A lower bound for the volume of Dirichlet fundamental polyhedrons

Harushi Furusawa(Kanazawa Women's College) (古 沢 治 司)

1. Introduction. This paper is concerned with a lower bound for the volume of Dirichlet fundamental polyhedrons for Kleinian groups.

Let $H^3=\{(x,y,t)\in \mathbb{R}^3;t>0\}$ with metric $d(\cdot,\cdot)$ induced by the line element $ds^2=(dx^2+dy^2+dt^2)/t^2$. Let f be an element of PSL(2,C) and identifies with a Mobius transformation of $\hat{\mathbb{C}}=\mathbb{C}\cup\{\infty\}$ onto itself, such as

$$f(z) = \frac{az+b}{cz+d}$$
, ad-bc=1.

Its action on the Riemann sphere C can be naturally extended to H3.

Next for each f and g in PSL(2,C), we let [f,g] denote the commutator $fgf^{-1}g^{-1}$. We define the two complex numbers

(1)
$$\beta(f) = tr^2(f)-4$$
, $\gamma(f,g) = tr([f,g])-2$,

for the two generator subgroup $\langle f, g \rangle$.

The following inequality [4] gives an important necessary condition for a two generator group $\langle f,g \rangle$ to be nonelementary and discrete.

Proposition 1([J1]). If <f,g> is nonelementary and discrete, then

(2)
$$|\gamma(f,g)| + |\beta(f)| \ge 1$$
 and $|\gamma(f,g)| + |\beta(g)| \ge 1$.

The above inequality is called $J\phi$ rgensen's inequality.

Proposition 2([R]). If $\langle f,g \rangle$ is a nonelementary discrete Fuchsian subgroup of PSL(2,R), then

(3)
$$| \gamma (f,g) | \ge 2-2\cos(\pi/7)$$
.

On the other hand ,if $\langle f,g \rangle$ is not Fuchsian,it is known that there is a nonelementary discrete group $\langle f,g \rangle$ with an arbitrary small number $|\gamma|(f,g)|$ ([J2]). But if we have some restrictive conditions for elements of generators, one can obtain the lower bounds for $|\gamma|(f,g)|$. If we have a restriction $\beta(f) = \beta(g)$ for two-generator group $\langle f,g \rangle$. $J \phi$ regensen proved in [J3] that $|\gamma|(f,g)| \ge 1/8$.

The first purpose of this paper is to show the existence of a collar from the consideration of a lower bound of $| \gamma (f,g) |$. This gives an improvement of a previous paper [2].

2 Preliminary. We collect some elementary results.

Lemma 1. If f and g are in PSL(2,C) with γ (f,g)= γ and β (f)= β , then

(5)
$$\gamma (f, gfg^{-1}) = \gamma (\gamma - \beta) \text{ and } \beta ([f,g]) = \gamma (\gamma + 4).$$

Lemma 2. Let G be an elementary discrete subgroup of PSL(2,C). If $f,g \in G$ with $\gamma(f,g) \neq 0$, $\beta(f) = \beta(g) \neq -4$, then

(6)
$$| \gamma (f,g) | \ge 2-2\cos(\pi/5) (=0.3819\cdots).$$

It is easily seen that $\gamma(f,g) \neq 0$ if and only if $fix(f) \cap fix(g) = \phi$ where fix(f) denotes the fixed point set in \hat{C} . Now we need to show the followings.

Lemma 3. If $\langle f,g \rangle$ is discrete with $\gamma(f,g) = \beta(f) \neq 0$, then either f is elliptic of order 2,3,4, or 6 or g is elliptic of order 2.

3. A lower bound for the commutator. We show here a lower bound for the commutator of two generator groups.

Next we show Theorem 1 which is applicable to the collar lemma.

