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Some asymptotic results on Hurwitz zeta-functions
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1 The discrete case

Let s = ¢ + it be a complex variable and & > 0 be a parameter. Let (s, «) be the
Hurwitz zeta-function defined by the analytic continuation of the Dirichlet series

i(n +a)”*

n=0

Let ¢ be a positive integer. The first object of this talk is the discrete mean square
- ‘ . k! a 2
(1.1) UCOEDY l¢( 5= )|

Let C (s), T'(s) be the Riemann zeta and the gamma,—functlon respectively. Let ¢(s) =
(I'/T)(s) and let N be a positive integer. We define a contour € which starts from infinity,
proceeds along the real axis to § (0 < § < 7), rounds the origin counter-clockwise, returns
to mﬁnlty Let A(")(2) be the N-th derivative of the function

e’ 1

h) = = -2,

and define

1
RN(“: ) Q)

r<u)/r(v)(e2m )

v+N 1/ (l—T h(N)( + )u lddd
ce?l—-l (N =) z + ¢ ry)z*  drdzdy

for —-N+1<Reu < N +1 and any v € C. For any integer n, let (s), = I'(s + n)/I'(s)
be a Pochhammer symbol. Then we can show

Theorem 1.1 ([9, Theorem 1]) For any real t and any positive integers N and q, we
have

J(i+itq) = q{1og(q/zw)+zy+ Re (3 +it)}

+2 Z (-1 )n ~ Re{ +“(§—z‘t),,c(§+z't—n)g(-;-—z't+n)}

n=0

+2¢7" Re {qf""tRN(-z# + it, 3 — 1t; q)} .
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Since Re ¢(% + it) = logt 4+ O(t~?), the first term in the right-hand side can be written
as q{log(gt/2m) + 2v + O(t~2?)}. Moreover, the remainder Ry(u,v;q) has the following
alternative infinte series expressions (see [6, Lemma 3] and [8, (1.13)]): Let o,(n) denotes
the a-th powers of positive divisors of n. Then for any complex variables u, v with
Reu < N, Rev > —N + 1 and Re(u + v) < 2, we have

RN(U';'Q;Q) — (—I)N(ZW)u+v_1F(N +(Ul)— U) (1 _f_)l)l iauﬂ! 1(l

x {e 7D (7, 1;q) + e~ TV (7, 1 q)}dr

0

where
00 u—~N-1 .
Je(r,l;q) = / yuti-1 (1 + Z—_Z{) ey,
0 q

While for Reu < N, Rev > —N + 1 and Re(u + v) > 0, we have

v+ N) (1-7)¥ 1 &
(r(t)) ) [ ((N ; Zg,_u_v(z)

x {J_(1,0;q) + T+ (7, 1; q)}dT,

Ry(u,v9) = (1)

where .
~ —uv—N .
Ta(rliq)= [ ymt (14 Z) 7 ramivgy
0 q

Here the integrals Jui(7,[;q) and J4(7,l;q) can be expressed in terms of a confluent
hypergeometric function ¥(a,c; z) (cf. [4, p.256, (3)], and we can transfer from Ji (7, [; q)
to J4(7,1;q) by a transformation formula (cf. [4, p.257, (6)]) for ¥(a,c;z) (for details
see [6, Sect.3]). An application of a saddle-point lemma of Atkinson [2, Lemma 1] to the
integrals J4(7,1;q) and J1(7,1;q) yields the estimate

Ry(o +it,0 — it;q) = O{(|t| + 1)V *27°}

for —N +1 < 0 < N and any real ¢, with the O-constant depending only on ¢ and
N (see [7, Sect.3]). The above Theorem 1.1 therefore gives the asymptotic expansion of
J(5 + it, q) with respect to ¢~!

