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A lower bound fTor the volume of
Dirichlet fundamental polyvyhedrons

Harushi Furusawa(Kanazawa Women's College)
(F R E/ A

1. Introduction. This paper is concerned with a lower bound for the volume
of Dirichlet fundamental polyhedrons for Kleinian groups.
Let H3={(x,y,t) €R%;t>0} with metric d(+,+) induced by the line

element ds?= (dx?+dy?+dt2)/t2. Let f be an element of PSL(2,C) and

identifies with a Mobius transformation of é==CLJ{0°} onto itself,such as

b
f(z)= , ad-be=1.
+d
Its action on the Riemann sphere é can be naturally exténded to H3.
Next for each f and g in PSL(2,C), we let [f,g] denote the commutator
fef“'g~!. We define the two complex numbers
(n B (f) = tre(f)-4, ~ (f,g) = tr([f,g])-2,
for the two generator subgroup <f,g>.
The following inequality [4] gives an important necessary condition for
a two generator group <f,g> to be nonelementary and discrete.

Proposition 1([J1]). If <f,&> is nonelementary and discrete, then

- (2) v (F,)|+1B8(f) 21  and v (f,e) [+1 8 (&) | 21.

The above inequality is called J¢rgensen's inequality.
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Proposition 2([R]). If <f,g> is a nonelementary discrete Fuchsian

subgroup of PSL(2,R), then
(3) v (f,g) | 22-2cos (7 /7).

On the other hand ,if <f,g> is not Fuchsian,it is known that there is a
nonelementary discrete group <f,g> with an arbitrary small number |~ (f,g) |
([J2]). But if ve have some restrictive conditions for elements of generators,
one can obtain the lower bounds for |~ (f,g)|. If we have a restriction
B (f)=pB (g) for two-generator group <f,g>. J¢rgensen proved in [J3] that
(4) I~ (f,g)1=1/8.

The first purpose of this paper is to show the existence of a collar

from the consideration of a lower bound of |7 (f,g)|. This gives an

improvement of a previous paper [2].

2 Preliminary. We collect some elementary results.
Lemma 1. If f and g are in PSL(2,C) with » (f,g)=> and B (f})=8, then
(5) v (f,gfg™)=7 (v-B) and B ([f,g])=7 (v+4).

Lemma 2. Let G be an elementary discrete subgroup of PSL(2,C). If

f,g€G with » (f,g) #0, B (f)=28(g) #-4, then

(6) | v (f,&) | 22-2cos (7 /5) (=0.3818¢+¢).
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It is easily seen that 7 (f,g) #0 if and only if fix(f)Nfix(g)=¢ where

fix(f) denotes the fixed point set in C . Now ve need to show the followings.

Lemma 3. If <f,g> is discrete with  (f,g) =8 (f) #0, then either f is

elliptic of order 2,3,4, or 6 or g is elliptic of order 2.

3. A lover bound for the commutator. We show here a lower bound for the
commutator of two generator groups.

Next we show Theorem 1 which is applicable to the collar lemma.

Theorem 1. Let <f,g> be a discrete subgroup of PSL(2,C) with ~ (f,g) #0,

B (g) #-4 and
) 0 < IBME)| < 2{2cos(2m/7)-2cos(n/T)+1}, then
v (f,&)| > 2-2cos(m /7).
Proof. Put 7=+ (f,g) and B=8 (f). Suppose |~ (f,g) | =2-2cos(n/7).
If »=8, then Lemma 3 yields |7 [=]|8|=1 or B (g)=-4 which contradict the
assumption of Theorem 1. Therefore » # 8 and we have that <[f,e],f[f,g]f !>
is nonelementary discrete subgroup of <f,&> by Lemma 2 with
O<l > (If, el f[f,g]f ) 1=l 7 2(7 -8) (8+4) 1<0.3 and | B ([f,g]) =] » (» +4) I<1.
Ve have the following result from J@rgensen's inequality (2) that
(8) 1S|72(7-B)(B+) |+ v (v +4) | .