Theorem 1. Let $\langle f,g \rangle$ be a discrete subgroup of PSL(2,C) with γ (f,g) \neq 0, β (g) \neq -4 and

(7)
$$0 < |\beta(f)| < 2\{2\cos(2\pi/7) - 2\cos(\pi/7) + 1\}, \text{ then}$$
$$|\gamma(f,g)| > 2 - 2\cos(\pi/7).$$

Proof. Put $\gamma = \gamma$ (f,g) and $\beta = \beta$ (f). Suppose $|\gamma|(f,g)| \le 2-2\cos(\pi/7)$. If $\gamma = \beta$, then Lemma 3 yields $|\gamma| = |\beta| \ge 1$ or $\beta(g) = -4$ which contradict the assumption of Theorem 1. Therefore $\gamma \ne \beta$ and we have that $\langle [f,g], f[f,g]f^{-1} \rangle$ is nonelementary discrete subgroup of $\langle f,g \rangle$ by Lemma 2 with $0 < |\gamma| ([f,g], f[f,g]f^{-1})| = |\gamma|^2 (\gamma - \beta) (\beta + 4) |\langle 0.3 \text{ and } |\beta| ([f,g])| = |\gamma| (\gamma + 4) |\langle 1.6 \rangle$

We have the following result from J ϕ rgensen's inequality (2) that

(8)
$$1 \le |\gamma|^2 (\gamma - \beta) (\beta + 4) |+|\gamma| (\gamma + 4) |$$
.

Specially $|\beta| > |\gamma|$, if not we have

 $1 \le |\gamma|^2 (\gamma - \beta) (\beta + 4) |+|\gamma| (\gamma + 4) |\le (2|\gamma|^3 |+|\gamma|) (|\gamma| + 4) < 1.$

Set $S=\{z;|z|\leq 2-2\cos(\pi/7)\}$. Let R be the union of the convex hulls of $S\cup\{-4\}$ and $S\cup\{\beta\}$. The function $u(z)=|z+4|+|z-\beta|$ is subharmonic in $D=\inf(R)$ and hence there exists a point ξ in ∂D such that $|\gamma+4|+|\gamma-\beta|\leq u(\xi)$. Put $0\leq \theta=|\arg\beta|\leq \pi$, then we have follows by estimating $u(\xi)$ from the above by the length of the component of $\partial D\setminus\{-4,\beta\}$ which contains ξ , that is

(9) $|\gamma + 4| + |\gamma - \beta| \le r_1 + r_2 + |\gamma| \theta$,

where $r_1 = (4^2 - |\gamma|^2)^{1/2} + |\gamma| \sin^{-1}(|\gamma|/4)$ and

 $r_2 = (|\beta|^2 - |\gamma|^2)^{1/2} + |\gamma| \sin^{-1}(|\gamma|/|\beta|)$. Set $r = r_1 + r_2$ where

4.91<r<4.918. Then (12) is reformed by

(10) $1 \le |\beta + 4| (\theta - 1) |\gamma|^3 + \{ |\beta + 4| (r - 4) + 1\} |\gamma|^2 + 4|\gamma|.$

Our goal is to estimate that the right hand side of above inequality is less than 1 and this contradicts the assumption $|\gamma| \le 2-2\cos(\pi/7)$ =d.

Now $|\beta+4|^2=|\beta|^2+4^2+8|\beta|\cos\theta$ = $a+b\cos\theta$ where $16.7 \le a \le 16.8$ and $7.1 \le b \le 7.2$. Set $F(x)=(a+b\cos\theta)^{1/2}(\theta-1)x^3+\{(a+b\cos\theta)^{1/2}(r-4)+1\}x^2+4x$ where $0 \le x \le d$. The derivative F'(x) is a increasing function with respect to x, then $F(x) \le F(d)$ where $d=2-2\cos(\pi/7)$. Let $f(\theta)=F(d)$ and therefore we have $f'(\theta)=(a+b\cos\theta)^{-1/2}(d^2/2)g(\theta)$ where

 $g(\theta)=2(a+b\cos\theta)d-b\{(\theta-1)d+(r-4)\}\sin\theta$.