In 1991, using the approximate functional equation of ((s,a), Zhang [19] indepen-
dently obtained

J(} +it,q) = qflog(qt/2m) + 29} + O(gt™/"2) + O ((#°/° + ¢*/*°/"?) log® 1) ,
which should be compared with our Theorem 1.1.
Theorem 1.1 can be deduced as the limiting case ¢ —  in the following:

Theorem 1.2 ([9, Theorem 2]) For any integers N, q and any real o, t satisfying —N +
1<o<N,o+it¢Z and20 —1¢ Zy, we have

Jo+it,g) = ¢(20) +2qT'(20 — 1)((20 — 1) Re {F_(%(;_‘:L%)’t_)}

+2 Z nq—n { (g — it),((o + it —n)C(o — it + n)}

n=0

+2¢7¥ Re {q”‘tRN(a +it,0 — 1t; q)} .
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Dividing both sides of the above formula by ¢ and letting ¢ — 400, we have when
o< %,
1 r'a- 1t
/ (o +it,a)Pda = 2T(20 — 1)¢(20 — 1) Re LA =7+ )
o .

I'(o+it)
= 2(2m)*72¢(20 — 2)[T(1 — 0 — it)|* cosh(nt),

which was originally proved by Mikolds [15] in 1956 by using Parseval’s identity, where
the last equality follows from the functional equation of the Riemann zeta-function.

2 The continuous case

Let ((s, @) be the Hurwitz zeta-function as in the previous section, and define

G(s, @) =((s,0) —a™ = ((s,a+1).

The second object of this talk is the continuous mean square

(2.1) RCE | (s, ) 2de

The asymptotic behaviour of I(3 + it) was first studied by Koksma-Lekkerkerker [13] in
1952, who proved ' ,
I(3 +it) = O(logt)

for any t > 2." After their pioneering work, the following several inprovements have been
obtained:

I(3+ 1) = logt+ O(loglogt),

by Balasubramanian [3] in 1979,
= logt+ O(1),

by Rane [17] in 1983,
= log(t/2m) + v + O(t~*/*(log)*/®),

by Sitaramachandrarao [18] in 1987,

= log(t/2m) + v+ O(t™"*(logt)®/*%),

by Zhang [21] in 1991,

where « is Euler’s constant. Zhang further conjectured in [21] that
I( + it) = log(t/27) + v + O(t™/*).

All these results and improvements were achieved by applying the approximate func-
tional equation of ((s, ), and the exponent —1/4 in the error term of Zhang’s conjecture
is a certain infimum when one applies this method for I (%+it). But this tool is insufficient
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for the problem of evaluating (2.1). Indeed, by an ingenious simple argument based on
the functional equation of {(s, &), Zhang [22] proved a remarkable formula

(+t)

(2.2) I(5 + it) = log(t/2m) + v — 2Re i

+0(t™).
2
This was independently obtained by Andersson [1] in 1992, who applied Mikol4s’ idea of
using Parseval’s identity. A
By a different method from both of Zhang’s and Andersson’s, we have obtained the
following two kinds of refinements for (2.2).

Theorem 2.1 ([10, Theorem 1] and [12, Theorem 1]) For any integer K > 0 and any
real t > 1, we have the asymptotic expansion

¢E+idt)—1

I(3+dt) = v—log2r+ Rey(;+1t)~2Re Lyt

K -
(—1)*(k —1)! — T
—2R - - IR+ 1)zt
eg(g_km)(g—mn) Ctit) & E
+o(t~ %),

where the O-constant depends only on K, and the empty sum is to be considered as 0.
Since Re 1)(3 +1t) = logt+O(¢t™?), Theorem 2.1 implies Andersson-Zhang’s formula (2.2).
Theorem 2.2 ([10, Corollary 2] and [12, Theorem 2]) For any real t we have -

00 1 ;
I(X +it) = v —log 27 + Re (L + it) — 2Re'n§_=j0 C(z;’:ﬁt L
We note that Theorem 2.2 has been proved in Andersson [1] by using a different method,
and the special case t = 0 in Theorem 2.2 is also given in Zhang [21].

