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1. Introduction

Weakly nonlinear evolution of a monochromatic wave disturbance is governed by the
Stuart-Landau equation if the parameter set for the disturbance is in slightly supercritical
state whereas all the higher harmonics including the zeroth harmonic are damping. In the
ordinary situation, the Stuart-Landau equation is truncated at the cubic order approxi-
mation:

$\frac{dA}{dt}=\sigma A+\lambda|A|^{2}A$ ,

where $\sigma$ denotes the linear growth rate of the fundamental mode and $\lambda$ is called the Landau
constant. According to the cubic equation, qualitative behavior of the disturbance has been
classified into four categories based on the signs of the real part of $\sigma$ and $\lambda:|A|arrow 0$ for
${\rm Re}\sigma<0$ and ${\rm Re}\lambda<0;|A|arrow\infty$ for ${\rm Re}\sigma>0$ and ${\rm Re}\lambda>0;|A|^{2}arrow-{\rm Re}\sigma/{\rm Re}\lambda$ for
${\rm Re}\sigma>0$ and ${\rm Re}\lambda<0$ (supercritical bifurcation); $|A|^{2}arrow 0$ or $\infty$ depending respectively
on whether $|A|>-{\rm Re}\sigma/{\rm Re}\lambda$ or not (subcritical bifurcation) for ${\rm Re}\sigma<0$ and ${\rm Re}\lambda>0$ .
Therefore the sign of ${\rm Re}\lambda$ is especially important in order for the classification. It is known
that quasi-critical disturbances in plane Poiseuille flow and Blasius boundary-layer flow
exhibit subcritical bifurcation whereas quasi-critical disturbances in plane jet, plane wake,
free shear layer, Rayleigh-B\’enard convection, Taylor-Couette flow, and natural convection
in a vertical slot exhibit supercritical bifurcation, among others. It is also known that ${\rm Re}\lambda$

changes its sign along the lower branch of the neutral stability curve for plane Poiseuille
flow (Pekeris and Shkoller) and for Blasius boundary layer (Herbert). We have to proceed
to at least fifth order approximation in such a degenerate case with ${\rm Re}\lambda=0$ in order to
unfold the bifurcation characteristics.

Recently, Eckhaus and Iooss investigated such nonlinear degenerate bifurcation prob-
lems in detail and classified the bifurcation characteristics. Moreover, they examined the
stability of periodic solutions subject to general perturbations. They found strong selection
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or rejection of spatially periodic patterns. They referred to Sen and Vashist’s numerical
work on the higher order Stuart-Landau equation for Blasius boundary layer flow as the
typical example of such degenerate bifurcation problems. Degenerate bifurcation is known
to occur at the criticality in couple of flow fields. Among them, the Taylor-Couette flow
between counter-rotating cylinders has been investigated by Laure and Demay. In the
problem, with specific ratio of outer/inner rotation speeds, the critical disturbance is suf-
fering from cubic order degeneracy. They applied the center manifold reduction technique
and derived the Stuart-Landau equation with fifth order nonlinear term. The double diffu-
sive convection has been investigated by Knobloch. Under free-free boundary conditions,
we encounter degenerate Hopf bifurcation in the presence of $O(2)$ symmetry. Knobloch
derived coupled amplitude equations with fifth order nonlinear terms and classified the
bifurcation characteristics. But the last case is rather artifice because the degeneracy does
not set in in the system having rigid-rigid boundaries.

In the present paper, we show that the cubic order nonlinear degeneracy sets in for
the critical mode in stably stratified plane Poiseuille flow. We derive the Stuart-Landau
equation with the quintic order nonlinear term and classify the bifurcation characteristics
especially for mercury whose Prandtl number is 0.025. We further show a possibility of
hyper degenerate situation in which the cubic as well as the quintic order Landau constants
lose their real parts, simultaneously.