We divide θ into 13 cases;

- (I) If $0 \le \theta \le 4\pi/9$, then $g(\theta) > 0$ and $f(\theta) \le f(4\pi/9) \le 0.997789 < 1$.
- (II) If $4\pi/9 \le \theta \le 5\pi/11$, then we have
- $f(\theta) \le \{16.8+7.2\cos(4\pi/9)\}^{1/2} (5\pi/11-1) d^3 + [\{16.8+7.2\cos(4\pi/9)\}^{1/2} (r-4)+1] d^2 + 4d < 0.99884 < 1.$
- (III) If $5\pi/11 \le \theta \le 8\pi/17$, similarly we have $f(\theta) \le 0.999444 < 1$.
- (IV) If $8\pi/17 \le \theta \le 9\pi/19$, similarly we hold $f(\theta) \le 0.998055 < 1$.
- (V) If $9\pi/19 \le \theta \le \pi/2$, similarly $f(\theta) \le 0.99785 < 1$.
- (VI) If $10\pi/21 \le \theta \le 11\pi/23$, then $f(\theta) \le 0.99785 < 1$
- (VII) If $11\pi/23 \le \theta \le \pi/2$, also we have $f(\theta) \le 0.999901$
- (VII) If $\pi/2 \le \theta \le 5\pi/9$, then $g(\theta) < -0.64$ and $f(\theta) \le f(\pi/2) < 0.9974 < 1$.
- (IX) If $5\pi/9 \le \theta \le 2\pi/3$, also we have $g(\theta) < -0.47$ and $f(\theta) < 1$
- (X) If $2\pi/3 \le \theta \le 11\pi/15$, we have $f(\theta) \le 0.99936 < 1$.
- (XI) If $11\pi/15 \le \theta \le 7\pi/9$, then we have $f(\theta) \le 0.995193 < 1$.
- (XII) If $7\pi/9 \le \theta \le 8\pi/9$, also we have $f(\theta) \le 0.9995 < 1$.
- (XIII) If $8\pi/9 \le \theta \le \pi$, also $f(\theta) \le 0.9986 < 1$.

This completes the proof.

Theorem 2([G&M2]). Let $\langle f,g \rangle$ be a discrete subgroup of PSL(2,C) with $\gamma(f,g) \neq 0$, $\beta(f) = \beta(g) \neq -4$ then

(11)
$$| \gamma (f,g) | \ge 0.193.$$

The above constant is not sharp. The following theorem is sharp.

Theorem 3([G&M2]). Let $\langle f,g \rangle$ be a discrete subgroup of PSL(2,C) with $\gamma(f,g) \neq 0$, $\beta(f) = \beta(g) \neq -4$ and

(12)
$$\min\{|\beta(f)|, |\beta(fg)|, |\beta(fg^{-1})|\} \ge 2\{\cos(2\pi/7) + 2\cos(\pi/7) - 1\}, \underline{\text{then}}$$

 $|\gamma(f,g)| \ge 2 - 2\cos(\pi/7).$

The following two theorems are also proved in [F2].

Theorem 4([F2]). Let $\langle f, g \rangle$ be a nonelementary discrete group with $\beta(g) \neq -4$ and $0 < |\beta(f)| < 2\{\cos(2\pi/7) + 2\cos(\pi/7) - 1\}$, then

Theorem 5([F2]). Let $\langle f,g \rangle$ be a nonelementary discrete group with $\beta(g) \neq -4$ and $0 < |\beta(f)| < 2(\cos(2\pi/7) + 2\cos(\pi/7) - 1)$, then

(14)
$$\max\{|\gamma(f,g)|, |\gamma(f,gfg^{-1})|\} \ge 2-2\cos(\pi/7)$$
.

4. The collar lemma. Let G be a discrete subgroup of PSL(2,C) acting on the

upper half space H^3 . If $f \in G \setminus \{id.\}$ is not a parabolic element, then we denote A_f the geodesic in H^3 joining the fixed points of f on C the boundary of H^3 in

 R^3 . For a positive number k, we define a tubular neighborhood about A_f as

$$N_k(f) = \{x \in \mathbb{H}^3; d(x, A_f) \leq k\},$$

where d is the hyperbolic metric. Let G_f be the subgroup of G which leaves A_f invariant. We call $N_k(f)$ a collar for f in G, if $g(N_k(f)) \cap N_k(f) = \phi$ for all $g \in G \setminus G_f$ and $g(N_k(f)) = N_k(f)$ for all $g \in G_f$. The number k is called the width of the collar $N_k(f)$.