Both of the above two theorems give a kind of refinements of Andersson-Zhang’s
formula. It is interesting to point out that we can unify these two directions of refinements.
In fact, Theorems 2.1 and 2.2 can be deduced from the following more general formula:

Theorem 2.3 ([10, Theorem 3] and [12, Theorm 3]) Let u, v be complez variables, and
let E be the set of (u,v) such thatu+v € Z<y oru € Z orv € Z. Let N > 1 be an
integer, —N+1<Reu< N+1, -N+1<Rev< N+1, and (u,v) ¢ E. Then it holds

[ 6,06, 0)da
= e - D Rt S

_SN(ua v) - SN(U) U’) - TN(U) v) — TN(',Ua u))

where

S )= 3 — Dt fetuyn) -1},

= (1= V)pn
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TN(U, 'U) U)N le—u— / ﬁu+v—2 1+ ,B)—u_Nd,B

1=v)y
Moreover, Ty (u,v) has the expression
TN(U’ U)
K
2 - - —u—
= Z(_l)k—l( ( U)Z)l(u N- kzl k(14 1)~ N+
k=1 1=1

+( 1)K(2 ( 'U)K u)N K Z l—u-—‘v /I‘mﬂu+v—K—2(1+’B);—u—N+Kdﬂ
=1

for any integer K > 0.
By specializing u = ¢ + it and v = ¢ — it in Theorem 2.3, we have

Corollary 2.1 ([12, Corollary 1]) Let N, K be integers with N > 1 and K > 0. Then,
for any o satisfying —N +1< o< N+1,20—-1¢ {1,0,-1,-2,---} and anyt > 1, we
have

. 1 a+it
N-1 (o + i), .
— ( t -1
2 Re nz_:o 1_0+Zt)n+1{C(o+z +n)—1}
X 2—-20)-1(0 + it)Np & :
— 2R -1 k—l( k-1 : N-k l—k l+ 1 —o—~N+k—1tt
+O0(t™* ),

where the O-constant depends only on N, K and o.
The error estimate O(t~%~1) in the above lemma follows from the facts that

(2 - 20’)1{(0' + it)N—-K
(1 -0+ Zt)N

= 0@t

and -
zll—Za/I ﬁZa-K—z(l + ﬁ)—-a—it—N+Kdﬁ = O(t_l),
=1

where the last estimate can be proved by integration by parts.

Taking N = 1 and letting u — %+ it, v — % + it in Theorem 2.3, we obtain Theorem
2.1. : 4
Other exceptional cases can also be treated as the limiting cases. For example, since
(2—u—v)g—y =0 for k > 2if u+ v =2, taking the limit ¥ > 1+ and v > 1 — st in
Theorem 2.3, we have :

Corollary 2.2 ([12, Corollary 2]) For any N > 1, and any real t > 1, we have

Y1+t
I(1+it) = l—t‘?—ZRe%—)

N-1 1 1

1
—2Re 3 {C(tntit) ~ 1}~ 2Re 5 3 pr ey
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Taking the limit N — oo in Theorem 2.3, we obtain the following explicit formula,
since Tn(u,v) — 0 as N — oo.

Corollary 2.3 ([10, Corollary 1] and [12, Corollary 3]) For any complez u, v with (u, v) ¢
E, we have

| G, )G (v, @)da
= ——1-—+I‘(u+v—l)C(u+v—1){F(l_U) + I‘(l—u)}

utv | T'(a) T(0)
RSO o
o (1- )n+1{<( + 1} - nz_% 1_ )n {C(v+n) -1}

We next mention the results when u and v are integers.

Corollary 2.4 ([10, Corollary 4]) For any integer m > 0, we have

/0 ' (=m, 0)da

- "2m1+1+(_1)m+1(2( +)1)'<( 2m=1)
m_(m)? & (=1)*(m!)?
—2-1) @m+2) Z:O(m+n+1)!( n)'{C(”‘m)‘l}

The closed form of Corollary 2.4 can also be proved from the well-known formula

((=m, @) = =Bpni1(a)/(m + 1),

where By,41(@) is the (m + 1)-th Bernoulli polynomial. This is achieved by the same
method as in [11, Sect.4] of using generating functions for Bernoulli polynomials.
It is also possible to deduce the asymptotic formula for positive integers:

Corollary 2.5 ([14, p.13]) For any integer m > 2, we have
1
/ G(m, 0)’da
0

1 2(-1)™
2m — 1 {(m 1H)1}2

{I'(2m — 1)¢(2m — 1) + T(2m — 1)¢'(2m — 1)