2. Mathematical Formulation

We assume a plane Poiseuille flow in a channel whose top and bottom walls located
at $z^{*}=\pm H$ are respectively heated and cooled at uniform temperatures $T_{0}+\triangle T$ and
$T_{0}-\triangle T$ where $\triangle T>0$ . The flow is in $x$ direction. The motion of fluid and temperature
are governed by

$\rho[\vec{V}_{t^{*}}^{*}+(\vec{V}^{*}\cdot\nabla^{*})\vec{V}^{*}]=-\nabla^{*}p^{*}-\rho g[1-\beta(T^{*}-T_{0})]\overline{e}_{z}^{*}+\mu\nabla^{*2}\vec{V}^{*}$,

$T_{t^{*}}^{*}+(\vec{V}^{*}\cdot\nabla^{*})T^{*}=\kappa\nabla^{*2}T^{*}$ , (1)

$\nabla^{*}\cdot\vec{V}^{*}=0$ ,

where $\vec{V}^{*}$ is the velocity, $\tau*$ is the temperature, $p^{*}$ is the pressure, $p$ is the density, $g$ is
the acceleration due to gravity, $\beta$ is the thermal expansion coefficient, $\mu$ is the viscous
coefficient, and $\kappa$ is the thermal diffusivity. We nondimensionalize all the quantities as

$\vec{V}^{*}=\overline{u}_{0}\vec{v}$, $\vec{x}^{*}=H\vec{x}$, $T^{*}=\triangle T\cdot T,$ $t^{*}=H\overline{u}_{0}^{-1}t$ , and $p^{*}=\rho 0\overline{u}_{0}^{2}p$ ,

where $\overline{u}_{0}$ is the maximum velocity on the centerline of a channel and $\rho_{0}$ is the density
evaluated at a reference temperature $T_{0}$ .

Split $\vec{v},$ $T$ , and $p$ into the basic field with overbar and the disturbance with overhat as

$\vec{v}=\overline{v}+\hat{v}$ , $T=\overline{T}+\hat{T}$, and $p=\overline{p}+\hat{p}$ .
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The basic field is easily obtained as

$\overline{v}=(\overline{u}, 0,0)=(1-z^{2},0,0)$ , $\overline{T}=z$ . (2)

In the present paper, we focus ourselves on two-dimensional disturbances added to the
two-dimensional basic field. We introduce the stream function $\hat{\psi}$ such that

$\hat{u}=\partial\hat{\psi}/\partial z$ , $\hat{w}=-\partial\hat{\psi}/\partial x$ .

The disturbance components are thus described by the disturbance equations of the form
of

$\partial_{t}\nabla^{2}\hat{\psi}+\overline{u}\partial_{x}\nabla^{2}\hat{\psi}-\overline{u}’’\hat{\psi}_{x}=Re^{-1}\nabla^{4}\hat{\psi}-Ri\hat{T}_{x}+J(\hat{\psi}, \nabla^{2}\hat{\psi})$,

$\hat{T}_{t}+\overline{u}\hat{T}_{x}-\hat{\psi}_{x}=Re^{-1}P^{-1}\nabla^{2}\hat{T}+J(\hat{\psi},\hat{T})$ , (3)

where we have three nondimensional parameters: i.e., $Re=p_{0}u{}_{o}H/\mu$ is the Reynolds
number, $P=\mu/(\rho 0\kappa)$ is the Prandtl number, and $Ri=RaRe^{-2}P^{-1}$ is the Richardson
number. Here $Ra=\beta g\triangle TH^{3}/(\mu\kappa)$ is the Rayleigh number. $J(f, g)$ is the Jacobian defined
by $\partial(f,g)/\partial(x, z)$ .

The boundary conditions for $\hat{\psi}$ and $\hat{T}$ are imposed as

$\hat{\psi}=\partial\hat{\psi}/\partial z=0$ at $z=\pm 1$ , and $\hat{T}=0$ at $z=\pm 1$ . (4)

3. Weakly Nonlinear Reduction

Set $(\hat{\psi},\hat{T})^{T}\equiv\vec{\Psi}$ . We expand $\vec{\Psi}$ in powers of $\epsilon$ and $E$ where $\epsilon$ is a measure of the
supercriticality defined by $Re_{c}^{-1}-Re^{-1}\equiv\epsilon^{2}\tilde{R}e$ with $\tilde{R}e\sim O(1)$ and $E$ is the neutral wave
component defined by $E\equiv\exp[i\alpha(x-ct)]$ with the wavenumber $\alpha$ and the real phase
velocity $c$ . The result is