Following [F1], we introduce the notion of complex distance between two geodesics in H³ and also state the cosine rule. Denote a directed geodesic L by the ordered pair of its endpoints; so L=(a,b) for its endpoints a,b \in C, a \neq b. The complex distance t= δ (L₁,L₂) \in C between two directed geodesics L₁=(a₁,b₁) and L₂=(a₂,b₂) is defined as follows: | Re(t)| \geq 0 is the hyperbolic distance between the geodesics and Im(t) is the angle made by the geodesics along their common perpendicular and is determined modulo 2π unless Re(t) \neq 0, in which case \pm Im(t) is determined modulo 2π . We can compute the complex distance by the formula([F1]),

(15)
$$\cosh^2(t/2) = (a_1, a_2, b_2, b_1).$$

The right hand side of this equality denotes the cross ratio of these four points. Therefore, for any $f \in PSL(2,C)$, we see $\delta(L_1,L_2) = \delta(f(L_1),f(L_2))$.

Let $f \in PSL(2,C)$ be non-parabolic and let A_f be directed geodesics in the hyperbolic space joining the fixed points of f. If L is a perpendicular to A_f then the complex distance t between L and f(L) is called the complex

translation length of f. In this case, we have

(16)
$$tr^2(f) = 4\cosh^2(t/2)$$
,

which makes sense even if f is not loxodromic.

For the geodesics L_0 , L_1 , L_2 , put $\omega = \delta (L_1, L_2)$, $t_1 = \delta (L_0, L_1)$, $t_2 = \delta (L_0, L_2)$ and denote by α the complex distance from the perpendicular between L_0 and L_1 to the perpendicular between L_0 , L_2 . Then we have the so-called cosine rule:

(17)
$$\cosh(\omega) = \cosh(t_1)\cosh(t_2) - \cosh(\alpha)\sinh(t_1)\sinh(t_2)$$
.

Let ω be the complex distance between A_f and A_{sfs-1} . Then we can normalize f and gfg^{-1} as follows:

We have $\gamma = \text{tr}(fgf^{-1}g^{-1}) - 2 = (1-\cosh(t))(1-\cosh(\omega))$. Recall the cosine rule (17) and take $L_2 = A_f$, $L_0 = A_g$ and $L_1 = A_{gfg-1} = g(A_f)$. It is easy to show that $\mu = \delta(A_g, A_f) = \delta(A_g, A_{gfg-1})$. Thus we have $\cosh(\omega) = \cosh^2(\mu) - \cosh(t') \sinh^2(\mu)$ where t' is a complex translation length of g. Therfore we have the following lemma([F1], [K]).

Lemma 4. Let f and g be non-parabolic elements in PSL(2,C) and let μ be the complex distance between A_f and A_g . If $\gamma = \text{tr}(fgf^{-1}g^{-1}) - 2 \neq 0$, then $4\gamma = \beta(f)\beta(g)\sinh^2(\mu).$

Making use of Lemma 4 and Theorem 1, we will show the following so-called collar lemma.

Theorem 6. Let G be a nonelementary discrete subgroup of PSL(2,C). Let f be an element of G\{id.} with $0<|\beta|(f)|=2s<2\{2\cos(2\pi/7)-2\cos(\pi/7)+1\}=2c$, then there exist a collar $N_{k(s)}(f)$ with the width

(19) $\sinh^2 k(s) = (c/s - 1)/2$.

And further let f and g be in G and suppose that f and g generate a nonelementary discrete group. If $0 < |\beta|(f) = 2s < 2c$ and $0 < |\beta|(g) = 2s' < 2c$, then the collars $N_{k(s)}(f)$ for f and $N_{k(s)}(g)$ for g are disjoint, where k is the function defined by (19).

