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Abstract

This is the first in a series of papers presenting a theory of tensor
products for module categories for a vertex operator algebra. The
theory applies in particular to any “rational” vertex operator algebra
for which products of intertwining operators are known to be conver-
gent, including the algebras associatéed with WZNW models, minimal
models and the moonshine module. In this paper (Part I), we de-
fine the notions of P(z)- and Q(z)-tensor product, where P(z) and
Q(z) are two special elements of a certain moduli space of spheres
with punctures and local coordinates. For rational vertex operator
algebras, we give a “tautological” construction of a Q(z)-tensor prod-
uct, providing an existence proof. More generally, two constructions
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of a Q(z)-tensor product are given under a certain assumption, us-
ing certain results whose proofs are deferred to Part II of the series.
The results entering into the second of these constructions and their
natural generalizations constitute the foundation of the theory.

1 Introduction

In the representation theory of Lie algebras, we have the classical notion of
tensor product of two modules, providing the conceptual foundation of the
Clebsch-Gordan coefficients. The tensor product operation is an operation
on the category of modules for a Lie algebra, giving a classical example of
a tensor category satisfying an additional symmetry axiom. For quantum
groups (Hopf algebras), the module categories are also tensor categories but
in general do not satisfy the symmetry axiom, corresponding to the fact that
the Hopf algebra need not be cocommutative. Instead, such tensor categories
satisfy weaker conditions — braiding conditions. From the resulting braid
group representations, one.can construct knot and link invariants. See in
particular [J], [K1], [K2], [Dr1], [Dr2}, [RT]}.

Vertex operator algebras ([B1], [FLM2], [FHL]) are “complex analogues”
. of both Lie algebras and commutative associative algebras. For vertex op-
erator algebras, we also have the notions of modules, intertwining operators
among triples of modules and fusion rules (dimensions of spaces of intertwin-
ing operators) analogous to those for Lie algebras. We use the versions of
these notions given in [FLM2] and [FHL], and recalled below. In the study
of rational conformal field theories ([BPZ], [FS]), intertwining operators (or
chiral vertex operators) are fundamental tools. Many important concepts
and results, for example, representations of braid groups, the relationship
between modular transformations and fusion rules, and duality relations, are
obtained through the study of intertwining operators; see for example [KZ],
[TK], [V] and [MS]. The fusion rules for a vertex operator algebra being the
analogues of the Clebsch-Gordan coefficients for a Lie algebra, we have the
natural question whether there exists a notion of tensor product for modules
for a vertex operator algebra which would naturally provide a conceptual
foundation for fusion rules and intertwining operators.

We noticed a few years ago that the Jacobi identity axiom (see [FLM2],
[FHL]) for vertex operator algebras suggests an analogue of the coalgebra
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diagonal map for primitive elements of a Hopf algebra. In this paper we
make this idea precise. Given two modules W; and W, for a vertex operator
algebra V', when one tries to define a tensor product module, the first serious
- problem is that the tensor product vector space W; ® W is not a V-module
in any natural way (although it is a module for the vertex operator algebra
V ®V), and so the underlying vector space of a tensor product module would
not be expected to be the tensor product vector space. Another serious prob-
lem is that a vertex operator algebra is not a Hopf algebra in any natural
sense. We need a new way to define and construct a tensor product module
— both the underlying vector space and the action of the vertex operator
algebra. As we shall see, the analogy between vertex operator algebras and
Lie algebras, centered on the Jacobi identity axiom, provides an analogue of
a Hopf algebra diagonal map for a construction of a tensor product mod-
ule, under appropriate hypotheses. In addition, the analogy between vertex
operator algebras and commutative associative algebras, via the geometric
formulation of the notion of vertex operator algebra ([H1], [H2]), provides
the geometric foundation for the construction. -

One important class of examples of vertex operator algebras is constructed
from certain modules for affine Lie algebras (see for example [FZ], [DL]).
There are interesting relations between representations of affine Lie algebras
and of quantum groups discussed in several of the works mentioned above,
for example, and to understand these relations on a deeper level, one natural
strategy is to compare categories of modules for affine Lie algebras with a
fixed nonzero central charge and categories of modules for associated quan-
tum groups. While the category of modules for a quantum group is a tensor
category, a category of modules for an affine Lie algebras with fixed nonzero
central charge does not close under the classical tensor product of Lie alge-
bra modules. Thus an appropriate tensor product module, if it exists, could
not be the ordinary one. Recently, Kazhdan and Lusztig ([KL1]-[KL5]) have
found such a tensor product operation for certain module categories for an
affine Lie algebra and have shown that these module categories can in fact
be made into tensor categories. Moreover, they have shown that these tensor
categories are equivalent to suitable categories of modules for corresponding
quantum groups. More recently, Finkelberg [F] has extended their work to
the important case of categories of certain positive integral level modules for
an affine Lie algebra. The construction of Kazhdan-Lusztig was in fact mo-
tivated by conformal field theory, and we expected that their tensor product
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operation should come from more general and natural structures in conformal
field theory. |

In [HL1), partly motlvated by the analogy between vertex operator al-
gebras and Lie algebras and partly motivated by the announcement [KL1],
we initiated a project whose goal is a theory of tensor products for modules
for a vertex operator algebra. In this series of papers, we shall present this
theory of tensor products for suitable module categories for a vertex operator
algebra. Our methods are independent of the methods of [KL1}-[KL5] (even
in the special case in which our vertex operator algebra is assocmted with an
affine Lie algebra).

It should be emphasized that our theory applies (at present) to an arbi-
trary rational vertex operator algebra satisfying a certain convergence con-
dition. It applies in particular to minimal models, WZNW models and the
moonshine module for the Monster constructed in [FLM1], [FLM2]. (The ra-
tionality of the moonshine module vertex operator algebra has recently been
proved by Dong [Do].) Many of the notions, constructions and techniques
also apply to more general vertex operator algebras. We hope that this theory
will provide not only a conceptual and unified way to study many different
conformal-field-theoretic models but also insights regarding such phenomena
as monstrous moonshine (see [CN], [B1], [FLM2], [L], [B2]).

We use the analogy between vertex operator algebras and Lie algebras as
our main guide. In the theory of Lie algebras we have the following standard
notion of intertwining map (of type (WVIV&,Z)) among modules W;, Wy, W3 for
a Lie algebra V, with corresponding actions 7y, 9, 3 of V: a linear map I
from the tensor product vector space W; @ W, to Wjs, satisfying the identity

m3(v) [(w(1) ® w)) = I(m(v)wa) ® wey) + I(way @ ma(v)we)) (1.1)

forv € V, wg) € Wi, we) € Wi, This “Jacobi identity for intertwining
maps” agrees with the Jacobi identity for V when all three modules are the
adjoint module. Let us call a product of W; and W5 a third module W3
equipped with an intertwining map I of type (W‘f’&,j; we denote this by
(W3, I). Then a tensor product of W) and W; is a product (W; @ Wa, ®)
such that given any product (W3, I), there exists a unique module map 7

from W; ® W5 to W3 such that

I =no ® . (12)
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Thus any tensor product of two given modules has the following property:
The intertwining maps from the tensor product vector space of the two mod-
ules to a third module correspond naturally to the module maps from the
tensor product module to the third module. Moreover, this universal prop-
 erty characterizes the tensor product module up to unique isomorphism.

In this paper (Part I), we analogously define notions of P(z)-tensor prod-
uct and Q(z)-tensor product of two modules for a vertex operator algebra,
where z is a nonzerq complex number and P(z) and Q(z) are two particular
elements, depending on 2, of a certain moduli space of spheres with punctures
and local coordinates (see [H1], [H2], [H3] or [H4]). We give two constructions
of a Q(2)-tensor product when the vertex operator algebra that we consider
is such that its module category (or some fixed subcategory) is closed under
a certain operation. This occurs in particular if the vertex operator algebra
is “rational,” that is, if the module category satisfies certain finiteness and
semisimplicity conditions, and so the Q(z)-tensor product of two modules ex-
ists in this case. (For such algebras we also give a “tautological” construction
which in fact provides an existence proof.) The construction of a P(z)-tensor
product will be given in Part III using the results entering into the construc-
tions of the Q(z)-tensor product in this paper (Part I). The first of our two
constructions of a Q(z)-tensor product is straightforward and conceptually
simple, but it is difficult to use. Our second, much more useful, construction
presents the Q(z)-tensor product module of two modules W; and W, (when
it exists) in terms of the subspace of the dual (W; ® W3)* of the vector
space tensor product consisting of the elements satisfying a certain set of
conditions, the most important of which is what we call the “compatibility
condition.” .

The dependence of the tensor product operation on the nonzero complex
number 2 is a fundamental feature of our theory. In one of the papers in
this series, we shall see that for every element of the moduli space mentioned
above, we have a tensor product operation. The associativity, commutativity
and coherence properties of this tensor product depend on the elements of
this moduli space in a natural way. Such properties can be used to define
a new concept — that of “vertex tensor category.” In fact the notion of
vertex tensor category depends only on the moduli space of spheres with
punctures and local coordinates mentioned above. This moduli space is the
CX-rescalable associative partial operad used in the operadic formulation of
vertex operator algebras ([HL2], [HL3], [H5]). Given a vertex tensor category,
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we can obtain a tensor category in a natural way. In the case that the
vertex operator algebra is constructed from an affine Lie algebra, the tensor
category obtained from the vertex tensor category of modules for this vertex
operator algebra gives us a tensor category structure on the relevant category
of modules for the corresponding affine Lie algebra. Thus this theory of
tensor products for module categories for a vertex operator algebras is not
only conceptually natural and satisfactory but is also powerful in the study
of the conformal-field-theoretical properties of affine Lie algebras.

Our approach is based on the formal calculus developed in [FLM2], and
also (in later papers in this series) on the geometric methods developed in
[H1]. Our use of formal calculus (see [FLM2], [FHLY]) is equivalent to the use
of contour integral methods, but is much more natural for our formulations
and arguments. For example, in Section 3, the space of rational functions
whose action we must define is described conceptually by means of the formal
6-function.

Results in the present series of papers were announced in [HL1] and in
talks presented by both authors at the June, 1992 AMS-IMS-SIAM Joint
Summer Research Conference on Conformal Field Theory, Topological Field
Theory and Quantum Groups at Mount Holyoke College.

Part I is organized as follows: Section 2 reviews basic concepts in the rep-
resentation theory of vertex operator algebras. Section 3 discusses affiniza-
tions of vertex operator algebras, the opposite module structure on a module
for a vertex operator algebra and a related *-operation. In [B1], Borcherds
in fact placed a vertex algebra structure on a certain affinization of a ver-
tex algebra (in his sense), while in this paper we are using more general
affinizations of a vertex operator algebra, but in a simpler way. Section 4
gives the definitions of P(z)- and Q(z)-tensor product of two modules for a
vertex operator algebra and establishes some straightforward consequences,
including relations among intertwining operators, “intertwining maps” and
tensor products, and the existence of a Q(z)-tensor product of the two mod-
ules for a rational vertex operator algebra. In this section, we formulate and
use a result (Proposition 4.9) giving an isomorphism between certain spaces
of intertwining operators and we defer its proof to Part II. Sections 5 and 6
present the first and second constructions of the @Q(z)-tensor product of two
modules, respectively. In the course of these constructions, we formulate and
use three results, Proposition 5.2, Theorem 6.1 and Proposition 6.2, whose
proofs will form the main content of Part II. Theorem 6.1 and Proposition
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6.2 and their generalizations in fact constitute the foundation of our whole
theory. ' : A
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2 Review of basic concepts

In this section, we review some basic definitions and concepts in the rep-
resentation theory of vertex operator algebras. Except for Definition 2.11,
everything in this section can be found in [FLM2] and [FHL].