Specially |8 1>~ |, if not we have
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1172(v-8) (B+) |+ 7 (v +) S Q| v 3+~ ) (] 7 |+4)<1.
Set S={z;1z]=2-2cos(n/7)}. Let R be the union of the convex hulls of

SU{-4} and SU{B}. The function u(z)=|z+4|+|z-B| is subharmonic in
D=int (R) and hence there exists a point § in &D such that
|»+4|+]|7-B|=u(§). Put 0=0-=|larg B|=m, then we have follows by
estimating u(§) from the above by the length of the component of &D\({-4, 8}
which contains £, that is
(9) lv+l+lr-Bl=ri+rz2+ 1218,
where ri=(42-1~12)172+| 5 |sin"' (| v |/4) and
r2=(1B812-1712)172+| v |[sin" (17 |/I1B1). Set r = ry + rz where
4.91<r<4.918. Then (12) is reformed by
(10) 1=18+41(6-D v |3+{I B+4| (r-4)+1}| v |%+4]| 7 | .

Our goal is to estimate that the right hand side of above inequality is
less than 1 and this contradicts the asuumption |~ |=2-2cos(n /7)=d.

Now | B+4|2=| B12+42+8] B |cos B =a+bcos O where 16.7<a=16.8 and
7.1=b=7.2. Set F(x)=(a+bcos 8)172(8-1)x°+{(atbcos 8) 72 (r-4) +1}x?+4x where
0 =x=d. The derivative F'(x) is a increasing function with respect to x,
then F(x)=F(d) where d=2-2cos(m /7). Let £(6)=F(d) and therefore we have

f'(8)=(atbcos6)~172(d2/2)g(8) where



g(6)=2(a*bcos 8 )d-b{(6-1)d+(r-4)}sinf.
We divide 8 into 13 cases:
(I) If 0s6=4n/9, then g(68)>0 and f(6)=f(47/9)=0.997789<1.
() If 4n/9=6=5n/11, then ve have

f(6)={16.8+7.2cos(47/9)}'"2(5n/11-1)d3%+
[{16.8+7.2cos (47 /9)} 172 (r-4) +11d2+4d<0.99884<1.

() If 572/11=6 =8n /17, similarly we have f(6)=0.999444<1.
(V) If 8n/17=6 =9x/19, similarly we hold f(6)=0.998055<1.
(V) If 92/19=6=nr/2, sinmilarly f(98)=0.89785<1.

(VI) If 10n/2126=11n/23 , then f(6)=0.99785 < 1

(VID  If 117/23=6=n/2 , also ve have f(8)=0.999901

(V) If n/2£6=5n/9 , then g(6)<-0.64 and f(8)=f(n/2)<0.9974<1.
(X) If 52/9s6=2n/3 , also ve have g(6)<-0.47 and f(6)1
(X) If 2n/356.=117/15, ve have f(8)=0.99936 < 1.

(XI) If 1172/15S6 =Tn/9, then we have f{6)=0.9951931.
(X1) If Tn/9= 0 =8n/9, also we have f(6)=0.9995<1.

(XI) If 8n/9=68=n, also f(9)§0.9986(1;

This completes the proof.

Theorem 2([G&M2]). Let <f,g> be a discrete subgroup of PSL(2,C) with

vy (f,&)#0 , B()=8(g) #-4 then

15
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(11) |~ (f,g) | =0.193.
The above constant is not sharp. The following theorem is sharp.

Theorem 3([G&M2]). Let <f,g> be a discrete subgroup of PSL(2,C) with

7 (£.8)#0 , B (F)=B (&) #-4 and
12)  win{B8® 18T, 18 (fe™) 1} Z2{cos (27 /7)+2cos (x/7) -1}, then
| v (f,&) | 22-2cos (7 /7).
The following two theorems are also proved in [F2].

Theorem 4([F2]). Let <f,g> be a nonelementary discrete group with

B (8) #-4 and 0<| B (f) [<2{cos (27 /T) +2cos (7 /7)-1}, then
(13) |7 (f,8) | 22-2cos(n/7) or |7 (f,&)-B (f) D1.

