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Inverse source problems
in Poisson’s equations

SABUROU SAITOH (% # = )

Abstract — In the Poisson’s equations
Au = —p(r)  on KR!, R* and R®

for La(dr) functions p, the natural and fundamental inverse formulas representing p in terms of the

values of u in the outsides of supports of p are established.

1. INTRODUCTION

We shall consider the Poisson’s equations
Au=—p(r) on R,R’ and R3 (1.1)

for real-valued L,(dr) source functions p whose supports are contained in a sphere r < a
or in the outside of the sphere; r denotes the usual distance » = |r| from the origin.
By using the general method ([3] and [4]) for integral transforms using the theory of
reproducing kernels, we first give the characterizations and natural representations of
the potentials u on the outsides of supports of p. As an application, we shall give
surprisingly simple expressions of p* in terms of u of the outsides of supports of p,
which have the minimum L,(dr) norms among the source functions p satisfying (1.1)
on the outsides of supports of p. These representations give practical applications to
determine the source functions p* by the potentials . These inverse problems were
proposed by Laplace 200 years ago and many mathematicians have attacked to these
problems. In this paper, we shall give the reasonable solutions for these problems in
the framework of Ls(dr) spaces. See Foreword and References of Isakov [1]. For a basic
and general reference for the inverse source problems, see [1].

2. CASE WITH COMPACT SUPPORT ON R?

We assume that the supports of p are contained in the sphere r < a with radius a. So,

for r € R? and |r| = r, we shall examine the integral representation of the solutions u

of the Poisson equation (1.1)
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u(r') = 4ti / . lrl—ier(r)dr (2.1)

on R? for the source functions p satisfying

/ p(r)2dr < co. (2.2)

In order to determine the characteristic property of the potentials u on r > a using the
general method ([3] and [4]) for integral transforms, we consider the kernel form

1 1
. foy —
e e

for #', 7" > a. In order to calculate K; a(r’ r") we shall use the expansion

';”;)6?::_ ) Pm(cosﬂ)P"‘(cosﬂ)cosm(ga ——<p) e

for r>r (2.3)

_.ﬂ

in terms of spherical coordinates (r, 8, ¢) and (+',0',¢') (cf. [2, p. 1274]). Here, €,, =
2 — 6o is the Neumann factor. By using the two orthogonality

2%
/ cosm(yp’ — p)cosm'(¢" — @)dp = 208 mm(em) L cosm(p’ — ")  (2.4)
0
and
/ P*(cos6) Py (cos @) sin 6d6
0 .

= /_1 P (z) PR (z)dz

2 (n+m)!
"o +1(n—m)

=6, (2.5)

we have the expansion

a?nt3 1 1
Z “(2n + 1)(2n + 3) rintl prntl

K; (¥, x") =
Em(n m m n
X E (n+m)' P (cos8') P (cos8")

x (cos m¢' cosmy" + sin my’ sin my")
for ;7" >a. (2.6)



This series converges absolutely on ', 7" > a. The kernel K; ,(r',r") is a positive matrix
on r > a and so , there exists a uniquely determined Hilbert space Hg, , admitting the
reproducing kernel K; ,(r',r"’). Furthermore, the images u(r') of (2.1) belong just to the
Hilbert space Hg, ,. The expansion (2.6) implies that the images u(r') are expressible
in the form

a2n+3 1
Z(?n + 1)(2n + 3) pintl

u(r') =

6m(n m m m
X E (nt )' P (cos8") (AT cosmyp' + B sin myp')
(2.7)

for some constants { A}, B* }3°,,-¢ satisfying

2n+3

Z <20+ 1)(2n +3) 4 Z E?,E’:, m)! (A7) + (B)?} < oo. (2.8)

Conversely, any u(r') defined by (2.7) with (2.8) belongs to Hk;, ,. Since the family
{P;(cosf) cosmp, P (cosf)sinmp},. o

is complete in the Hilbert space composing of the functions f(f, ¢) with finite norms

T p2x %
{/ 78, <;»)2 sin 0d0dcp} < 00,
o Jo

we have the representation of the norm ||ul|,, _ in the form

2n+3

o, §Zmn+n@n+3)23&$1.)'HA”V+*B”V} (2.9)

Furthermore, we have the isometrical identity
Il = min [ g(ey2de
3,a r<a
- / o* (r)2dr. (2.10)
r<a

Here, the minimum is taken over all p(r) satisfying (2.1) and (2.2) for ' > a and ¢* is
the uniquely determined function with the minimum norm ([3] and [4]).
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In (2.7), by using the orthogonality

. o204 cosm'p A
/ / P (cos8) cos meP™ (cos ) or psinfdfdy
070 sinm’¢
47(em)~ ! (n + m)!