In this section, all the variables z, zy,... are independent commuting
formal variables, and all expressions involving these variables are to be un-
derstood as formal Laurent series or, when explicitly so designated, as formal
rational functions. (Later, we shall also use the symbols z, 2y, ..., which will
denote complex numbers, not formal variables.) We use the formal expansion

6(x) =) =" (2.1) .

neZ

This “formal §-function” has the following simple and fundamental property:
For any f(z) € C[z,z™!],

f(z)b(z) = f(1)6(z). (2.2)
This property has many important variants. For example, for any
X(z1,72) € (End W)[[z1, 27!, 22, 25|

(where W is a vector space) such that

lim X(.’L‘l, (L‘z) = X(:l?l,xg) (23)

T
122 T1=29
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exists, we have '
T

X (21, 22)6 ( ) X(a:g,:z:g)(S( ) (2.4)
T2 T2

The existence of the “algebraic limit” defined in (2.3) means that for an
arbitrary vector w € W, the coefficient of each power of x5 in the formal

expansion X (:cl,xg)wl is a finite sum. We use the convention that neg-
r1=2x2
ative powers of a binomial are to be expanded in nonnegative powers of the

second summand. For example,

R Gyl e R 1)"‘( ) "]

Zo nez Zo meN, neZ
(2.5)

We have the following identities:

Ty To
“16(T1 = %2\  _1c(Z27T1) - —1.(Z1—To
25 6( = ) xo_a( — )_x2 6( = ) (2.7)

We shall use these properties and identities extensively later on without
explicit comment. See [FLM2] and [FHL] for further discussion and many
examples of their use.

We now quote the definition and basic .“duality” properties of vertex
operator algebras from [FLM2] or [FHL]

Definition 2.1 A vertez operator algebm (over C) is a Z-graded vector space
(graded by weights)

V = [] Viw); for v € Vi), n = wt v; ' (2.8)
nez
such that ,
dim V() < 0o forn € Z, (2.9)
Vin) = 0 for n sufficiently small, (2.10)

equipped with a linear map V @ V — V/[[z,z7}]], or equivalently,

V = (End V)[[z,z7Y] |
v = Y(v,z) =) v,z ! (where v, € End V), (2.11)

nez
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~ Y(v, z) denoting the vertez operator associated with v, and equipped also with
two distinguished homogeneous vectors 1 € V{q) (the vacuum) and w € V(y).
The following conditions are assumed for u,v € V: the lower truncation
condition holds: |

u,v = 0 for n sufficiently large (2.12)

(or equivalently, Y (u, z)v € V((z)));
Y(1,z) =1 (1 on the right being the identity operator); (2.13)
the creation property holds:
((Y(v,z)1 € V[[z]] and l%Y(v,x)l =v (2.14)

(that is, Y(v,z)1 involves only nonnegative integral powers of z and the
constant term is v); the Jacobi identity (the main axiom) holds:

xp'é (.a_:l_i)_ﬂ) Y (u,2,)Y (v,25) — 256 (552—;:1) Y (v, z2)Y (u, )

= 516 ( xz”"’) Y (Y (u, 70)v, ©2) (2.15)

(note that when each expression in (2.15) is applied to any element of V, the
coefficient of each monomial in the formal variables is a finite sum; on the
right-hand side, the notation Y'(-,z2) is understood to be extended in the
obvious way to V[[zo,z5]]); the Virasoro algebra relations hold:

[L(m), L(n)] = (m — n)L(m + n) + — 5 (m® = M) mpc (2.16)

for m,n € Z, where

L(n) = wuy forn€Z, ie, Y(w,z) =) L(n)z™"2 (2.17)
neZ
“and
c € C; (2.18)
L(0)v = nv = (wt v)v forn € Z and v € V{y); (2.19)
! d |
E;Y(v, z) =Y (L(-1)v,z) (2.20)

(the L(—1)-derivative property).
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The vertex operator algebra just defined is denoted by (V,Y,1,w) (or
simply by V). The complex number c is called the central charge or rank of
V. Homomorphisms of vertex operator algebras are defined in the obvious
way.

Remark 2.2 The axioms above imply that if v € V' is homogeneous and
n €z, , ’
wto, =wtv—n—1 (2.21)

as an operator. We shall also use the fact that in the presence of other
axioms, the Virasoro algebra commutator relations (2.16) are equivalent to
the relation '

Y(w,z)w = %cla:"4 + 2wz~ + L(—~wz™! +v (2.22)

where v € V[[z]).

Vertex operator algebras have important “rationality,” “commutativity”

and “associativity” properties, collectively called “duality” properties. These
properties can in fact be used as axioms replacing the Jacobi identity in the
definition of vertex operator algebra, as we now recall.

In the propositions below, C[z;,z;]s is the ring of rational functions
obtained by inverting (localizing with respect to) the products of (zero or
more) elements of the set S of nonzero homogeneous linear polynomials in
ry and z5. Also, t15 (which might also be written as ¢,,,,) is the operation of
expanding an element of C[z;, 225, that is, a polynomial in z; and x5 divided
by a product of homogeneous linear polynomials in z; and zj, as a formal
series containing at most finitely many negative powers of x5 (using binomial
expansions for negative powers of linear polynomials involving both z; and
Z5); similarly for ¢o; and so on. (The distinction between rational functions
and formal Laurent series is crucial.)

For any Z-graded, or more generally, C-graded, vector space W = [[ W(,,,
we use the notation
for its graded dual.

Proposition 2.3 (a) (rationality of products) Forv, vy, va € V‘ andv' €
V', the formal series (v',Y (v, %)Y (ve, z2)v), which involves only finitely
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many negative powers of To and only finitely many positive powers of x;, lies
in the image of the map 1)5: -

(v ,Y(vl,xl)Y(vg,xg)v) = 412f (21, 22), (2.24)

where the (uniquely determined) element f € Clz,,x,]s is of the fomi

g(xl ) 372)
e 2.25
f(xlvx2) x{fb‘%(xl _ 32)t ( )
for some g € C[z1,x2] and r,s,t € Z. |
(b) (commutatlvxty) We also have

(v, Y (va, 2)Y (v1,21)v) = to1 f(21, Z2). m] (2.26)

Proposition 2.4 (a) (rationality of iterates) For v, v;, vs € V and v’ €
V', the formal series (v',Y (Y (v1,x0)ve, x2)v), which involves only finitely
many negative powers of o and only finitely many positive powers of x5, lies
in the image of the map t9p:

<U’, Y(Y(vh wO)véa ‘7"2)’0) = L20h(x0_’ 1132), (227)
where the (uniquely determined) element h € C[xy, z9)s is of the form

k(zo, z2)
h = ?
(%0, 22) zhrs(zo + z2)t

(2.28)

for some k € Clzg,z,] and r,s,t € Z.

(b) The formal series (v',Y (v1, o + 2)Y (v2, T2)v) , which involves only
finitely many negative powers of xo and only finitely many positive powers of
To, lies in the image of g2, and in fact

. (v’, Y('Ul, xo + :v2)Y(v2, $2);IJ> == Logh(mo, 272). a (2.29)

Proposition 2.5 (assoc1at1vxty) We have the following equality of ratio-
nal functions:

iz (VY (v1,21)Y (va, z2)v) = (L5 (v, Y(Y (v1, z0)v2, 22)v)) . O
T (2.30)
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Proposition 2.6 In the presence of the other axioms, the Jacobi identity
follows from the rationality of products and ilerates, and commutativity and
associativity. In particular, in the definition of vertez operator algebra, the
Jacobi identity may be replaced by these properties. 0O

We have the following notions of module and of intertwining operator for
vertex operator algebras:

Definition 2.7 Given a vertex operatbr algebra (V,Y, 1,w), a module for V
(or V-module or representation space) is a C-graded vector space (graded by
weights)

W =[] Wy; for we W), n=wtw; - (2.31)
neC
such that
dim Wy < oo for n € C, (2.32)
Wn) =0 for n whose real part is sufficiently small, (2.33)

equipped with a linear map V @ W — W/[z,z~!]], or equivalently,

V — (End W)[[z,z7Y]]

v = Y(0,z)=Y v,27"! (where v, € End W) (2.34)
: neZ

(note that the sum is over Z, not C), Y (v,z) denoting the vertex operator
associated with v, such that “all the defining properties of a vertex operator
algebra that make sense hold.” That is, for u,v € V and w € W,

- vow =0 for n sufficiently large (2.35)
(the lower truncation condition);

Y(1,2) = 1; (2.36)

z3té (.7:1 — :1:2) Y (v, 21)Y (v, z9) — 7516 (-m—%—‘;fi) Y (v,z2)Y (u, zy)
—Zo

To

=t (AR v an,m) 2.37)
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(the Jacobi identity for operators on W); note that on the right-hand side,
Y (u,zo) is the operator associated with V'; the Virasoro algebra relations
hold on W with scalar ¢ equal to the central charge of V:

1
[L(m),L(n)] = (m —n)L(m+n) + — 3 —(m® — Mm)bpmyn0C (2.38)
for m,n € Z, where
L(n) = wny1 for n€Z, ie, Y(w2) =Y L)z (2.39)
‘ ' neZ
L(0)w = nw = (wt w)w for n € C and w € W,); (2.40)
%Y(v, z) = Y(L(-1)v,z), | (2.41)

where L(—1) is the operator on V.

This completes the definition of module. We may denote the module
just defined by (W,Y) (or simply by W). If necessary, we shall use Yy or
similar notation to indicate that the vertex operators concerned act on W.
Homomorphisms (or maps) of V-modules are defined in the obvious way. For
V-modules W, and W,, we shall denote the space of module maps from W,

to W, by Homy (W1, Ws).

Remark 2.8 Formula (2.21) holds for modules. Also note that the Virasoro
algebra commutator relations (2.38) are in fact consequences of the other
axioms, in view of (2.22).

For any vector space W and any formal variable =, we use the notation
Wiz} = {Z anz"|an €W, 1 € c}. (2.42)
neC

In particular, we shall allow complex powers of our commuting formal vari-
ables.