Proof. Let f be an element of $G\setminus \{id.\}$ with $0<|\beta|(f)|<2c$ and $g\in G\setminus G_f$. Suppose f is elliptic. The condition $|\beta|(f)|<1$ implies that the order of f is not less than 7. Then $\langle f, gfg^{-1} \rangle$ is not elementary discrete subgroup of G. If f is not elliptic, then we see that $\mu \neq 0$ where μ is the complex distance between A_f and A_{8f8-1} for $g\in G\setminus G_f$. Thus we conclude that $\langle f, gfg^{-1} \rangle$ is non-elementary discrete group and we have from (2) , $|\beta|(f)|+|\gamma|(f, gfg^{-1})|\geq 1$.

Therefore we have $\gamma(f, gfg^{-1}) \neq 0$ by the assumption of Theorem 7. Thus $\langle f, gfg^{-1} \rangle$ is discrete with $\gamma(f, gfg^{-1}) \neq 0$, $\beta(f) = \beta(gfg^{-1}) \neq -4$, then we have $|\gamma(f, gfg^{-1})| \geq 2 - 2\cos(\pi/7) = c^2$ for any $g \in G \setminus G_f$ by Theorem 1. It is already known that $4\gamma(f, gfg^{-1}) = \beta^2(f)\sinh^2(\mu)$ from (18). By the simple calculation we have $c = |\beta(f)| |\sinh(\mu)| \leq |\beta(f)| \{2\sinh^2(Re\mu/2) + 1\}$. This completes the first part of theorem.

Next we prove the last part of theorem. Let μ be the complex distance between A_f and A_8 . Then (18) and (19) imply

$$|\sinh^{2}(\mu)|=4|\gamma(f,g)|/(|\beta(f)||\beta(g)|)$$

$$\geq c^2/(|\beta(f)||\beta(g)|)$$

 $= (2\sinh^2k(s)+1)(2\sinh^2k(s')+1)$

 $= (\cosh^2 k(s) + \sinh^2 k(s)) (\cosh^2 k(s') + \sinh^2 k(s'))$

 $\geq \{\cosh k(s) \cosh k(s') + \sinh k(s) \sinh k(s')\}^2$

 $=\cosh^2(k(s)+k(s')),$

where k is the function defined by (19). From $\cosh^2 \text{Re } \mu \geq |\sinh^2 \mu|$, we have $\text{Re } \mu \geq \text{k(s)+k(s')}$, which proves the last part of the Theorem. We complete the proof.

Remark. The function k(s) defined on the above is decresing function with respect to s and k(s) $\to \infty$ as $s \to \infty$.

Let f be a loxodromic element in PSL(2,C) with the multiplier $\exp(2\alpha(f)+2i\theta)$. The translation length $2\alpha(f)$ of f is also defined by $\inf\{d(\xi,f(\xi));\xi\in H^3\}$. Next lemma is given by Zagier([Me2]).

Lemma 5. Let $x_1, x_2 \in R$ and $0 < x_1 < \pi \sqrt{3}$, then there exist a positive integer n such that

(20)
$$\cosh nx_1 - \cos nx_2 \le \cosh(\sqrt{4\pi x_1/\sqrt{3}}) - 1.$$

If the multiplier of f is given by $\exp(2\alpha(f)+2i\theta)$, then

(21)
$$|\beta(f)| = 2(\cosh 2\alpha(f) - \cos 2\theta)$$
$$= 4(\sinh^2 \alpha(f) + \sin^2 \theta).$$

If f is a loxodromic, then the axes of f and $f^n(n\neq 0)$ are same. By a simple computation and lemma 5 have $|\beta(f^n)| = 2(\cosh 2n\alpha(f) - \cos 2n\theta) \le 2\{\cosh(\sqrt{8\pi\alpha(f)/\sqrt{3}}) - 1\}$ for some positive integer n. We restate Theorem 6, setting $2\alpha(f) = L$, $\cosh(\sqrt{4\pi L/\sqrt{3}}) - 1 = s < c_1 = 2\cos(2\pi/7) - 2\cos(\pi/7) + 1 < 0.445$) and $\frac{\sqrt{3}}{4\pi} \left[\log(1+c_1+\sqrt{c_1^2+2c_1}) \right]^2 = c_2 (= 0.114519)$, then