Theorem 5([F2]). Let <f,&> be a nonelementary discrete group with

B (g) #-4 and 0<| B (f) [<2{cos (27 /7) +2cos (n /7)-1}, then

(14) max{l>» (f,&) |, |7 (f,efg 1) |} =2-2cos (/7).
4 . The collar lemma. Let G be a discrete subgroup of PSL(2,C) acting on the

upper half space H3. If fE€G\{id.} is not a parabolic element, then we denote

~

As the geodesic in H® joining the fixed points of f on C the boundary of H® in

R3. For a positive numbér k, we define a tubular neighborhood about A¢ as

N (F)={x€H%; d(x,A¢) =k},
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where d is the hyperbolic metric. Let G¢ be the subgroup of G which leaves
A¢ invariant. Ve call Nk (f) a collar for f in G, if g(Nx(f)) NNk(f)=¢ for
all & €G\G¢ and g (Nk(f)) =Nk (f) for all gE€G¢. The number k is called the
width of the collar Nk (f).

Following [F1], we introduce the notion of complex distance between two
geodesics in H® and also state the cosine rule. Denote a directed geodesic
L by the ordered pair of its endpointsiso L=(a,b) for its endpoints a,b€EC,
a¥b. The complex distance t= & (Ly,L2) €C between two directed geodesics
Li=(a1,by) and Lz=(az,bz) is defined as follows:| Re(t) |20 is the hyperbolic
distance between the geodesics and Im(t) is the angle made by the geodesics
along their common perpendicular and is determined modulo 2a unless Re(t) #0,
in which case +Im(t) is determined modulo 27 . Ve can compute the complex
distance by the formula([F1]),
(15) cosh?(t/2)=(ay, az,b2,by).
The righf hand side of this equality denotes the cross ratio of these four
points. Therefore, for any f€PSL(2,C), we see & (L1,L2)=8 (f(Ly),.f(L2)).

Let f€PSL(2,C) be non-parabolic and let A be directed geodesics in the
hyperbolic space joining the fixed points of f. If L is a perpendicular to Ae

then the complex distance t between L and f(L) is called the complex



translation length of f. In this case, we have
(16) tr2(f)=4cosh?(t/2),
which makes sense even if f is not loxodromic.
For the geodesics Lo, Li, L2, put =6 (L1,L2), t1=8 (Lo,L1),
t2= 0 (Lo,L2) and denote by a the complex distance from the perpendicular
between Lo and Li to the perpendicular between Lo , L2. Then we have the
so-called cosine rule:
(17) cosh(w)=cosh (t1)cosh(tz)-cosh(a)sinh(ti)sinh(tz).
Let @ be the complex distance between At and Asfs-1. Then we can

normalize f and gfg™! as follows:

cosh(t/2) sinh(t/2) cosh(t/2) exp(w)sinh(t/2)
f= ,gfg 1=

sinh(t/2) cosh(t/2) exp (-w)sinh(t/2) cosh(t/2)

L ] L —

We have 7 =tr(fgf g !)-2=-(1-cosh(t)) (1-cosh(w)). Recall the cosine rule
(17) and take L2=A¢, Lo=As and Li1=Ags¢rs-1=g(A¢). It is easy to show that
=0 (Ae,Ar)=0 (Ag,Agrs-1). Thus we have cosh(w)=cosh?(u)-cosh(t')sinh?(u)

vhere t' is a complex translation length of g. Therfore we have the following

lemma ([F1], [K]).
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Lemma 4. Let f and g be non-parabolic elements in PSL (2,C) and let u

be the complex distance between Ar and As. If 7 =tr(fef 'g™!)-2#0, then

(18) 4v= B(f)B (g)sinhZ(u).

Making use of Lemma 4 and Theorem 1, we will show the following so-called
collar lemma.