Definition 2.9 Let V be a vertex operator algebra and let (W}, Y;), (Ws,Y3)
and (W3,Y3) be three V-modules (not necessarily distinct, and possibly equal



161

to V). An intertwining operator of type (W:Va,z) is a linear map W; @ W, —

W3{z}, or equivalently,

W, — (Hom(Wa,Ws)){z}
w = Yw,z) =Y w,z ™! (where w, € Hom(W,, W3)) (2.43)
neC

such that “all the defining properties of a module action that make sense
hold.” That is, for v € V, w) € Wi and wp € W,, we have the lower
truncation condition

(wqa))aw@) =0 for n whose real part is sufficiently large; (2.44)

the following Jacobi identity holds for the operators Yi(v,-), Ya(v,-), Y3(v,-)
and Y(-,z2) acting on the element w(y):

ry —2
Ty 16( 1330 2) Y3(v, 1)V (wq), Z2) wiz)
—xb‘lé'(xz__x:l) y(w(l),xz)Yz(v,ml)w@)

ry — X
= x;la( = ") Y(Y; (v, 7o) wy, T2)wey (2.45)

(note that the first term on the left-hand side is algebraically meaningful
because of the condition (2.44), and the other terms are meaningful by the
usual properties of modules; also note that this Jacobi identity involves in-
tegral powers of zo and z; and complex powers of z5);

d o
a;y(w(l),x) = Y(L(-1)wq), ), (2.46)
where L(—1) is the operator acting on W;.

The intertwining operators of the same type Ws ) form a vector space
& Pe \wy w, pace,

which we denote by Vvv“,ffwz. The dimension of this vector space is called the

fusion rule for W}, W, and W3 and is denoted by Nv;v‘,’l",y2 (< 00). Formula
(2.21) holds for intertwining operators, with v, replaced by w, (n € C).

There are also duality properties for modules and intertwining operators.
See [FHL] and [DL] for details.
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Let (W,Y), with
. W= W, (2.47)

be a module for a vertex operator algebra (V,Y, 1,w), and consider its graded
dual space W' (recall (2.23)). We define the contragredient vertex operators
(called “adjoint vertex operators” in [FHL]) Y'(v,z) (v € V) by means of
the linear map

V = (End W)[[z,z7Y]] |
v = Y/(v,z) =) v,z7"! (where v, € End W'), (2.48)

neZ
determined by the condition

(V' (0, 2)0, w) = (Y (0 (—~2) Oy, 371 )w) (2.49)

forv eV, w € W, w € W. The operator (—z~2)L(® has the obvious

meaning; it acts on a vector of weight n € Z as multiplication by (—z~2)".

Also note that e*£(!) (—z~2)L(0y jnvolves only finitely many (integral) powers

of z, that the right-hand side of (2.49) is a Laurent polynomial in z, and that

the components v/, of the formal Laurent series Y’(v, z) indeed preserve W"'.
We give the space W’ a C-grading by setting

Wiy =W, for neC (2.50)

(cf. (2.23)). The following theorem defines the V-module W’ contragredient
to W (see [FHL], Theorem 5.2.1 and Proposition 5.3.1):

Theorem 2.10 The pair (W',Y’) carries the structure of a V-module and
(wW"Y")=W)Y). O

- Given. a module map 7 : W) — W, there is a unique module map 7' :
W; — W], the adjoint map, such that
(U’(wiz))aw(lﬁ = (“’22),77("’(1)) ' (2.51)

for wy € Wi and w(y) € Wy, (Here the pairings (-,-) on the two sides refer
to two different modules.) Note that

7' =n. (2.52)

In the construction of the tensor product module of two modules for a
vertex operator algebra, we shall need the following generalization of the
notion of module recalled above:
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Definition 2.11 A generalized V-module is a C-graded vector space W
equipped with a linear map of the form (2.34) satisfying all the axioms
for a V-module except that the homogeneous subspaces need not be finite-
dimensional and that they need not be zero even for n whose real part is
sufficiently small; that is, we omit (2.32) and (2.33) from the definition.

3 Affinizations of vertex operator algebras
and the x-operation

In order to use the Jacobi identity to construct a tensor product of modules
for a vertex operator algebra, we shall study various “affinizations” of a vertex
operator algebra with respect to certain algebras and vector spaces of formal
Laurent series and formal rational functions.

Let V' be a vertex operator algebra and W a V-module. We adjoin the
formal variable t to our list of commuting formal variables. This variable will
play a special role. Consider the vector spaces

V[t,t" 1=V e Clt,t | c Ve C((t)) c Ve C[lt,t '] c V[[t,¢7']]

(note carefully the distinction between the last two, since V is typically
infinite-dimensional) and W ® C{t} C W{t} (recall (2.42)). The linear map

w: V[t - EndW
vQt" v, (3.1)
(v €V, n € Z) extends canonically to

w: VOC((t) - EndW

v® Y aat® = Y antn. (3.2)
- n>N n>N

(but not to V((t))), in view of (2.21). It further extends canonically to
w : (V ® C((1)))[[z,27"]] = (End W)[[z,z~]], (3-3)

where of course (V' ® C((t)))[[z,z"!]] can be viewed as the subspace of
V{[t,t™1, z,z7]] such that the coefficient of each power of z lies in V®C((t)).
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Let v € V and define the “generic vertex operator”

Yi(,2) = S (0@t € (VO Clt,t Nz, s ™. (34)
, neZ
Then

Yi(v,z) = v®z76 (%)

- voru()
e VeC[tt? a1
(c Vlit,e™!,z,27]) (3-5)
and the linear map
‘ V o VecC[tt!, Y
v =, Y(v,x) (3.6)

is simply the map given by tensoring by the “universal element” z~16 (i)
We have

- w(Yi(v, 7)) = Yw(v,2). (3.7)
For all f(z) € C|[z, x‘l.]], f(z)Yi(v, ) is defined and
f(@)Yi(v,z) = f()Yi(v, 2). (3.8)

In case f(z) € C((z)), then Tw (f(z)Y:(v,)) is also defined, and

P 02) = )V 2) = Vi 2) =l OH 0.
: i 3.9
The expansion coefficients, in powers of z, of Y;(v, z) span v® C[t,t~!], the z-
expansion coefficients of Yy (v, z) span 1y (v® Cl[t,t!]) and the z-expansion
coefficients of f(z)Y,(v,z) span v ® f(t)C[t,t™!]. In case f(z) € C((z)), the
z-expansion coefficients of f(z)Yw (v, ) span 1w (v ® f(t)C[t,t71]).

Using this viewpoint, we shall examine each of the three terms in the
Jacobi identity (2.45) in the definition of intertwining operator. First we
consider the formal Laurent series in xg, Z1, Z2 and ¢ given by

:1:516 (xl — zo) Yi(v,z0) = xl‘lé (x2 + xo) Y:(v, zo)
) r1

=v®zyl6 (’:2 + t) rgté (—t-) (3.10)

I Ty
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(cf. the right-hand side of (2.45)). The expansion coeflicients in powers of zy,
z; and x5 of (3.10) span just the space v ® C[t,t~!]. However, the expansion
coefficients in z¢ and z; only (but not in z5) of

xi—lé (:1:2 + xo) Yi(v, 7o) =

Ty

=v® TR (xz T t) rylé (-—t—)

T )

=vQ® (2 (2 +t)"‘wr"‘") (Z t"xa"‘.l) (3.11)

meZ neZ

span '
¥ ® 1z (C[t, 17, 72 + 1, (32 + 1) '] C v ® Clza, 237)((2)),

where ¢,, ; is the operation of expanding a formal rational function in the
indicated algebra as a formal Laurent series involving only finitely many
negative powers of ¢ (cf. the notation ¢;, etc., above). We shall use similar
t-notations below. Specifically, the coefficient of 5" 'z7™ ! (m,n € Z) in
(3.11) is v @ (z2 + t)™t".

We may specialize z + 2 € C*, and (3.11) becomes

—vesi() (L)
1 0

=v® ( > (z+ t)"‘wi'"‘"‘> (E t"zy “‘1) : (3.12)
meZ neZ

The coefficient of z3" 'z;™ ! (m,n € Z) in (3.12) is v ® (2 + t)™" €
-V ®C((t)), and these coefficients span

v@Clt,t™!, (z+t)JCcv®C((t). - (3.13)

Our tensor product construction will be based on a certain action of the

space V ® Clt, t'l, (2 4+t)7!], and the description of this space as the span of
the coefficients of the expression (3.12) (as v € V' varies) will be very useful.
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Now consider

- -T2+
z5'6 (—'2;0——1') Yi(v,z1) =

=o' (TR 47 (xl)

= 'v®( Y (—z2+t)" "-1)( Y t'?' ™ 1) (3.14)

nez meZ

(cf. the second term on the left-hand side of (2.45). The expansion coeffi-
cients in powers of zy and r; (but not ;) span

U ® 14, Clt,t7}, =19 + 8, (=22 + 1)),

and in fact the coefficient of 23" '27™"! (m,n € Z) in (3.14) is v ® (—z2 +
t)*t™. Again specializing 2, — 2 € C*, we obtain

g6 (—z L xl) Yi(v,m1) =
Zo

-roms (e (2)
0 1

=v®(2( —z+1t)" )(Z t™x -'""1) (3.15)

neZ meZ

The coefficient of 3™ z7™ ! (m,n € Z) in (3.15) is v ® (—z + t)"t™, and
these coefficients span -

vQ® Clt,t™!, (—z+ )7 C v ® C((t)). (3.16) .

Finally, consider
g6 (xl - xz)Yt(U, ;) =
Zo
t—=z t
v® ( 2 )5 ) 7)) (3.17)

The coefficient of 5" '27™! (m,n € Z) is v ® (t — z3)"t™, and these
expansion cofficients span

V® Lz, Clt, t7,t — 29, (t — 22)7Y].
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If we again specialize x5 > 2, we get

516 (“"x" z) Yi(v, 71) = v ® 7316 (t _ z) 716 (i) , (3.18)
0

b)) T

whose coefficient of 5" 'z7™ ! is v ® (t — z)"t™. These coefficients span
v@C[t,t7L,(t—2)")cv® C((t™1)) (3.19)

(cf. (3.13), (3.16)).

- Later we shall evaluate the identity (2.45) on the elements of the con-
tragredient module W3. This will allow us to convert the expansion (3.19)
into an expansion in positive powers of t. It will be useful to examine the
notion of contragredient vertex operator ((2.48), (2.49)) more closely. For a
V-module W, we define the opposite vertex operator associated to v € V by

Yy (v, z) = Yip (€22 (—272) 20y, £~ 1) (3.20)
and we define its compon‘en_ts by:

Yip(v,2) = ¥ viz~m L (3.21)
neZz

Then v, € End W and v — Y}} (v, z) is a linear map V — (End W)[[z,z71]]
such that V@ W — W((z71)) (v ® w = Yji(v, z)w). Note that the contra-
gredient vertex operators are the adjoints of the opposite vertex operators:

(v, Yig (v, 2)w) = (Y (v, z)w', w) (3.22)

and that if v is homogeneous, the weight of the operator v} is n +1 — wt v,
by (2.21). The proof of Theorem 5.2.1 in [FHL), which asserts that (W’,Y”)
is a V-module, in fact proves the following opposite Jacobi identity for Yyy:

- Ty — * *
z5'6 ( . 2) Yy (ve, 22) Yoy (v1, 21)

To
o —T
—o5%8 (222 Y (on,21) Vi (12, 20)
= .’I,'2-15 (xl ; .‘L‘o) Y‘z/ (Y(vl, :L‘o)‘l)2, $2) (323)
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. (which of course also follows from the assertion that (W’,Y”) is a V-module).
The pair (W,Y™*) should be thought of as a “right module” for V.