Theorem 7. Let g be a non trivial closed geodesic with the length $L(g) < c_2$ in any complete hyperbolic 3-manifold M, then there exists a tubular neighbourhood N(g) around g in M. Let r be the hyperbolic width of N(g). Then, the hyperbolic volume of N(g) is $\pi \cdot L(g) \cdot \sinh^2 r$ which is a decresing function of L(g).

Remark. If $L(g) \le 0.10857$, $r \ge 0.17198$ and $\pi \cdot L(g) \cdot \sinh^2 r \ge 0.01018$.

5. A lower bound of the volume of $V(H^3/\Gamma)$. Let $q(z_1,z_2)$ be a chordal distance between $z_1,z_2\in \hat{\mathbb{C}}$, that is $q(z_1,z_2)=2|z_1-z_2|(1+|z_1|^2)^{-1/2}(1+|z_2|^2)^{-1/2}$. We introduce two different norms which measure the distance from f in mobius transformation groups to id. The first of the two norms for f is given interms

(22)
$$m(f) = ||f-f^{-1}||$$

of the matrix,

where for any matrix A in $SL(2,\mathbb{C})$ we let ||A|| denote its euclidean norm $||A||^2 = tr(AA^*)$ and A^* its Hermitian transpose. The second is defined by

(23)
$$\rho(f) = d(f(j), j)$$

where j is the point (0,0,1) in H^3 .

If f is in M(C) with fix(f)={z₁,z₂}, then
$$|\beta(f)| = \frac{1}{2} \frac{q(z_1,z_2)^2}{8-q(z_1,z_2)^2} m(f)^2$$

,2cosh(ρ (f))=||f||² and simple computation leads 4||f||²=m(f)²+2|tr²(f)|.

If f is in M(C)\{id.} with fix(f)= $\{z_1,z_2\}$ and multiplier $\exp(2\alpha(f)+2i\theta)$,

then,

(24)
$$\sinh^2(\rho(f)/2) = \frac{4-q^2}{8-\alpha^2} \frac{m(f)^2}{8} + \sinh^2\alpha(f)$$
,

(25)
$$\sinh^2(\rho(f)/2) = \frac{4}{8-\alpha^2} \frac{m(f)^2}{8} - \sin^2\theta$$
,

where $q=q(z_1,z_2)$.

Let N denote the set of positive integers and for each ρ in $[0,\infty)$ set

(26)
$$s(\alpha) = \sup_{\theta} (\inf_{\alpha \in \mathbb{R}} (\sinh^2 k \alpha + \sin^2 k \theta)).$$

Then s(x) is nonnegative, nondecreasing and continuous in $[0,\infty)$ with s(0)=0.

Moreover from a lemma due to Zagier[Me2], it follows that

(27)
$$s(t) \leq \sinh^2 \sqrt{at}$$
, $a=2\pi/\sqrt{3}$,

for $0 \le t < \sqrt{3\pi/2}$. Then we have the following lemma.

Lemma 7([G&M2]). Suppose that a and c are positive constants, and f is \underline{in} M(C)\{id.} with two distinct fixed points and multiplier

 $\exp(2\alpha(f)+2i\theta)$. If $m(f^k)^2 \ge c$ for any k in N and

(28)
$$s(a) \le c/8 + \sinh^2 \alpha (f) - \sinh^2 a,$$

then $\rho(f) \ge 2a$.

The following is an immediate result from $J\phi$ rgensen's inequality.

Lemma 8. Let $\langle f,g \rangle$ be a non-elementary discrete group, then

(29)
$$m(f)m(g) \ge 4(\sqrt{2}-1)$$
.