Theorem 6. Let G be a nonelementary discrete subgroup of PSL(2,C). Let f

be an element of G\{id.} with 0<| B (f) |=2s<2{ 2cos (27 /7)-2cos (7 /7) +1}=2c,

then there exist a collar Nx(s) (f) with the width

(19) sinh?%k(s)=(c/s - 1)/2.

And further let f and g be in G and suppose that f and g generate a

nonelementary discrete group. If 0 <| 8 (f)[=2s <2c and 0 <] B (g) |=2s'< 2c,

then the collars Nk¢s) (f) for f and Nkcs'» (g) for g are disjoint, where

k is the function defined by (19).

Proof. Let f be an element of G\ {id.} with 0<| B (f) |<2c and g€G\Gs.

Suppose f is elliptic. The condition |8 (f) <1 implies that the order of f is

not less than 7. Then <f,gfg"!> is not elementary discrete subgroup of G. If

f is not elliptic, then we see that u# #0 vwhere 1 is the complex distance

between A and Agfs-1 for g €G\G¢. Thus we conclude that <f,gfg !> is non-

elementary discrete group and we have from (2) , |8 () |+]|~ (f,gfg" V)| =1.
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Therefore we have o (f,gfg™!) #0 by the assumption of Theorem 7. Thus
<f,efg"'> is discrete with » (f,efg™!)#0, B (f)=8 (gfg™!) #-4, then we have
| > (f,gfg" 1) | =2-2cos ( /T)=c? for any g €G\G¢ by Theorem 1. It is already
known that 4~ (f,gfg™!)= B2(f)sinh?(u) from (18). By the simple calculation
we have c¢=|B8(f)|Isinh(u) =18 (f)|{2sinh? (Re 1 /2)+1}. This completes the
first part of theoren.
Next we prove the last part of theorem. Let u be the complex distance
between Af and Ag. Then (18) and (19) imply
Isinh?(u) =41~ (f,&) /(1B )18 &)
2c?/(BE) BRI
=(2sinh%k (s)+1) (2sinh?k (s') +1)
=(cosh?k (s) +sinh?k (s)) (cosh2k (s ') +sinhZk(s"))
2 {cosh k(s) cosh k(s')+sinh k(s) sinh k(s')}?
=cosh?(k(s)+k(s')),
where k is the function defined by (19). From cosh®Reu 2 |sinhZu |, we have
Re u = k(s)+k(s'), which proves the last part of the Theorem. We complete
the proof.
Remark. The function k(s) defined on the above is decresing function with

respect to s and k(s) 2o as s oo,
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Let f be a loxodromic element in PSL(2,C) with the multiplier
exp(2a (f)+2i8). The translation length 2a (f) of f is also defined by
inf{d(&,f(&)); ¢ €H®). Next lemma is given by Zagier ([Me2]).

Lemma 5. Let x%1,x2€R and 0<x1<m 4/ 3 , then there exist a positive

integer n such that

(20) cosh nx; - cos nxzScosh(/ 4mx1/43) - 1.
If the multiplier of f is given by exp(2a (f)+218), then
(21) | B (f) = 2(cosh 2a (f)-cos 26)
=4(sinh? a (f) +sin?6).
If f is a loxodromic, then the axes of f and f"(n¥#0)are same. By a simple
computation and lemma 5 have | B (f")|=2(cosh 2na (f)-cos 2n8)=
2{cosh(/ 87 a (f)/43) - 1} for some positive integer n. Ve restate Theorem 6,

setting 2a (f)=L ,cosh(/ 4nL /4 3) - 1=s<c1=2cos (2 /7)-2cos (7 /T)+1(<0. 445)

3
and %{ [log(l+ci+/ c12+2c1) ] 2=c2(%0.114519), then

Theorem 7. Let g be a non trivial closed geodesic with the length

L(g)<cz in any complete hyperbolic 3-manifold M, then there exists a tubular

neighbourhood N(g) around g in M. Let r be the the hyperbolic width of N(g).

Then, the hyperbolic volume of N(g) is = *L(g)*sinh?r which is a decresing

function of L(g).