We shall interpret the operator Yy, by means of a *-operation on V ®
C[[t,t™!]]. This operation will be an involution. We proceed as follows: First
we generalize Y™ in the following way: Given any vector space U and any
linear map

2(,2): V = Ulls,a™] (= HZU®a:")
v = Z(v,z) (3.24)

from V into U[[z,z7!]] (i.e., given any family of linear maps from V into the

spaces U ® z"), we define Z*(-,z) : V = Ul[z,z~1]] by
Z*(v,3) = Z(eV (—z7) O, 27h), (3.25)

where we use the obvious linear map Z(-,z™) : V — U[[z,z7]], and where
we extend Z(-,z~!) canonically to a linear map Z(-,z71) : V[z,z7!] —
U[[z,z7!]]). Then by formula (5.3.1) in [FHL] (the proof of Proposition 5.3.1),
we have | o

Z’"('U, .’E) — Z*(ezL(l)(_x-2)L(0),v"x——l)
— Z(ex" L(1) (-—.’L‘2)L(0) e:|:L(1) (_x—2)L(0),v, IB)
= Z(v,z). | | (3.26)
That is, ,
z"(,z) = Z(:, 2). (3.27)

Moreover, if Z(v,z) € U((z)), then Z*(v,z) € U((z™!)) and vice versa.
Now we expand Z(v,z) and Z*(v,z) in components. Write

Z(v,2) = z v(,,)a:"""l, | - (3.28)
neZ
where for all n € Z,
V - U

L I V[N (3.29)
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is a linear map depending on Z(-,z) (and in fact, as Z(-,z) varies, these
linear maps are arbitrary). Also write

Z*(v,x) =) vz | (3.30)
nez
where
V - U

| v Uy, (3.31)
is a linear map depending on Z(-,z). We shall compute V(n)- First note that
> v(n)x“"‘ 3 (M (—z72)EO0p) oy 2™ (3.32)

neZ neZz

For convenience, suppose that v € Vi), for h € Z. Then »the right-hand side
of (3.32) is equal to

SIS <e’4<l>v)<_n>x-"“‘2"

neZ
Z z L(l v)(‘n)xm—n+1—-2h
neZ meN ,
D D E(L V) (cnem—242m)T "%, (3.33)
mEN nEZ

that is,
* 1 m )
v = (1" X —(L(1)"V)(-n-m—2+2h). (3.34)

meN

For v € V not necessarily homogeneous V() 1s given by the appropnate sum
of such expressions.

Now consider the special case where U = V ® C[t,t~!] and where Z ( )
is the “generic” linear map

Y:(z):V = (VC[t,t™)[[z,z7]] |
v = Y(vz)=) (vot)z ! - (3.35)
neZ

(recall (3.4)), i.e., |
V) =V Rt". (336)
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Then for v € Vjp,

viw = (—1)" %-n%((m))mv) @ tTnTmo A (3.37)
| o ™!

in this case.
* This motivates defining a *-operation on V ® C[t,t™!] as follows: For any
n,h € Z and v € V), define

(v®t") = (-1)* Y %(L(l)"‘v) Y B PR C[t,t™'], (3.38)
meN "° :

and extend by linearity to V' ® C[t,t!]. That is, (v ® t")* = o[, for the
special case Z(-,z) = Y;(-, ) discussed above. (Note that for general Z, we
cannot expect to be able to define an analogous *-operation on U.) Also
consider the map

Y (,2) = (4(,a):V = (Ve Cltit a2

v = Yv,z)=) (v®t")*z7"! (3.39)
' neZ

Theh for general Z(-,z) as abov.e, we can define a linear map
ez: VC[tt] - U
vRI" Yy (3.40)
(“evaluation with respect to Z2”), i.e.,
ez: Yi(v,z) » Z(v, 1), (3.41)
and a linear map
ey VRCtt] - U
v® " 'Ul(kn), (342)

1.e.,
€z Yi(v,z) » Z*(v,z). - (3.43)

Then
€y =€z 0%, (3.44)
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that is,
EZ(),t*(v’x)) = Z*(vax), (345)

or equivalently, the diagram
Yi(v,z) +% Z(v,1)
d 1(Z(0) m 2a)
Y (v,z) v5 Z*(v,z) (3.46)

commutes. Note that the components vy, of Z*(v,r) depend on all the
components v(,) of Z(v, z) (for arbitrary v), whereas the component (v®t")*
of Y;*(v, ) can be defined generically and abstractly; (v®t")* depends linearly
on v € V alone. |

Since in general Z**(v,z) = Z(v, ), we know that

Y, (v,z) = Y(v, z) (3.47)
as a special case, and in particular (and equivalently), |
(vt =v@®t" | (3.48)

for all v € V and n € Z. Thus * is an involution of V ® C[t,t™}].
Furthermore, the involution * of V ® C[t,t!] extends canonically to a
linear map : |

VeC[tt ] » Ve Ctt ]
In fact, consider the restriction of * to V =V @t
V 3 VeCt]

) |
vom U= (=) Y m(L(1)'"v) @t~ m2+2h, (3.49)
meN ™

extended by linearity from V() to V. Then for v € V and n € Z,

(v@t") =vt™", (3.50)
and it is clear that * extends to V ® C[[t,t™}]]: For f(t) € C[[t,t™]],

(v® f(t) = v f(t™). (3.51)
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To see that * is an involution of this larger sp‘ace, first note that
v =v (3.52)

(although v* € V in general). (This could of course alternatively be proved
by direct calculation using formula (3.38).) Also, for g(t) € C[t,t™!] and

f(®) € Cit,t71]],
(v ® g(t)f (1)) = v"g(t™)f (7)) = (v® 9(1))" F(t 7). (3.53)
Thus for all z € V ® C[t, t~1] and f(t) € C[[t,t™"]],
(zf@) =2 ft7). (3.54)
It follows that

(W F )"

v** (t)

vf(t)

= v® f(t), (3.55)

and we have shown that * is an involution of V ® C[[t,t™1]]. We have

+:VOC((t) & VeC(t?)). (3.56)

(v® f(t)™

Note that

Yi(,2) = Y (vot)ya!
neZ

— ,v* Z t—nx—n—l
neZ

= vz~ 1§(tx)

= v'té(tz)

€ VC[tt!,z,z71). (3.57)
Thus the map v — Y{*(v,z) is the linear map given by multiplying v* by

the “universal element” t§(tz) (cf. the comment following (3.6)). For all
f(z) € C[[z,z7Y]], f(z)Y,*(v, z) is defined and

@)Y (v,2) = fEY(v,2)
= v f(t™V)té(tz). (3.58)
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Now we return to the starting point — the original special case: U =
End W and Z(-,2) = Yw(-,2) : V = (End W)][[z,z~!]]. The corresponding
map

ez =¢y,: V[t,t7'] = End W
vrt" U(n) (3.59)

(recall (3.40)) is just the map 7w : v @ t* = v, (recall (3.1)), i.e., v(n) = vn
in this case. Recall that this map extends canonically to V' @ C((t)). The
map €% is w o* : V®C[t,t7!] = End W and this map extends canonically
to V ® C((t71)). In addition to (3.7), we have

w (Y (v,2)) = Yy(v,2) (3.60)

(v'(“n) = v} in this case; recall (3.21)). In case f(z) € C((z™1)),

£ (@)Y (0,2) = w (f(2) Y} (0,2))

is defined and is equal to Ty (f(t71)Y,*(v, 2)) (which is also defined).
The z-expansion coefficients of f(z)Y;*(v,z), for f(z) € C[[z,z7!]], span

S FENCI Y] = (WOl ) A ()
= (f(Clt, )" (3.61)

The z-expansion coefficients of Y3 (v, ) span

w@*C[t,t71]) = mw((v® Clt,t71])*)
= 7y (v® C[t,t1]). | (3.62)

In case f(z) € C((z')), the z-expansion coefficients of f(z)Y;i(v,z) span
mw (v* f(t71)C[t,t71]) = 7y (vf(t)Clt,t71]). (Cf. the comments after (3.9).)

Our action of the space V ® C[t,t™1, (2 + t)~!] will be based on certain
translation operations and on the *-operation. More precisely, it is the space
V ® ¢ C[t,t71,(z + t)~!] whose action we shall define, where we use the .
notations |

1y 1 C(t) —= C((t) c Cft,t7Y] |
t-:C(t) <= C(t™) c C[lt,t71]) : (3.63)
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to denote the operations of expanding a rational function of the variable ¢ in
the indicated directions (as in Section 8.1 of [FLM2]). For a € C, we define
the translation isomorphism

T,: C(t) = C(t)
f&) » flt+a) (3.64)
and we set | | |
T;h =1y 0T,0 L;l . L+C(t), 4 C((til))‘ (365)

(Note that the domains of these maps consist of certain series expansions of
rational functions rather than of rational functions themselves.) We shall be
interested in

T* .0, Clt,t™, (2 + £)~Y] = C((F*)), (3.66)

where 2 is an arbitrary nonzero complex number. The images of these two
maps are t+C[t, 71, (z — t)7).
Extend TZ, to linear isomorphisms

TE . V@uClt,t™,(z+8)"] 3 V@uCltt L, (z— )] (3.67)

given by 1 ® T, with T, as defined above. ANote that the domain of these
two maps is described by (3.12)-(3.13), that the image of the map T, is
described by (3.15)—(3.16) and that the image of the map T, is described
by (3.18)-(3.19).
We have the two mutually inverse maps
VuClt(z—t)1 5 VeuCltt ! (z71 -1t
v® f(t) » vf@EY) (3.68)

and

VeuCltt(z'-t)" 5 Ve.Ctt(z-1t)
v® f(t) = v f(t7), (3.69)

which are both isomorphisms. We form the composition

T, =xo0T", | (3.70)
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to obtain another isomorphism
T*.: V@ uClt,t™, (z+1)71] 3 Vi, Clt,t™, (2~ —t)7Y].