2n+1 (n—m)V’

= 8mm' nn'

we have the expressions, for any fixed b > a .

n+1 T p2x
A = (2n + 1)%(2n + 3)b / /‘ u(b, 8, )
0

41ra2n+3

X P™(cos8) cos mypsin 6dfdy (2.11)

and

n+1 2z
g _ (214120 +3)b // "

" 4mwa?nt3

X P (cos#)sinmysin §dfdep. (2.12)

These expressions with (2.7) imply that for any point r'(+' > a), the potentials u(r')
are expressible in terms of

u(b,8,¢) for any fixed b(b > a). (2.13)

We shall derive the inverse formula representing p* in terms of (2. 13)
Using the reproducing property of K; 4(r,r’) in HK.,,,, we have

u(r') = (u(r), Ki,ar, 7)),
3 L )
= | u(r), — dr

1
“H[mh 1

1 dl‘l
== *(r 2.14
47 ~/7"1<d Il" —l‘1|p ( 1) ( )
and so, we have
. 1
p(r1) = (u(r), m)ﬂxi’a- (2.15)

Here, note that ]r+n[ belongs to the Hilbert space Hk, ,.
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Indeed, from (2.7) and (2.3) the corresponding coefficients 27,}" and EE of |r_—-1r_—1T in

the representation (2.7) are

(2n+1)(2n + 3)
a2n+3

—
A7 =

P (cosf)r} cosmep;

and :
E"’ _ (21’1. + 1)(277, + 3)

n a2n+3

P (cosfq)r] sinme.

Then,

2n +3

Z(2n+1) (2n +3) £ Z (n+m)'
Z(2n+1)(2n+3) Z E:m(n Pm(COSH )2 2n

aln+3 (n + )1

@+ @y

Z (2n + 1)531:: 3)rin (1)

i3 <oo for r <a. (2.16)

B i (2n + 1)(2n + 3)r?"
See [2, p. 1274].
Hence, the formal arguments in (2.14) and (2.15) are justified. See also the following
(2.17) and [4] for these arguments. We thus have

Theorem 2.1. The source functions p* in the sense of (2.10) in (1.1) are expressible in
terms of (2.13) in the form

1 =(2n+1)22n+3) ,ni
-4_-2 a2n+3 mn b

2% ‘
x/ / u(b, 0, ) Py (cos8) cosm(p — 1) sin 8dBdep.
o Jo

As we see from Theorem 2.1, the source functions p* obtained are harmonic func-

tions on r < a.
Indeed, ‘ .
P (cosfy)r] cosmepy,  P*(cosf)r} sinmep,
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are harmonic functions, and from (2.15) and (2.16)

1
lp*(r1) S |lullag, , |T—=
. Ki,a |r—r1| Hx
“ (@n+1)2n+3)r |}
n+ n+3)r:"
=||u||HK,.,,,{Z T3 ! } : (2.17)
: n=0

Hence, the expansion of p*(r;) in the right hand side in Theorem 2.1 converges abso-
lutely and uniformly on r £ a' < a for any fixed a’'.

The fact that p* are harmonic means that the source functions obtained are smooth
and uniform on the ball r < a, in a sense.

In order to get a more general source, we shall consxder the integral transform

1 1

W)= ) o

———p1(r)D(r)dr

for a nonnegative measurable function D(r) depending only on r such that the kernel
form

(= Ks,a(D(r)))

exists for 7/, 7'’ > a. Then, we can obtain the inversion formula representmg p} in terms
of u(b, 9, go) sat1sfymg

1 .
e oo = 35 ARV Dlr),

as in Theorem 2.1. Hence,
o(x) = P (F)D(r).

For this argument, see Section 3 for D(r) = r~2 . By taking a suitable D(r), we will be
able to obtain a more general and practical source p(r). This technique is valid in the
following situations, similarly.

3. CASE WITH UNBOUNDED SUPPORT ON R?

" Next, we shall consider the case such that the supports of p are contained in the sphere

r > a. In this case, in order to request the existence of the corresponding reproducing
kernel we assume that

, /> p(r)*ridr < co. (3.1)



In order to examine the integral representation

1 1

'=
U= o

———p(r)dr (3.2)

of u, we shall consider the integral transform in the form

1.

(,)_M = lpl(r) = dr (3.3)

for the functions p; = r?p satisfying

1
/) p1(r)? ;-2—dr = /) p(r)rldr < co. (3.4)

We form the reproducing kernel

1 1 1
Koq —dr. .
(', ") = 4 r>a [P —r||r" — x| r2 d (3:5)

By using (2.3) and the orthogonality of (2.5) and (2.6), we have

p'n IIn Em(n — m)!
" o_ m
oa(l‘ r') = Z(2n+1)2a2”"’1 Z (n+ m)!
X P (cos8')P*(cos 9")(cos my'’ cos me" + sin my' sin my"),
for ' 1" <a. (3.6)

Hence, by the parallel arguments to Theorem 2.1, we have

Theorem 3.1. For the source functions p* satisfying (3.2) and (3.1) with the minimum
norms in (3.1), we have the inverse formula, for any fixed b(0 < b < a),

* 1 — n —-(n 1—n
pr(r) = 47"2 Z(?n +1)3a® 1y (n+1)g

x Z E'E‘:; _r P"'(cosﬂl)/ /h b,6,)

X P,:" (cos 0) cosm(p — 1) sin 0dfde.