Remark. If L(g)=0.10857, r=0.17198 and = *L(g)*sinh?r=0.01018.

5. A lower bound of the volume of V(H3/T"). Let q(z:,2z2) be a chordal

~

distance between z1,22€C, that is q(z1,2z2)=21z¢-z2] (1+]z1|3) " 172 (1+]|22]2) 172,
Ve introduce two different norms which measure the distance from f in mobius
transformation groups to id. The first of the two norms for f is given interms
of the matrix,

(22) n(f) = [If-f!]

where for any matrix A in SL(2,C) we let ||Al|l denote its euclidean norm
[1A]12=tr (AA®) and A® its Hermitian transpose. The second is aefined by

(23) o (f) =df(),d

vhere j is the point (0,0,1) in H3.

~ 1 . 2
If £ is in M) vith Fix(f)=(zs,25}, then | B8 () [= L JEL2D% )
2 8'Q(21,22)2

y2cosh(p (f))=11f|12 and simple computation leads 4||f||2=m(f)2+2]|tr2(f)]|.

If £ is in M(C)\{id.} with fix(f)={z1,22} and multiplier exp(2a (f)+2i80),

then,
4_ 2 f 2

©4)  sinh?(o ()/2)=—L 2OF @
8-q%2 38
4 2

@5)  sinh?(p (£)/2)= n®* _ inee |
8-q2 8

vhere q=q(zy,2z2).



Let N deﬁote the set of positive integers and for each o in [0,%0) set
(26) s(a)=su§( inf(sinhzka+sin2k6)).
Then s(x) is nonnegative, nondecreasing and continuous in [0,%0) with s(0)=0.
Moreover from a lemma due to Zagier[Me2], it follows that
(27) s(t)=sinh?/at , a=2#n// 3,
for 0=t</ 37 /2. Then we have the following lemma.

Lemma 7([G&M2]). Suppose that a and c are positive constants, and f is

in M(O)\{id.} with two distinct fixed points and multiplier

exp(2a (f)+216). If m(f*)?=2c for any k in N and
(28) s(a) =c/8+sinh? a (f) -sinh?a,

then o (f) =2a.

The following is an immediate result from J@rgensen's inequality.

Lemma 8. Let <f,g> be a non-elementary discrete group, then

(29) n(fm(g) 24(/2-1).

If m(f)m(g)<4(y/ 2-1) for a discrete group <f,g> ,then <f,g> is a elementary
group. Next lemma gives more simple result forj generators if each generative

elements have the following restrictive conditions.

Lemma 9. Let <f,g> be a discrete group vith

m(f)? < 4(/2-1) and n(g)? = 4(/2-1), then fix(f) = fix(e).

23
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The following proposition is an important role in this paper which is due to

P.Vaterman[V].

Proposition 4. Let G be a discrete group. Then there is a mobius

transformation h for G satisfying

(30) n(f) =24 (/2-1)

for any element f in hGh™'\{id.}.

Theorem 8. Let M be a complete hyperbolic 3-manifold, then

V(M) > 0.001.
Proof. It is known that M is repr‘esented by H3/T" for a torsion free Kleinian
group I'. If T" contains parabolic transformations, thep V(M) 2/ 3/4([Mel]).
From now on, we consider that I" is a purely loxodromic transformations group.
we set 2a'= inf[2a (f)ifE€ T \{id.}] where exp(2a (f)+2i6) is a multiplier
of f. If 2a'=0.10857, then Theorem 7 and Remark shows that M has a collar
with the volume not less than 0.001. Otherwise, we consider a conjugate group
for I' stated in Proposition 4 and reset this conjugate group I', then we have
m(f)2=24(/2-1) for f in I'\{id.}. Now ve seek n satisfying the equation
s(n)=(/2-1)/2 + sinh?a’ - sinh?n. ve have 21 =0.11576. Thus
o (f)=0.11576, thus the Dirichlet fundamental polyhedron centered at j for I

contains a ball B with hyperbolic radius 0.11576. Then we have the result.
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