The maps T, and T*, will be the main ingredients of our action. The
following result asserts that TF,, T, and T*, transform the expression (3.12)
into (3.15), (3.18) and the *-transform of (3.18), respectively: -

Lemma 3.1 We have
T+ (z‘lé (””1 :x") Yi(o, xo)) = 2715 (z_'_'xfl) Yi(v,z1),  (3.71)
T, (z'lé (“’1 - ”"’) Yi(o, a:o)) iy (‘“x: ") Yiv,z1),  (3.72)
T, (2‘16 (@) Y (v, xo)) =256 (-’le'; Z) Y (v,z1).  (3.73)

Proof We prove (3.71): From (3.12), the coefficient of 3" 'z7™! in the
left-hand side of (3.71) is T+, (v ® (2 + t)™t"). By the definitions,

TH(v® (z+t)™t") = v @ t™(—(2 —1))". (3.74)
On the other hand, the right-hand side of (3.71) can be written as

v ® 2516 (z ~ m‘) 716 (-t—) = v @716 (Z — t) 716 (xi) (3.75)
1

-0 Ty —X9

where we have used (3.5) and the fundamental property (2.4) of the formal
6-function. The coefficient of 3™ 'z7™"! in the right-hand side of (3.75) is
also v ® t™(—(z — t))*, proving (3.71). Formula (3.72) is proved similarly,
and (3.73) is obtained from (3.72) by the application of the map *. O

4 The notions of P(z)- and Q(z)-tensor prod-
uct of two modules

For any C-graded vector space W = ]I W,) such that dim W(,) < oo for
each n € C, we use the notation

W =[] Wwy =W", (4.1)
neC
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where as usual / denotes the graded dual space and * denotes the dual space
of a vector space.

Let V be a vertex operator algebra and W a V-module. For any v € V
and n € Z, v, acts naturally on W because of (2.21) for modules (recall
Remark 2.8) and v} also acts natually on W, in view of (2.21) and (3.20).
Moreover, because of (2.21) and (2.44), for fixed v € V, any infinite linear
combination of the v, of the form ¥,y a,v, (a, € C) acts on W, and from
(3.22), for example,-we see that any infinite linear combination of the form
YasN GV also acts on W.

Fix a nonzero number 2z and let (W},Y)) and (W5, Y3) be two V-modules.
In the present paper (Part I), we give the algebraic definitions and algebraic
constructions of certain tensor products of (W;,Y;) and (Ws,Y>), depending
on 2z, but these have geometric meanings as well, which will be discussed and
studied in other papers in this series. Let (W3, Y3) be another V-module. We

call a P(z)-intertwining map of type ( ws ) (see Remark 4.3 below for the

meaning of the symbol P(2)) a linear map F : W, ® W2 - W3 satlsfymg the
condition

- T —2 :
T, 15 ( 1x0 ) Y3(v,x1)F(w(1) ® w(2)) =

) —Zz '
=2"1§ ( : 0) F(Yl(”,zo)w(l) ® w(z))

z
+x56 (

— I

- ) F(wq) ® Ya(v, 71)w(z)) (4.2)

forv e V, wyy € Wy, wig) € Wy (cf. the identity (1.1) and the Jacobi identity
(2.45) for intertwining operators). Note that the left-hand side of (4.2) is well
defined in view of the comments in the preceding paragraph. A P(z)-product
of Wi and W, is a V-module (W3,Y3) equipped with a P(z)-intertwining
map F of type ( ) We denote it by (W3,Y3; F) (or simply by (W3, F)).
Let (W4, Yy;G) be,another P(z)-product of W; and Wa. A morphism from
(W3,Ys; F) to (W, Yy; G) is a module map 5 from W3 to W, such that

G="oF, | (4.3)

where 7] is the map from W3 to W, uniquely extending 7. We define the
notion of P(z)-tensor product using a universal property as follows:
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Definition 4.1 A P(z)-tensor product of Wy and W, is a P(z)-product
(WiRp(;)Wa, Yp(:); Bp(z)) such that for any P(z)-product (Ws,Y3; F), there
is a unique morphism from (W1®p,)Wa, Yp(;);Bp(;)) to (Ws,Ys; F). The V-
module (W1Bp(,)W2,Yp(,)) is called a P(z)-tensor product module of Wy and
Wo.

Remark 4.2 As in the case of tensor products of modules for Lie algebras,
it is clear from the definition that if a P(2)-tensor product of W; and W,
exists, then it is unique up to unique isomorphism.

Remark 4.3 The symbol P(z) in the definitions above in fact represents a
geometric object. Geometrically, to define a tensor product of W; and W5, we
need to specify an element of the moduli space K of spheres with punctures
and local coordinates vanishing at these punctures. (In this remark and in
Remark 4.6 below, we invoke the detailed discussion of the moduli space K
and its role in the geometric interpretation of the notion of vertex operator
algebra given in [H1], [H2], [H3] or [H4]. The present remark and Remark 4.6
are not logically used in the algebraic treatment in Part I.) More precisely,
we need to specify an element of the determinant line bundle over K raised
to the power ¢, where c is the central charge of the vertex operator algebra.
The definitions of intertwining map, product and tensor product above are
those associated to the element P(z) of K containing CU {oo} with ordered
punctures oo, z, 0 and standard local coordinates 1 /w, w— z, w, vanishing at
00, 2, 0, respectively. Note that P(z) is the geometric object corresponding
to vertex operators or intertwining operators in the geometric interpretation
of vertex operators and intertwining operators. The appropriate language
describing tensor products defined using elements of K is that of operads,
or more precisely, partial operads (see [M], [HL2], [HL3] and [H5]). These
different tensor products will play important roles in the formulations and
constructions of the associativity and commutativity isomorphisms.

Though it is natural to first consider P(z)-tensor products of two modules
as defined above, in this paper (Part I) we shall instead construct another
type of tensor product, the Q(z)-tensor product (see below), since the calcu- -
lations involved in the direct construction of Q(z)-tensor products are simpler
than those for P(z)-tensor products. Moreover, P(z)-tensor products can be
obtained from @(z)-tensor products by performing certain geometric trans-
formations. We shall give the construction of a P(z)-tensor product in Part
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III using the construction of the Q(z)-tensor product presented in Sections

5 and 6 below. The reader should observe that many of the considerations

below concerning concepts based on Q(2) carry over immediately to the anal-
ogous considerations related to P(z); in Part I we focus only on Q(z2).

A Q(z)-intertwining map of type (Wv,vavz) is a linear map F : W; @ W5 —
W3 such that

T —7T . ;
16 (B22) ¥ (0, m0) F(woy © weo) =
ry — =2 '
=156 ( - ) F(Yy (v, z1)wg) @ w)

=y ( = ) F(wq) ® Ya(v, 21)we) (4.4)

for v € V, wy) € Wi, we) € Wa. As in the definition of P(z)-intertwining
map, note that the left-hand side and both terms on the right-hand side
of (4.4) are well defined. First replacing v by (—z2)L(®e*L(My and then
replacing o by x5’ in (4.4), we see that (4.4) is equivalent to:

—16 xl“-’”b_l Y F ; —
z — .3(v,1‘o) (wa) @ wig)) =

ry — 2 -
=00 ( — ) F(Y3(em X0 (3129) 22 Oe%0" 20y, 27wy @ wia))

Zo
_11) F(wg) ® Ya((—252) e Wy, 1)) wy).  (4.5)
o / - |

26 (z—:v

(The reverse procedure is given by first inverting z¢ and then replacing v by
e L(D) (—g=2) L0}y §

We denote the vector space of Q(z)-intertwining maps of type (12 ) by

WiW,
M[Q(2)]Wiw, or simply by Myty, .

- We define a Q(z)-product of W, and W, to be a V-module (W3,Y3) to-
gether with a Q(z)-intertwining map F of type (W‘:’&,z) and we denote it
by (W3,Ys; F) (or (W3, F3)). Let (W3,Y3; F) and (Wy,Y,; G) be two Q(2)-
products of Wy and W,. A morphism from (W3,Y3, F) to (Wy,Y4;G) is a
module map 7 from W3 to W, such that

G = 7o F (46)
where, as in (4.3), 7 is the map from W3 to W4 uniquely extending 7.
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Definition 4.4 A Q(z)-tensor product of W; and W, is a Q(z)-product
(WiRg(z2)Wa, Yo(2); Bq(z)) such that for any Q(z)-product (W3,Ys; F), there
is a unique morphism from (W Rq(,)Wa, Yg(;); Bg(z)) to (W3, Ys; F). The V-
module (W1Rq(,)Wa, Yy(,)) is called a Q(z)-tensor product module of W, and
Wa.

Remark 4.5 As in the case of P(z)-tensor products, a Q(z)-tensor product
is unique up to unique isomorphism if it exists.

Remark 4.6 In the definitions above, Q(z) represents the element of K
containing C U {oo} with ordered punctures z, oo, 0 and standard local
- coordinates vanishing at these punctures. (Recall Remark 4.3.) In fact, this
is the same as the element of K containing CU {00} with ordered punctures
00, 1/2, 0 and local coordinates z/(zw — 1), (zw — 1)/2%w, 22w/(zw — 1)
vanishing at oo, 1/z, 0, respectively, and (4.5) corresponds to this canonical
sphere with punctures and local coordinates.

The existence of a Q(z)-tensor product is not obvious. We shall prove
the existence and give two constructions under certain assumptions on the
vertex operator algebra in this and the next two sections. First we relate

Q(z)-intertwining maps of type (W?,&,2) to intertwining operators of type

’ .
l N
(W;; Wz) :

‘Let Y be an intertwining operator of type (w%vz) For any complex
number ¢ and any wgy € Wi, y(w(l),x)| is a well-defined map
zn=en¢, neC

from W, to W3, in view of formula (2.21) for intertwining operators. For
brevity of notation, we shall write this map as y(w(l),ec), but note that
Y(wqy, ) depends on ¢, not on just e, as the notation might suggest. In
this paper we shall always choose log z so that

log z = log|z| + iargz with 0 < argz < 2. (4.7)
Arbitrary values of the log function will be denoted
l,(2) = log z + 2pmi (4.8)

for p € Z.
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We now describe the close connection between intertwining operators of

~ type (W'év) and Q(z)-intertwining maps of type (WWfV) Fix an integer p.
W

Let Y be an intertwining operator of type (W,W ) Then we have an element
of (W1 ® W3 ® W)* whose value at w) ® wis) ® wiz) (wa) € W1, we) € We,
wisy € W3) is
3
(W(l), Y(wig), € we) )w;
where (-, ) is the’ pairing between W, and W] = W}. Since any element
of (Wl ® W3 ® Wa)* amounts exactly to a linear map from W; ® W, to

= W3, our element of (W; ® W} @ W,)* obtained from the intertwining
operator Y gives us a linear map Fy , : W; ® Wy — W3 such that

(Wia), Fyp(way ® wey)Iws = (way, Y(wig), €7 )weey))w (4.9)

for all 'wm € W1, wig) € W, w£3) € W3, where (-, -)w, is the pairing between
W3 and W3. (For any module-W, we shall use the analogous notation (-, -)w
to denote the pairing between W’ and W.)" The Jacobi identity for Y is
equivalent to the identity

1. {T1—To\ ,
z;'6 ( . 0) (wqy, Y(Y3(v, zo)wigy, T2)we))w:

T2

o= -z ,
16( — 1) (w(l),y(w(s),:vz)yz(v, :L‘l)w(2))wl, (4.10)

) (w(l)»Yl'(”axl)y(wb)affz)w(z))w;

for all w(;y, w) and iv23) (recall the notation (2.48)). Substituting e™*(?) for
z%, n € C, in (4.10), and noting that in case n € Z, we may simply write 2"
for e™»(?) we obtain