4. R? CASE
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We shall consider the 2-dimensional potential

u(r') = —/( (r)dr , (4.1)

for the source functions p satisfying

/ _pir<eo (4.2)

whose supports are contained in the disc r < a. A
In order to examine the integral transform (4.1) with (4.2), we form the reproducing
kernel

1
K(z) (r',r") = ——/ log log dr
<a lr' —l‘l

for ;v >a. (4.3)

By using the expansion

1 1 &1r, ,
log o 10g;7+n2=:1;(;;) cosn(p’' — o),

for ' >r ‘ ; | (4.4)
in the polar coordinates (r, ) and (', ¢') (cf. [6, p. 1188]), we have

K(z)(r r') = —log—log-1—+ -}1-

2n+2 1

% E nZ(n + 1) pinpin

n=1

(cosnyp' cosny + sin ng’ sin ny")

for ',r" > a, (4.5)

which converges absolutely. Hence, as in Theorem 3.1 we have

Theorem 4.1. The source functions p* with the minimum norms (4.2) satisfying (4.1)
for #' > a are expressible in the form, for any fixed b(b > a)

p(rn) = (ulo) o =)

H (2)

1 ‘ 2% '
= -—L/ u(b, p)de

wa? log

n(n+1)b"r
+= E ( 2n-{)-2 1/ u(b ‘P) COSn((p <,01)d¢.

n"'l



Next, we shall examine the case such that p have unbounded supports. In order to
consider the potential

u(r') = 5= / A log e O (46)

we shall examine the integral transform

u(r') = -—/) pl(r) dr (4.7 |

for the functions p; = r3p satisfying
21 2.3
p1(r)°=dr = p(r)*r’dr < oo. (4.8)
r>a rd r>a :

Then, the corresponding reproducing kernel Kf,,zz(r’, r’) can be calculated, using (4.4),
as follows:

1
K3, r" =—/ 1 —d
W) = 5 | oo g o8 o
1
= ;{2+(logz) —-2log—}
1 0 p!npliin ) .
+ 3 Z (@n + Dnla?nii (cos ny’ cos nyp' + sin ny’ sin ne').

(4.9)

Hence, we have

Theorem 4.2. The source functions p* satisfying (4.6) and (4.8) with the minimum
norms are expressible in the form, for any fixed (0 < b < a)

. 1 1
pr(r) == (“(l‘),log — )
1‘1 |l' l'll H @
K:
1{(1, 1 1)
==|{= log =)2 — ot
- [{a(2+(oga) 2.loga)}

x(i/%u(é )d)lo L
7 ), w(b o) ) log

9 o0 n(2n+1)a2n+,l 2x R
+2 3 B [T ulh g cosnlp - p)d)|.

(P )
n=0 b ™
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5. R! CASE

We shall consider the one dimensional botential in the form

u(a:) = /a —%h: - tlp(t)dt, z>a>0 - (5.1)

for the source functions p satisfying

[ ’ p(t)2dt < co. (5.2)

In order to examine the integral transform (5.1) with (5.2), we form the reproducing
kernel

1 [ 1
K.(z,y) =~ |z —t||ly — t|dt = E(:l:y + —a?) for z,y>a. (5.3)
4/_, 2 3

This expression means that the Hilbert space Hg, admitting the reproducing kernel
K.(z,y) is two dimensional, and any members f(z) of Hg, are expressible in the form

1
f(z)= -;—(cl:z: + c2§-a2) for z>a (5.4)

for some constants ¢; and ¢z, and furthermore

a 1
1w, = 5(ct + 230%)- (5.5)
The constants c; and ¢y are determined by any two point values, say f(b;) and f(bs)

for by, by > a as follows:
by = 2 f(b) — f(b2)

" b — by (5.6)
wnd 6 by £(b) — bof(by)
== 1 Zl — bz L (5.7)

We thus have

Theorem 5.1. In the potential (5.1) satisfying (5.2), the source functions p* with the
minimum norms in (5.2) are expressible in terms of u(by) and u(b2)(by, by > a,b; # bs)
in the form

P (1) = (u@), ~ 51z — D,

_ 3(byu(by) — bzu(bl))t _u(b1) —u(by)
a3(b1 — bz) a(bl - b2) .




In order to determine source functions with unbounded supports we shall examine
the integral transform, for a > 0,z < a

* 1
u(z) = / — 3l — tlp(t)dt
a
= / ——Iz —t]pl(t)—-dt ‘ - (58
for the source functions p = p;t~* satisfying
* 2 0t o2
p1(?) i p(t)*t*dt < oo. (5.9)

We form the corresponding reproducing kernel

1
12a3( - = )(y - —a) + — T6a" (5.10)
Hence, by the parallei arguments to Theorem 5.1, we have

Theorem 5.2. In the potential u in (5.8) satisfying (5.9), the source functions p* with
the minimum norms in (5.9) are expressible in terms of u(b;) and u(b;) for any fixed
two points by, by < a as follows:

pr(t) = (u(z) ——|:c t[)HK‘
t14 [bl 8a {(bztt(h) - bru(bs)) — —a(u(bl) - u(bg))}

+b112a {(bru(bs) - bau(bl))+2a(u(bl)-“(”2))}]
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