If $m(f)m(g) < 4(\sqrt{2}-1)$ for a discrete group $\langle f,g \rangle$, then $\langle f,g \rangle$ is a elementary group. Next lemma gives more simple result for generators if each generative elements have the following restrictive conditions.

Lemma 9. Let <f,g> be a discrete group with

 $\mathbf{m}(\mathbf{f})^2 < 4(\sqrt{2}-1)$ and $\mathbf{m}(\mathbf{g})^2 \le 4(\sqrt{2}-1)$, then $fix(\mathbf{f}) = fix(\mathbf{g})$.

The following proposition is an important role in this paper which is due to P.Waterman[W].

Proposition 4. Let G be a discrete group. Then there is a mobius transformation h for G satisfying

(30)
$$m(f) \ge 4(\sqrt{2}-1)$$

for any element f in $hGh^{-1}\setminus\{id.\}$.

Theorem 8. Let M be a complete hyperbolic 3-manifold, then V(M) > 0.001.

Proof. It is known that M is represented by H^3/Γ for a torsion free Kleinian group Γ . If Γ contains parabolic transformations, then $\mathrm{V}(\mathrm{M}) \geq \sqrt{3}/4([\mathrm{Mel}])$. From now on, we consider that Γ is a purely loxodromic transformations group. we set $2\alpha' = \inf[2\alpha(f); f \in \Gamma \setminus \{\mathrm{id.}\}]$ where $\exp(2\alpha(f) + 2\mathrm{i}\theta)$ is a multiplier of f. If $2\alpha' \leq 0.10857$, then Theorem 7 and Remark shows that M has a collar with the volume not less than 0.001. Otherwise, we consider a conjugate group for Γ stated in Proposition 4 and reset this conjugate group Γ , then we have $\mathrm{m}(f)^2 \geq 4(\sqrt{2}-1)$ for f in $\Gamma \setminus \{\mathrm{id.}\}$. Now we seek η satisfying the equation $\mathrm{s}(\eta) = (\sqrt{2}-1)/2 + \sinh^2\alpha' - \sinh^2\eta$, we have $2\eta \geq 0.11576$. Thus $\rho(f) \geq 0.11576$, thus the Dirichlet fundamental polyhedron centered at j for Γ

contains a ball B with hyperbolic radius 0.11576. Then we have the result.

References

- [B] A. F. Beardon, The geometry of discrete groups, Springer Verlarg 1983.
- [F1] H. Furusawa, A remark on the hyperbolic collar lemma, Tohoku Math. J. 39(1987) 291-298.
- [F2] H. Furusawa, to appear.
- [G&M1] F. W. Gehring & G. J. Martin, Inequalities for Mobius transformations and discrete groups, J.Rein Angew. Math. 418(1991) 31-76.
- [G&M2] F. W. Gehring & G. J. Martin, to appear.
- [J1] T. Jørgensen, On discrete groups of Mobius transformations, Amer. J. Math. 98(1976) 739-749.
- [J2] T. Jørgensen, Comments on a discreteness condition for subgroups of SL(2,C), Can. J. Math. 31(1979) 87-92.
- [J3] T. Jørgensen, Commutators in SL(2,C), Riemann surfaces and related topics: Proceedings of the 1978 Stony Brook Conference, Princeton Univ. Press 1980, 301-303.
- [K] C. Kourouniotis, The geometry of bending quasi-Fuchsian groups, London Math. Soc. Lec. Notes 173(1992) 148-164.
- [Me1] R. Meyerhoff, Sphere-packing and volume in hyperbolic 3-space, Comment. Math. Helvetici 61(1986).
- [Me2] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-manifolds, Can. J. Math. 39(1987).
- [Me3] R. Meyerhoff, A lower bound for the volume of hyperbolic 3-orbifolds, Duke Math. J. 57(1988).
- [R] G. Rosenberger, All generating pairs of all two-generator Fuchsian groups, Arch. Math. 46(1986) 198-204.
- [W] P. Waterman, An inscribed ball for Kleinian groups, Bull. London Math. Soc. 16(1984).