does in the cese of
the zero residual problems. So we expect this method has a self-sizing property. $\square$

For convergenece property, Dennis, Sheng and Vu [5] proposed the damped secant
condition

(4.1) $B_{k}s_{k-1}=z_{k-1}$ , $z_{k-1}=J(x_{k})^{T}J(x_{k})s_{k-1}+\gamma_{k}(J(x_{k})-J(x_{k-1}))^{T}r(x_{k})$
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with $0 \leq\gamma_{k}\leq\min\{1, ||J(x_{k})^{T}r(x_{k})||\}$ instead of the conditions (3.1) and (3.2), and
showed local and q-linear convergence of the methods with (3.5) and (3.6) for $f(x)$ convex
and moreover, q-quadratic convergence for the zero residual case.

In the properties above, we stated that the condition $s_{k-1}^{T}z_{k-1}>0$ yielded the hered-
itary positive definiteness. The following theorem guarantees there exists a step size $\alpha_{k}$

such that this condition is satisfied and this was given by Yabe and Yamaki [6]..

Theorem 3 Assume that the Hessian metric $\nabla^{2}f(x)$ is positive definite in $R^{n}$ . Then
there exists a positive constant $\alpha_{k}^{*}$ such that

$(\alpha d_{k})^{T}(J(x_{k}+\alpha d_{k})^{T}J(x_{k}+\alpha d_{k})(\alpha d_{k})+(J(x_{k}+\alpha d_{k})-J(x_{k}))^{T}r(x_{k}+\alpha d_{k}))>0$

for $0<\forall\alpha<\alpha_{k}^{*}$ . $\square$

The proof of this theorem can be found in [6].
We stated above the case where the Jacobian matrix $J(x_{k})$ is of column full rank. If

$J(x_{k})$ is not of column full rank, we can no longer use the preceding argument. In this case,
we consider the Levenberg-Marquardt modification such that the matrix $J(x_{k})^{T}J(x_{k})+$

$\lambda_{k}I$ is positive definite for some $\lambda_{k}>0$ , and we can apply a similar approach to the
matrix $J(x_{k})^{T}J(x_{k})+\lambda_{k}I$ to obtain a method that satisfies the SSP condition. We can
choose a positive number $\lambda_{k}$ such that $J(x_{k})^{T}J(x_{k})+\lambda_{k}I$ is positive definite. Thus setting
$C=J(x_{k})^{T}J(x_{k})+\lambda_{k}I$ in (2.5), we obtain

Broyden-type family:

$B_{k}$ $=$ $J(x_{k})^{T}J(x_{k})+\lambda_{k}I$

$- \ovalbox{\tt\small REJECT}+\frac{z_{k-1}z_{k-1}^{T}}{s_{k-1}^{T}z_{k-1}}(J(x_{k})J(x_{k})+\lambda_{k}I_{k})s_{T^{k-1}}s(J(x)J(x_{k})+\lambda_{k}I)s_{k-1}^{T}(J(x)J(x_{k}^{k-1}$

$+\phi_{k-1}(s_{k-1}\tau(J(x_{k})^{T}J(x_{k})+\lambda_{k}I)s_{k-1})v_{k-1}v_{k-1}^{T}’$ ,

where
$v_{k-1}= \frac{z_{k-1}}{s_{k-1}^{T}z_{k-1}}-\frac{(J(x_{k})^{T}J(x_{k})+\lambda_{k}I)s_{k-1}}{s_{k-1}^{T}(J(x_{k})^{T}J(x_{k})+\lambda_{k}I)s_{k-1}}$ .

5 Concluding remarks
We have obtained the general form and its factorized form of a matrix satisfying the SSP
condition. This may enable us to unify the positive definite secant updates. We don’t
restrict ourselves to the secant method. We would like to use our form as the transfor-
mation of a given symmetric matrix to one satisfying the SSP condition. Standing from
this viewpoint, we have given a modification of the Gauss-Newton method for nonlinear
least squares problems.
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