$\vec{\Psi}=\epsilon(\tilde{\Psi}_{11}E+c.c.)+\epsilon^{2}(\vec{\Psi}_{22}E^{2^{\neg}}+c.c$. $+\Psi_{02})+\epsilon^{3}(\vec{\Psi}_{33}E^{3}+\vec{\Psi}_{13}E^{1}+c.c.)$

$+\epsilon^{4}(\vec{\Psi}_{44}E^{2}+\vec{\Psi}_{24}E^{2}+c.c$. $+\vec{\Psi}_{04})+\epsilon^{5}(\Psi_{15}E+c.c.)+O(\epsilon^{5})$. (5)

Moreover, we assume that $Ri=Ri_{c}+\epsilon^{2}\tilde{R}i$ with $\tilde{R}i\sim O(1)$ and $\alpha=\alpha_{c}+\epsilon^{2}\tilde{\alpha}$ with $\tilde{\alpha}\sim O(1)$ .
Let us apply the method of multiple scales by introducing the derivative expansions

$\partial_{t}=\sum_{j=0}\epsilon^{2j}\partial_{t_{j}}$
, $t_{j}\equiv\epsilon^{j}t$ . (6)

For later convenience, we introduce some linear operators:

$M_{j}\equiv(s_{0}j$ $01)$
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$L_{j}\equiv(ij\alpha_{c}\overline{u}S_{j}-ij\alpha_{c}\overline{u}’’-Re_{c}^{-1}S_{j}^{2}-ij\alpha_{c}$ $ij\alpha_{c}\overline{u}-Re_{c}^{-1}P^{-1}S_{j}ij\alpha_{c}Ri_{c}$ ,

where $S_{j}\equiv D^{2}-j^{2}\alpha_{c}^{2}$ and $D\equiv\partial/\partial z$ .
Substitute (5) as well as (6) into (3) and equate the same powers of $\epsilon^{k}E^{l}$ to zero.

Then we obtain the following system of equations: at $\epsilon E$ , we have

$[-i\alpha_{c}cM_{1}+L_{1}]\vec{\Psi}_{11}=0$ , (7)

where the solution is expressed as

$\vec{\Psi}_{11}=A_{1}(t_{1}, t_{2}, \cdots)\vec{\Phi}_{11}(z)$ , $\vec{\Phi}_{11}=(\begin{array}{l}\phi_{11}(z)\theta_{11}(z)\end{array})$ . (8)

In (8), $A_{1}(t_{1}, t_{2}, \cdots)$ represents an amplitude function whose temporal evolution will be
determined in the course of the reduction. Equation (7) subject to (4) consist of the
eigenvalue problem and $\Phi_{11}$ corresponds to the eigenfunction.

By carrying out straightforward manipulation, we finally obtain the quintic Stuart-
Landau equation

$da/dt=(\beta\lambda_{11}+\gamma\lambda_{12}+\delta\lambda_{13}+\beta^{2}\lambda_{21}+\beta\gamma\lambda_{22}+\beta\delta\lambda_{23}+\gamma^{2}\lambda_{24}+\gamma\delta\lambda_{25}+\delta^{2}\lambda_{26})a$

$+(\lambda_{14}+\beta\lambda_{27}+\gamma\lambda_{28}+\delta\lambda_{29})|a|^{2}a+\lambda_{210}|a|^{4}a$ , (9)

where $a\equiv\epsilon A_{1}+\epsilon^{3}A_{2}+\cdots,$ $A_{2}$ is an amplitude function appeared at the cubic order
approximation, $\beta\equiv\epsilon^{2}\tilde{\alpha},$ $\gamma\equiv\epsilon^{2}\tilde{R}e$ , and $\delta\equiv\epsilon^{2}Ri$ .