—T(2m - 1)¢(2m — 1)p(m)} - 2’"2 e (gm+m) -1}

+2 i L (m E 113;1_1(7:;)'; 1)!{1/)(72 +2—m) — p(m)}H<¢(m + n) — 1}

n=m-
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3 The derivative case

We finally consider the mean square of the derivative (s, ®) = (8/9s)(i(s, ). Zhang
[20] proved in 1990 that there exist constants A and B, for which

/01 G(5 + it, )] *da = %10g3(t/27r) + ylog?(t/2m) — 2Blog(t/27) + A + p(¢)

holds, where p(t) = O(t~Y/%(logt)1%/%). Zhang defined A and B as certain integrals, but
we found that the actual values of A and B are 27y, and —+; respectively, where 7, and
72 are generalized Euler’s constants defined by the Laurent series

CA+s)=s"+y+ms+vs*+---.
Our method gives more precise information on p(t). Namely we have
Theorem 3.1 ([10, Theorem 4))
! it 0?
C( ¥ +-:t)) —2Re dudv
+0(t7*(log 2t)?),
where Ty (u, v) is defined in Theorem 2.3.

p(t) = —2Re T1(u, v)

(u,v):(;—-l-it, %—it)

This in particular 1mphes p(t) = O(t™?), which improves Zhang’s estimate for p(¢) men-
tioned above.

4 The method of proof

We can prove all of our results in this article by using Atkinson’s devise, which was first
applied by himself to treat the product {(u){(v) as a function of two complex variables u
and v. We denote by L(s, x) the Dirichlet Z-function attached to a Dirichlet character x
mod ¢. Atkinson’s devise was enhanced from a complex function theoretical viewpoint by
Motohashi [16], who applied this method for the functon T (moaq) L(%, X)L(v, X), where
the summation is taken over all the characters mod gq.

Let (1-a)
—-Q)z 1
h(Z;O() = 2 )

e —1 z

and define

(4.1) g( )= 1
u,v; @

T = T T () (e — 1)(e2m — 1) Je ev — 1
where the integral is absolutely convergent for Re u < 1 and any complex v. By applying

Atkinson-Motohashi’s method for {(u, a)((v, ), we can show the formula

(4.2) C(u, 2)((v, @)

C(u+v,0)+T(u+v—1){(u+v-— 1){F(Il‘(;)U) * I\(Il\(;)v)}

h(z + y;o_z)a:“'ld:'ndy,




for Reu < 1, Rev < 1 and « > 0, which corresponds to [2, (3.3)] and [16, Lemma 1], and
plays the fundamental role in the proofs of Theorems 1.2 and 2.3. We further define

1
T = D@ - 1)
1 (1 _ T)N_l yv+_N—1

o (N=1)! Jcev—1

ra(u,v;a) =

f ¥z + ry; @)z dzdzdr,
¢

where h(")(z;a) = (8/02)"h(z; ), and the integral is absolutely convergent for Reu <
N + 1 and any complex v. Substituting

A e) v [1A=-n)"!
)= S PE) Q=7 .
he+ya)= 3, — =y +y /0 o (e Ty,

n=0
which follows from Taylor’s formula, into (4.1), we obtain the expression

(4.3) g(u,v;0) = Z_: L——l);—(—%C(u —n,a)(v+n) + ry(u,v; a),

n=0

and this gives the meromorphic continuation of g(u,v; «) into the region {(u,v); Reu <
N +1, v € C} (see [12, (4.3)]). From the formulas (4.2) and (4.3), together with the
relations

and
q

z TN (u’ U %) = qu-NRN(ua U q)a

a=1
we get the assertion of Theorem 1.2. For the deduction of Theorem 2.3, we make use of
the formulas (4.2) and (4.3), and it is essential to notice that the vanishing properties

1
/ ((s,a)da =0 for Res<1,
Y .
and . ‘
/ ry(u,v;a)da=0 for Reu< N+1, VveC
0

hold.
The detailed proofs for our results in Sections 1 and 2 are given in [9] and [12] respec-
tively.
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