_ T —Zx .
2716 (222 (way, V(K (0, o)l 2w,
_ T —2 .
=xol5( - )(W(l),Y{(v,xl)y(WEs),e"’( Nweyhw;
I z
—25"8 (252 (way, Vlwlyy ) Yalo, 21wy (411)

Using (3.22) and (4.9), we see that (4.11) can be written as

2716 (xl

To -
) (wig), Y3 (v, 20) Fy p(wqy ® wiay)w,
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(T -2 .
= 258 (222 (wley, P47 (0 20)00) © i)
z2—z
_xglﬁ( __xol) (wiays Py @ Yalvs 21wy, (4.12)

Thus Fy, is a Q(2)-intertwining map of type (W?’;,z)

The only part of the definition of intertwining operator we have not yet
used is the L(—1)-derivative property (2.46). {Recall that the lower trun-
cation condition (2.44) has already been used in the formulation of the first
term on the left-hand side of the Jacobi identity (2.45).). Since we have
specialized = to z in )(-,z), there is no property of Fy, corresponding the
L(—1)-derivative property of ). Instead, the L(—1)-derivative property will
enable us to recover Y(-,z) from Fy,. Specifically, the L(—1)-derivative
property enters into the proof of the formula

A0y e = Y Oy ) (19

(recall [FHL], formula (5.4.22), and Lemma 5.2.3 and its proof), and this is
equivalent to the formula

(z"Owqy, V(@™ Owiy), 20)z™ " Owey )w; = (way, Y(wly, Imo)w(z))u(f; )
. 4.14
for all wy € W. Substituting e™»() for 2 and e~"#)z" for z*, n € C, in
(4.14), we obtain | -
( e=1p(2)L(0) .L(0),,, ), y(elp (2)L(0) x-L(o)wia) , elp(z)) el,(z)L(O) -’L‘"L(o)w(z))w,'
= (wqy, Y(wiz), T)w))w, (4.15)
or equivalently, by (4.9),

(elr(zv)L(o)x-L(Q)wf(s), Fy’.p(e-'lr(Z)IL(O)‘xL(O)w(l) ® elp(z)L(o)x_L(o)w(2))>u,3
= (w(), Y(wiz), 2)wiz)w;- (4.16)
Thus we have recovered Y from Fy,,,.

We shall also need the following alternative way of recovering ) from
Fy p, using components. We write (4.9) as:

(wqy, Zc(wis))nwz)e('""”"(’))w; = (W), Fyp(wa) ® we))ws.  (4.17)
neE
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This formula enables us to recover the components (w(3))nw(2), n € C, of
YV(wizy, T)w(g) from Fyp, assuming for convenience that w() and wig, are
homogeneous vectors, in the following way: The map F) , gives an element of
(W1@Wi®@W>)* whose value at w(1)®w(3) ®uw(g) is equal to the right-hand side
of (4.17). This element amounts to a map from W3 ® W, to Wy'. By (4.17),
the image of w{3) ®w(z) under this map is equal to Enec(w;3) Jnwg)e"n DG,
Projecting this image to the homogeneous subspace of W] of weight equal to

wt wiz) —n — 1+ wt w),

we obtain (w(3))nw(2)e("”“l)"'(‘). Mutiplying this by e(*+1D}%(2) we recover the
coefficient (wig))nw(z).-
Motivated by this procedure, we would like to construct an intertwining

operator of type (wv'vv{vz) from a Q(z)-intertwining map of type (“;:"jvz) Let
3

F be a Q(z)-intertwining map of type (W‘K?Vg) . This linear map from W; @ Wy
to W gives us an element of (W, @ W@ W,)* whose value at w() ®wz3) Qw(z)
is
| | (w23), F(way ® wg)))w,-

But since every element of (W; @ W3 @ W5)* also amounts to a linear map
from W3 ® W to Wy, we have such a map as well. Let wi;) € Wj and
w(g) € W be homogeneous elements. Since Wy = [I,cc(W])(n), the image
of wy, ® w(y) under our map can be written as ¥-,cc(w(s))nw(ze " V()
where for any n € C, (w(3))nw(2)e(‘"‘1"v(_’) is the projection of the image to
the homogeneous subspace of W] of weight equal to

wt wizy —n — 1+ wt w).

(Here we are defining elements denoted (w(s)),w() of W] for n € C.) We
define

Vrp(Wig), T)wy = Y (wig))aw@z ! € W{{z}
neC

for all homogeneous elements wi;) € W3 and w(z) € Wa. Using linearity, we
extend Vp, to a linear map

w(3)®w(g) — yp’p(w&),:l:)w(g). (4.18)
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The correspondence F +— Vg, is linear, and from the definitions and the dis-
cussion in the preceding paragraph, we have Vp, ,, = ) for an intertwining

operator Y of type (sz‘l;,z)

‘ Proposition 4.7 For p € Z, the correspondence Y + Fy, is a linear iso-
morphism from the space VXV,}W of intertwining operators of type (W‘,W ) to
the space My} Wy = M[Q(2)lWw, of Q(z)-intertwining maps of type W, Wz)
Its inverse is given by F' +— Vp,.

Proof We need only show that for any Q(z)-intertwining map F of type
(WZV&Q) y YFpisan intertwining operator of type (W?"l;,z) . From the discussion

above and the definition of Vg, the lower truncation condition (2.44) holds
for Vr, and we have the equality

(w(l)a yF,p(w23),$)w(2))Wlf = .
= (OO~ L0y, PO Oy @

®¢e'r OO =L 40 ), | (4.19)

(cf. (4.16)). Now (4.4) gives

_ Ty — X *
2 16( = 0) (wiz), Y5 (v, 20) F(wq) ® wizy))ws =

-2 | .
= 5516 (222 (uiy, F(¥7 (0,31) ) © 0w

Zo
. .
_%15( 01)(wzs),F(w(l)®Y2(v,a:1)w(2)))ws. ~ (4.20)
Changing the formal variables zo and z; in (4.20) to 2z5'z and zz3'z,
respectively, and using (3.22), we obtain | .

1 f(T1—T _
738 ( — °) (Y3 (v, 225 o) wigy, F (wq) ® wey))ws =
x — x t 3 ——
= 5516 (222) (ufy, PO (0,225 20y @ e

—Zp 06 ( o ) (w(3)’ (w(l) ® Ya(v, nglxl)w@)))w_s' (4.21)
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- (Note that all powers of z occurring here are integral.) Using the formulas

Y!(v, 225 00) = ol (2)L(0) x;L(O)Y;(e—I,(z)L(O) xg(o)v, Zo) -
.e"‘p(z)L(O)xé'(o)’ (4.22)

Yy (v, za:;‘fcl) — ()L xZI;(O)Yl* (e-—l,(z)L(O) %L(O)v, 1) -
(L) =L O) (4.23)

Ya(v, z%—l x) = lr(2)L(0) x;L(O)Yz ( e—lp(2)L(0) mg(o)v, 1) -
W  eh@IOO) (4.24)

which follow from Lemma 5.2.3 together with formula (5.2.39) of [FHL] (note
that the eigenvalues of L(0) are not in general integral on the modules), we
see that (4.21) becomes ‘

ol -
x3'6 (‘”1 To O) (PO HO Y (=t LO 27Oy ) .

(s L(0 |
.e Ip( )L(O)x2( )wzs),F('LU(l) ® w(2)))W3

23 (BL222) (ufy, P00
Yy (e L0 2@y, z,)elr (L) x;”(o)w 0 ® we))ws
—z5'6 (3?2—;: 1) (wiay, Fwg) ® e ()L 5 1O,
Ya e—lr(2)L(0) wg(o) v, Z1) q—l,(z)L(O) $§(0)w @))ws- (4.25)

Replacing v, wy), w(g)vand w(z in (4.25) by
elP(:)L(0) x2—L(0)v’
e~lr(2)L(0) xé’(ﬂ)w

(1)

and
elr(2)L(0) x2—L(0) wfs) ’

respectively, we obtain

_15 (T1—To 2)L(0),.~L(0
76 (_—x;_) (IO L0y () To)w(z),
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F(er@Og300y ) @ eh@LO57E0, 3y

= 1‘6‘16 (xl_x—(.)fg) (elp(z)L(O)x;L(O)wzs), F(e—lp(z)L(O)xg(O) .
'},1* ('U, xl)w(l) ® el,(z)L(o)x;L(O)w&)))Ws

sy ( IB2_ ; :71) (L) x;L(O)w(;,), F(e~ L0

Ty (O)w(l) ® elr(ILO) > L(O)Yz(v, T1)w2)))w,- (4.26)
But using (4.19), we can write (4.26) as

_ -z
778 (P22 (i, Vro V30, o)l w2l

_1c [T1— X2 .
= 27015( - o )(Yl (v, 21)wqr), Vrp(wis), T2)wiz) )wy

ro — I .
—xp 15( ixo 1) (W), Yrp(wig), 22) Yo (v, 71 )wey hwy, (4.27)

and (4.27) is equivalent to the Jacobi identity for Vrp.
Finally, the Jacobi identity implies that

[L(0), yp,,,(w(:,),x)] = yp,,,(L(O)w(;,), z) + xyp,,,(L(—l)wZ:,), z),

and since by construction the weight of the operator (wiz)n (n € C) is
wt wig) —n—1if w3y is homogeneous, the L(—1)-derivative property follows.

The following immediate result relates module map from a tensor product
module with intertwining maps and intertwining operators: '

Proposition 4.8 Suppose that WiRg)Wa ezists. We have a natural iso-
morphism -

and for p € Z, a natural isomorphism
Homy (WiBq) W2, Ws) 5 Vi,
| n = Vop (4.29)
where Vop = Yrp with F =T7o ®o@)- O
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In Part II we shall prove the following:
Proposition 4.9 For any integer r, there is a natural isomorphz’sm4

B 1’“[1‘472 ") V Iu,'2 (4.30)

defined by the condition that for any intertwining operator Y in W1Wg and
w() € Wl, w(2) € W2, 'UJ(3) € W3,

(wq), By (y)(w&,),:v)w(z))W' =
= (e Dl , V(e Dwgy, 277 -
—zL(l) p(2r+1)miL(0) ..~ 2L(°)w(2))w (4.31)

Combining the last two results, we obtain:

Corollary 4.10 For ahy V -modules Wy, Wy, W3 such that W1Bg,) W, ezists
and any integers p and r, we have a natural isomorphism

Homy (W1Bq(;)W,, W3) = leW2
n = Br— (yn,p)- = (4.32)

It is clear from Definition 4.4 that the tensor product operation distributes
over direct sums in the following sense:

Proposition 4.11 For V-modulesUy,...,U;, Wi,..., W), suppose that each
UBo)W; exzists. Then (II; U;)Bq(.)(11; W;) ezists and there is a natural
isomorphism

(H U,-)ron(,) (I,I W,-) 5 1} UBgyW;. O (4.33)

Now consider V-modules W;, W, and W3. The natural evaluation map
M@Woa@ My, = W;3
- v ®u®F = F(uwy @ wp) (4.34)

gives a natural map

f‘?’?ﬂ’z . Wl ® W2 — (Mw::wz)* ® W3. (435)
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Suppose that dim M2y, < co. Then (M w,)* ® W3 is a V-module (with
finite-dimensional weight spaces) in the obvious way, and the map fw, W, 1
clearly a Q(z)-intertwining map, where we make the identification

(Mwiw,) ®W3-(MW1W3) @Ws. (4.36)

This gives us a natural Q(z)-product. Moreover, we have a natural linear
injection

it Myay, — Homy((Miiw,)" ® Ws,Ws)
F o (f®@ug > f(F)u) (4.37)
which is an isomorphism if Wj is irreducible, since in this case,
Homy (W3, W;3) ~ C
(sée [FHL], Remark 4.7.1). On the other hand, the natural map

h:Homv((Mwlwz) Q@ W3, W) — MW;W:
n |-—) 77°-7:W1W2 (438)

given by composition clearly satisfies the condition that

h(i(F)) = F, (4.39)

so that if W3 is irreducible, the maps h and ¢ are mutually inverse isomor-
phisms and we have the universal property that for any F € M%‘:Wz, there
exists a unique 7 such that

F = le Wa (4.40)

(cf. Definition 4.4).
Now we consider a special but important class of vertex operator algebras
satisfying certain finiteness and semisimplicity conditions.