4.1. Behavior of The Cubic Landau Constant $\lambda_{13}$

We evaluate the critical conditions $(\alpha_{c}, Re_{c})$ and the coefficients involved in eq.(9) for
different values of $P,$ $Ri$ . For simplicity of analysis, the derivation of the Stuart-Landau
equation (9) in \S 3 is based on the constant mass flux condition. The constant pressure
gradient condition is also important when we try to compare theoretical results with ex-
perimental ones. There is, however, no qualitative difference upon the behavior of $\lambda_{13}$

depending on which condition is imposed as has been already pointed out by Craik. In
this paper, therefore, we evaluate the first Landau constant under the constant mass flux
condition. We plot the distribution of $Re_{c}$ as a function of $Ra$ in Fig.1 for different values of
$P$ . In Fig.2, we plot the corresponding values of ${\rm Re}\lambda_{13}$ in the same manner. Now we find
that the real part of the first Landau constant becomes negative beyond some critical value
on $Ra$ for $P<0.17$ while is always positive for $P>0.17$ . Subcritical feature thus changes
to the supercritical when the Prandtl number is decreased. These figures are based on the
normalization for the eigenfunction that $i\alpha\phi_{1}(z=0)=1$ . Different normalization causes
different values on the Landau constants. The change from subcritical to supercritical is
not affected, however, by different normalization conditions.

The critical Richardson number beyond which supercritical bifurcation occurs is plot-
ted as a function of the Prandtl number in Fig.3. From the figure, we find that the critical
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number has an asymptotic behavior for small $P$ as $Ri\sim 1.093\cross 10^{-5}P^{-1}$ while the critical
number tends to infinity for $Parrow 0.17$ . Beyond the curve of Fig.3, supercritical bifurcation
occurs.

4.2. Cubic Degeneracy

Since the supercritical feature is obtained for relatively small Prandtl numbers, mer-
cury would be the best example which may exhibit the cubic degeneracy for a high Richard-
son (or Rayleigh) number. Mercury has the Prandtl number $P=0.025$ at the room tem-
perature. The critical Richardson number, Reynolds number, and wavenumber which give
the cubic degeneracy on (9) are

$Ri_{c}=-5.93224610\cross 10^{-2},$ $Re=1.251430041986\cross 10^{4}$ ,

$\alpha=0.9937969914465,$ $c_{r}=0.21136070568$ . (10)

Under the constant mass flux condition and a new normalization, $\phi_{1}(z=0)=1$ , we
evaluated all the coefficients involved in (9). The values are listed in Table I together with
the ones for $P=0$ .0001.

Our concern here is bifurcation characteristics of (9) around the degenerate point.
Let’s set $a=be^{i\theta}$ . Equation (9) is thus written as

$db/dt=(\beta\lambda_{11r}+\gamma\lambda_{12r}+\delta\lambda_{13r}+\beta^{2}\lambda_{21r}+\beta\gamma\lambda_{22r}$

$+\beta\delta\lambda_{23r}+\gamma^{2}\lambda_{24r}+\gamma\delta\lambda_{25r}+\delta^{2}\lambda_{26r})b$

$+(\lambda_{14r}+\beta\lambda_{27r}+\gamma\lambda_{28r}+\delta\lambda_{29r})b^{3}+\lambda_{210r}b^{5}$

$\equiv c_{1}b+c_{2}b^{2}+c_{3}b^{5}$ . (11)

At the degenerate point, $\lambda_{11r}$ and $\lambda_{14r}$ vanish. We denote the discriminant for the bi-
quadratic equation $c_{1}+c_{2}b^{2}+c_{3}b^{4}=0$ as $D$ . In order for $b^{2}$ to have two distinct positive
roots, we $req\iota iire-c_{2}/c_{3}>0$ and $c_{1}/c_{3}>0$ . According to the numerical data in Table I,
$\lambda_{210r}>0$ for $P=0.025$ . We thus obtain the condition as

$c_{2}<0,$ $c_{1}>0$ , and $D>0$ . (12)

If we require $b^{2}$ to have one positive and one negative roots, the following should be
satisfied:

$c_{1}<0$ and $D>0$ . (13)