Definition 4.12 A vertex operator algebra V is rational if it satisfies the
following conditions:

1. There are only finitely many irreducible V-modules (up to equivalence).
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2. Every V-module is completely reducible (and is in particular a finite
direct sum of irreducible modules).

3. All the fusion rules for V are finite (for triples of irreducible modules
and hence arbitrary modules).

The next result shows that tensor products exist for the category of mod-
ules for a rational vertex operator algebra. Note that there is no need to
assume that W, and W, are irreducible in the formulation or proof, but by
Proposition 4.11, the case in which W; and W, are irreducible is in fact suf-
ficient, and the tensor product operation is canonically described using only
the spaces of intertwining maps among triples of irreducible modules.

Proposition 4.13 Let V be rational and let W,, W5 be V-modules. Then
(W1BoyWa, Yo(2): Bo(z)) exists, and in fact

. k
WiBgyWa = [[Migiw,)” ® M;, o (4.41)
i=1
where {M, ..., M;} is a set of representatives of the equivalence classes of

irreducible V -modules, and the right-hand side of (4.41) is equipped with the
V-module and Q(z)-product structure indicated above. That is,

k

Boe) = Z} Fiviw,- (4.42)

Proof From the comments above and thé definitions, it is clear that we have
a Q(z)-product. Let (W3,Ys; F) be any Q(z)-product. Then W3 = [[; U;
where j ranges through a finite set and each U; is irreducible. Let 7; : W; —)
U; denote the j-th projection. A module map 7 : IT% (MW,W,) QM; - W;
amounts to module maps ,
i : (Miiw,)* ® M; = Uj

for each i and j such that U; ~ M;, and F = fj o8y, if and only if

for each ¢ and j, the bars having the obvious meaning. But '1?, oF isa
Q(2)-intertwining map of type (W w) and so 7o T; o F € My, where
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¢ : U; B M; is a fixed isomorphism. Denote this map by 7. Thus what we
finally want is a unique module map

0 (MWIWZ) ® Mi — Mi

such that _
T =00 Fpiw,-

But we in fact have such a unique 0, by (4.39)-(4.40). O

Remark 4.14 By combining Proposition 4.18 with Proposztzon 4 7 or Propo-
sition 4.9, we can express W Rg )W, in terms of VM,W or VW]W; in place

of Mwl W, -

The construction in Proposition 4.13 is tautological, and we view the
argument as essentially an existence proof. In the next two sections, we
present “first and second constructions” of a Q(z)-tensor product.

5 First construction of Q(z)-tensor product

Here and in the next section, we give two constructions of a Q(z)-tensor
product of two modules for a vertex operator algebra V/, in the presence of a
certain hypothesis which holds in case V' is rational. In this section, we first
define an action of V ® 1. C[t,t™!, (2 +t)~1] on (W; ® W)* motivated by the
definition (4.4) of Q(z)-intertwining map. We establish some basic properties
of this action, deferring the proof of a commutator formula (Proposition 5.2)
to Part II. Then we take the sum of all “compatible modules” in (W; @ W5)*.
Under the assumption that this sum is again a module, we construct the Q(z)-
tensor product as its contragredient module equipped with the restriction to
Wi ® W, of the adjoint of the embedding map of this sum in (W; ® W3)*.
In the next section we observe that every element in the sum of compatible
modules in (W; ® W,)* satisfies a certain set of conditions, and we show that,
modulo two important results stated there but whose proofs are deferred to
Part I, the subspace of (W; ® W5)* consisting of all the elements satisfying
these conditions is equal to this sum of compatible modules. In this way we
obtain another construction of the Q(z)-tensor product.
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Fix a nonzero complex number z and V-modules (W},Y]) and (W>,Y3)
as before. We first want to define an action of V ® L+C[t t,(z+t)" on
(W1 ® Wa)*, that is, a linear map

T : V @ 14 Clt, t71, (2 + 1)~ 1] — End (W, @ Wa)".
Recall the maps |
Tw;, :VOC((t) » EndW;, i=12,
from (3.2). We define 7g(;) by

(1 ()N (wqy ® wey) = Mrw, (T2 wy) ® wiz)) — Mwa) ® w, (szﬁ)i(v(z)g

5.1
for£ eVe® L+C[t t“l,(z +t) l] A E (Wl ® Wz) y W(1) E Wh, w(e) € Wo.
Using (3.12)-(3.13), (3.60) and Lemma 3.1, we see that the definition (5.1)
can be written using generating functions as:

(To(z) (2”15 (xl xo) Yi(v, xo)) 9\) (wq) ® w)
-2 -
=156 (xlxo ) AYY (v, 21)wir) ® i)

-
—z;16 (Z_xol) Mwg) ® Ya(v, 21)w). (5.2)

Write :
Yé(z) (v, 1) = T (Yi(v, 7). (5.3)
Using (2.6) and the fundamental property of the formal é-function, we have
(Yo (2 (v, 20) ) (wq) ® weg)) =

-2 *
= Res,, z5'6 ( ) A(Y (v, 21)w) ® wey)

—z |
— Res,, 7516 ( 01) Mw(y @ Ya(v, 1) w(g))

= A(Y7" (v, %o + 2)wg) ® wey)
— Res,, 256 ( xol) Mwqy ® Ya(v, 1) wg), (5.4)

where we have used the notation Res,,, which means taking the coeflicient
of z; in a formal series. We have the following results for Yy,
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Proposition 5.1 The action Yé(z) has the property
| Yé(z)(lim) =1, (55)

where 1 on the right-hand side is the identity map of (W; ® Wa)*, and the
L(—1)-derivative property

d |

%Yé(z) (U, x) = Yé(z) (L(_vl)v’x) , (56)

forveV.
Proof From (5.4), (3.20) and (2'7)’
Y (1,2)A)(wq) @ w) =

Ty —2
= Res,, 16 ( 1 ) A(w(l) ® ‘w(g))
1 (2%
— Res; 276 ( — 1) Mwa) ® wz)
= Res,, 2716 (z:— x) AMway @ wy)
1
= AMwq) ® wy), | (5.7)
- proving (5.5). We now prove the L(—1)-derivative property. From (5.4),

((%Yé(’) (v"”)) A) (wy ® weg) =

d
= A (v, 2 + 2)ug) @ wiy)

d -
— Res,, (a;z“lé ( 71 .7:1)) Mwq) @ Ya(v, z1)wig)). (5.8)

2z

Note that for any formal Laurent series f(z), we have

LA o

and if f(z) involves only finitely many negative powers of ,

d _ -+ 1 _ _ —z+x\ d
Res,, (ax—lz 16( . )) f(z1) = — Res,, 2716 ( ~ ) i f(z;)
. (5.10)
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(since the residue of a derivative is 0). From (3.22) and the L(—1)-derivative
property for the contragredient module Wj, we have

EdEYI*(va z) = Y (L(-1)v,2).

Thus the right-hand side of (5.8) is equal to

MY (L(=1)v, z + 2)wq) @ )

—x+’x1) d

— Res,, 2716 ( — dml/\(w(l) ® Y2 (v, z1)w(z))

=AY (L(-1)v, 2 + 2)w) @ W)
— Res,, 2716 (—-m + :1:1) Mwy ® Ya(L(—1)v, z1)w(y))

V4

= (Yq() (L(=1)v, 2)A) (w(r) ® wyz), (5.11)

completing the proof. 0O

Proposition 5.2 The action Yé(z) satisfies the commutator formuld for ver-
tex operators, that is, on (W; ® Wy)*,
[Yé(z) (vla xl)a Yé(z) (v21 172)] =

T1—2 :
= Resozz'6 (220) Yoo (Y (o, mo)on,z2)  (5.12)

Jorvy, v, €V.

The proof of this proposition will be given in Part II.
From these results and the relation (2.22), we see that the coefficient
operators of Y;,,(w,z) satisfy the Virasoro algebra commutator relations,

that is, writing
Yé(z) (w1 .’L‘) = z; L’Q(z) (n)x'”'2, (513)
ne

we have
, 1
[Lg(z) (m), Ly (n)] = (m — 1) L,y (m + 1) + ﬁ(ms - m)5m+n,oc- (5.14)

We call the eigenspaces of the operator Ly, (0) the weight subspaces or ho-
mogeneous subspaces of (W, ® W5)*, and we have the corresponding notions
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of weight vector (or homogeneous vector) and weight. When there is no con-
fusion, we shall simply write Ly, (n) as L(n).

Let W3 be another V-module. Note that V ® L+C[t t~1,(2+1t)7!] acts on
Wj in the obvious way. The following result, which follows 1mmed1ately from
the definitions (4.4) and (5.2), provides further motivation for the definition
of our action on (W; ® Wa)*:

Proposition 5.3 Under the natural isomorphism
Hom(W;;, (W1 ® Wz)‘) :) Hom(W1 ® W2,Wa), (515) v

the maps in Hom(W3, (W; ® Wa)*) intertwining the two actions of V ®
Ly Clt,t71, (2 + )71 on W} and (W) ® Wa)* correspond ezactly to the Q(z)-
intertwining maps of type (WKV‘}G . O

Remark 5.4 Combining the last result with Proposition 4.7, we see that
the maps in Hom(W3, (W; ® W2)*) intertwining the two actions on W3 and
(W1 @ Wh)* also correspond exactly to the intertwining operators of type
(WV,V ) In particular, given any mteger p, the map F3,  : W3 — (W) ®W2)
defined by

F}, o(wigy ) (way ® i) = (way, Y(w(s), €7D )wez))w; (5.16)

(recall (4.9)) intertwines the actions of V @ ¢, C[t,t™!, (2 + t)~!] on Wj and
(W1 @ W)™,

Suppose that G € Hom(Wj, (W; ® W5)*) intertwines the two actions as
in Proposition 5.3. Then for w3 € W3,

- TQ(2) (z"l§ (271 -z-wo) Yt(v,xo)) G(w(:,)) =
=G ('rwé (z‘_lé'(xl :xo) Yi(v, :co)) w(;,))
=G (z"lé (xl — xo) Ys'(v,:co)w{a))

. {T1—T
=28 (—!—z-E) G(Y; (v, zo)wlg))

_ Iy — T :
= 15( L ") Yy (0, 20) Gltly)). (5.17)
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Thus G(w(3)) satisfies the following nontrivial and subtle condition on A €
(W1 ® Wz) The formal Laurent series Y{,)(v,Zo)) involves only finitely
many negative powers of z¢ and ;

TQ(:) ( -15 ( xo) Y (v, xo)) A=
= z’"lé( . :z:o) Q(Z)('v,xo)/\ forall veV. (5.18)

(Note that the two sides are not a priori equal for general A € (W; @ W)*.)
We call this the compatibility condition on X\ € (W; ® Wa)*, for the action
TQ(2)-

¥ I),et W be a subspace of (W, @ W5)*. We say that W is compatible for
TQ(z) if every element of W satisfies the compatibility condition. Also, we say
that W is (C-)graded if it is C-graded by its weight subspaces, and that W is
a V-module (respectively, generalized module) if W is graded and is a module
(respectively, generalized module) when equipped with this grading and with
the action of Yy, (-, z) (recall Definition 2.11). A sum of compatible modules
or generalized modules is clearly a generalized module. The weight subspace
of a subspace W with weight n € C will be denoted W,.

Given G as above, it is clear that G(Wj) is a V-module since G intertwines
the two actions of V @ C[t,t~!]. We have in fact established that G(W3)
is in addition a compatible V-module since G intertwines the full actions.
Moreover, if H € Hom(W3, (W; @ W5)*) intertwines the two actions of V@

Clt,t'], then H mtertwmes the two actions of V ® ¢, Cl[t,t™1, (2 + ¢)~ l] if
and only if the V-module H(WS}) is compatible.

Define

WINQ(Z)WQ = Z W = U W cC (W1 ® Wg)*, (5.19)
WeWq() WeWq(s)

where Wq(.) is the set all compatible modules for 7q(,) in (W) @ W2)*. Then
WiBg(:)W> is a compatible generalized module and coincides with the sum
(or union) of the images G(W}) of modules W3 under the maps G as above.
Moreover, for any V-module W3 and any map H : W3 — W Sq,)W, of
generalized modules, H(W}) is compatible and hence H intertwines the two
actions of V ® L+C[t t~1,(z +t)7!]. Thus we have:

Provpositvion 5.5 The subspace W Bg, W, of (W) ® Wa)* is a generalized
module with the following property: Given any V -module W3, there is a nat-
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ural linear isomorphism determined by (5.15) between the space of all Q(2)-
intertwining maps of type (W?I;Vg) and the space of all maps of generalized

modules from W3 to WiSg,)Wa. O

Proposition 5.6 Let V' be a rational vertex operator algebra and Wi, W,
two V -modules. Then W Sg,)W; is a module.

Proof Since W)Sq(;)W> is the sum of all compatible modules for 7g(;) in
(W1 ® Wa)* and since by assumption every module is completely reducible,
the generalized V-module W S8g,)W; is a direct sum of irreducible modules.
If it is an infinite direct sum, it must include infinitely many copies of at least
one irreducible V-module, say, Wj3, since a rational vertex operator algebra
has only finitely many irreducible modules. From Proposition 5.5, the space
of Q(z)-intertwining maps of type (W?’évz) must be infinite-dimensional, and
by Proposition 4.7, this contradicts the assumed finiteness of the fusion rules.
Thus Wi8g;)W> is a ﬁmte direct sum of irreducible modules and hence is a

module. 0O

Now we assume that WSg(,) W, is a module (which occurs if V' is rational,
by the last proposition). In this case, we define a V-module W Bq(,)W; by

WiBo) W2 = (WiSeyWa)' (520)

(&' = w!) and we write the corresponding action as Yg(,). Applying Propo-
sition 5.5 to the special module W3 = WjBq,)W, and the identity map
W3 = WiSg(;)W> (recall Theorem 2.10), we obtain using (5.15) a canonical

Q(2)-intertwining map of type (W’EQ(’)W’) which we denote

Roe) : W1 W = WiRg,)W,
wa @ we) H wuBep)We), (5.21)

This is the unique linear map such that
()\’ w(l)EQ(z)wm))Wlﬂq(,)Wz = A(u)(l) ® w(2)) _ (5.22)
for all wq) € Wy, wie) € W, and A € W Bq(,)W,. Moreover, we have:

Proposition 5.7 The Q(z)-product (W Bq(,)W2, Yq(2);Bq(2)) s a Q(2)-ten-
sor product of Wi and W. '
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 Proof Let (Ws,Y3;F) be a Q(2)-product of W, and W,. By Proposition
5.5, there is a unique V-module map

17’ : W;; - WISQ(,)Wg

such that ,

(w23)’ F(wa) ® we))w, = '7'(1"23))(“’(1) ® w(g))

for any w(y) € W1, w(y) € W, and w{;,) € Wj. But by (5.22), this equals
(' (i), W) By w@Wimguwa = (i) TP W) s,

where € Homy (W Bg(,)W2, W3) and 7' are mutually adjoint maps. In
particular, there is a unique 7 such that

(U’(a)aF (wa) ® we)))ws = (wfs),ﬁ(w(l)B’Q(z)w(z))ws,

i.e., such that .
F = NoBg(y : W1 @ Wy = W3,

and this establishes the desired universal property. O

More generally, dropping the assumption that WSgq(,)W, is a module,
we have:

.Proposition 5.8 The Q(z)-tensor product of Wy and Wy ezists (and is given
by (5.20)) if and only if W Sg, W is a module.

Proof 1t is sufficient to show that if the Q(z)-tensor product exists, then
ngQ(,)Wg is a module. Consider the module

Wo = (W1Bg( Wa)'.

Applying Proposition 5.5 to the Q(z)-product W1Bg(;)Wa, we have a unique
map
1: Wy qu(z)Wg

of generalized modules such that

((w() (we) ® we) = (we), W1)Bee)We)) Wisge,Ws
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for wey € Wy, way € Wi and wge) € Wy. It suffices to show that ¢ is a
surjection. .

Let W € Wyy,) (recall (5.19)) and set W3 = W'. By Proposition 5.5, the
injection W3 — W Bg(,)W, induces a unique Q(z)-intertwining map F of
type (W?;,z) such that ‘

w(wa) ® wi)) = (w, F(wq) ® w))w

for w € W, wu) € Wp and w € W, But by the universal property of
WiBq(;)Wa, there is a unique module map 7' : WiRq(, )W, — W’ such that

F =1/ 0®(,), and hence a unique module map n: W — Wp such that
(n(w), w1)BQ() W@ )WrmgyW2 = (W, F(wa) ® wiz)))w:.
Thus
w(wa) @ w) = (N(W), W))W ()) Wi W
= i(n(w))(wqa) @ w))

and so w = i(n(w)) for all w € W, showing that W lies in the image of the
map ¢ and hence that : is surjective. O

6 Second construction of Q(z)-tensor prod-
uct |

Let V' be a vertex operator algebra and W;, Wy two V-modules. From the
definition (5.19) of W Bg(,)W2, we see that any element of W Sg(,)W; is an
element A of (W, ® Ws)* satisfying:

The compatibility condition (recall (5.18)): (a) The lower truncation
condition: For all v € V/, the formal Laurent series Y, (v, z)A involves
only finitely many negative powers of z.-

(b) The following formula holds:

TQ(z) (2-46 (2}1 'z'xO) K(‘U,xg)) A=

v (‘”1 :"’0) Yo (v,50)A forall veV.  (6.1)
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The local grading-restriction condition: (a) The grading condition: A
| is a (finite) sum of weight vectors of (W; ® Wy)*.

(b) Let Wy be the smallest subspace of (W; ® W2)* containing A and
stable under the component operators 7g(;)(v ® t*) of the operators

2 (v, 7) for v € V, n € Z. Then the weight spaces (W)(n), n € C,
of the (graded) space W) have the properties

. dim (W))m) < o0 for n € C, (6.2)
(Wx)@n) =0 for n whose real part is sufficiently small. (6.3)

Note that the set of the elements of (W; ® W»)* satisfying any one of the
lower truncation condition, the compatibility condition, the grading condi-
tion or the local grading-restriction condition forms a subspace.

In Part II, we shall prove the following two basic results:

Theorem 6.1 Let A be an element of (W) ®W2)*v satisfying the compatibility
condition. Then when acting on A, the Jacobi identity for Yé(z) holds, that
s,

- ry —Xx
301‘5( lxo 2) Yé(z)(uaxl)Yé(Z)(v,%)f\

- Io9—x ‘
—Zy 16 ( 2-x0 1) YQ,(z)('U, $2)Yé(z)(u,ml)A -

=z;16 (ml — xo) Yo (Y (4, Zo)v, 22) A (6.4)

)]

foru,veV.

Proposition 6.2 The subspace consisting of the elements of (Wy ® Wa)*
satisfying the compatibility condition is stable under the operators 1g(;) (v®t")
forv eV andn € Z, and similarly for the subspace consisting of the elements
satisfying the local grading-restriction condition.

These results give us another construction of WiSg(,)Wa:

Theorem 6.3 The subspace of (Wy @ Wa)* consisting of the elements satis-
fying the compatibility condition and the local grading-restriction condition,
equipped with Yé(z), is a generalized module and is equal to W Sg(,)W5.
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Proof Let Wy be the space of vectors satisfying the two conditions. We
have already observed that W Sgq;)W, C W, and it suffices to show that
Wp is a generalized module which is a union of compatible modules. But
Wy is a compatible generalized module by Theorem 6.1 and Proposition
6.2, together with Proposition 5.1 and formula (5.14), and every element of
Wy generates a compatible module contained in Wy, by the loca.l grading-
restriction condition. O

The following result follows immediately from Proposition 5.8, the theo-
rem above and the definition of W)Bq,)Wj:

Corollary 6.4 The Q(z)-tensor product of Wy and Wy exists if and only if
the subspace of (Wi ® Wh)* consisting of the elements satisfying the com-
patibility condition and the local grading-restriction condition, equipped with

Q(:)» i a module. In this case, this module coincides with the module
W18q(;)Wa, and the contragredient module of this module, equipped with the
Q(2)-intertwining map Bq,), is a Q(z)-tensor product of Wy and W», equal
to the structure (WIBIQ(z)Wzv, YQ(z);QQ(z)) constructed in Section 5.

From this result and Propositions 5.6 and 5.7, we have:

Corollary 6.5 Let V be a rational vertex operator algébra and W, Wy two
V -modules. Then the Q(z)-tensor product (WiBq)Wa, Yo(2);Bq(z)) may be
constructed as described in Corollary 6.4.
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