We pictured the conditions (12) and (13) in Fig.4 where $\delta=0$ .
Positiveness of $\lambda_{210r}$ is not consistent with the assumption done by Eckhaus and

Iooss who selected signs of coefficients so as to fit with Sen and Vashist’s data. In purely
hydrodynamic situations, where $Parrow 0$ and $Riarrow 0$ hold, the stability characteristics
should tend to the ones for isothermal plane Poiseuille flow. In that case, we have a negative

20



value for $\lambda_{210r}$ at the criticality. (Fujimura) Therefore, the sign of $\lambda_{210r}$ is expected to
change from positive to negative as the Prandtl number decreases. In fact, at $P=0$ .0001,
for example, we find the negative $\lambda_{210r}$ as was assumed by Eckhaus and Iooss. For the
latter case, their analysis are valid. We pictured the modified conditions (12) and (13) in
Fig.5 with $\delta=0$ .

4.3. Hyper Degeneracy

Careful numerical computation of the Landau constants clarifies that the cubic and
quintic Landau constants lose their real parts simultaneously at the criticality at $P=$
0.0028316448. We pictured variations of the real parts of the Landau constants at $P=$
0.0028316448 as functions of $\alpha-\alpha_{c}$ in Fig.6. We took an amplitude expansion method
provided by Herbert for the purpose instead of extending the method of multiple scales.
Both the reduction methods give equivalent Stuart-Landau equations as far as the linear
growth rate of the fundamental mode is small enough. (Fujimura) Now we find that ${\rm Re}\lambda_{3}$

vanishes at $\alpha-\alpha_{c}=0.002896$ which is sufficiently small whereas ${\rm Re}\lambda_{4}$ has finite negative
value. This situation is much more “hyper” than the Blasius boundary layer case where
even the cubic order degeneracy and the quintic order one set in at different wavenumbers,
separated by $\sim 0.01$ . In order to unfold our problem completely, we need to involve at
least ninth order nonlinear term in the Stuart-Landau equation. For that case, we have
to classify positive solutions of bi-quartic equation. Since it is not easy matter within an
elementary algebra, we have to solve the equation numerically. It will form our future
works.
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Table I. Coefficients involved in (9).

$P=0.0001$$P=0.025$

$\alpha$ $9.9379699\cross 10^{-1}$ $9.654567054\cross 10^{-1}$

$Re$ $1.2514300\cross 10^{4}$ $9.5857326572\cross 10^{3}$

$Ri$ 5.9322461 $\cross 10^{-2}$ $1.03361699\cross 10^{-1}$

$\lambda_{11r}$ 0.0 0.0
$\lambda_{12r}$ $7.8499\cross 10^{1}$ 3.0211 $\cross 10^{1}$

$\lambda_{13r}$ $-8.9281\cross 10^{-2}$ $-3.7202\cross 10^{-2}$

$\lambda_{14r}$ $2.53\cross 10^{-5}$ $4.49\cross 10^{-6}$

$\lambda_{21r}$ $-2.0204\cross 10^{-1}$ $-1.8540\cross 10^{-1}$

$\lambda_{22r}$ $-5.6772\cross 10^{2}$ $-3.9494\cross 10^{2}$

$\lambda_{23r}$ 4.4911 $\cross 10^{-1}$ $7.5512\cross 10^{-2}$

$\lambda_{24r}$ $-3.6452\cross 10^{5}$ $-4.2413\cross 10^{5}$

$\lambda_{25r}$ $1.0218\cross 10^{3}$ $-2.2150\cross 10^{2}$

$\lambda_{26r}$ $-2.5319\cross 10^{-1}$ $5.7788\cross 10^{-3}$

$\lambda_{27r}$ $5.1467\cross 10^{2}$ $5.5574\cross 10^{2}$

$\lambda_{2Sr}$ $3.4559\cross 10^{5}$ $1.9284\cross 10^{5}$

$\lambda_{29r}$ $-8.3300\cross 10^{2}$ $-3.7679\cross 10^{2}$

$\lambda_{210r}$ $9.0233\cross 10^{4}$ $-5.6807\cross 10^{3}$
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