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Generalized Poisson integrals on unbounded domains

and their applications

FIERE FHH ¥(F (Hidenobu Yoshida)
TEAE =EA BF (Ikuko Miyamoto)

PART 1. Introduction and the case of half-spaces

Let R-and R, be the set of all real numbers and all positive real

numbers, respectively. The boundary and the closure of a set S in

the n-dimensional Euclidean space Rn (n22) are denoted by 8S and §,
respectiveiy. We also introduce the sphericaL coordinates (r,8),

8=(0,,0,,...,0 ), in R™ which are related to the cartesian

coordinates (X,y), X=(x1,x2,...,xn_1) by the formulas

n-1 ,
X, = r( T sin 6.) (n=2), y = r cos O,
1 j=1 J 1

and if n23,

k-1
X e1-k = r(jzls1n Gj) cos 8, (2<k<n-1),

wvhere

0<r <+=, 020, <mn (1<j<n-2; n23), -2 1m < 6. _; < 27 l3n  (n22).

The unit sphere (the unit circle, if n=2) and the upper half unit

sphere {(1,91 6,,...,0 yeR™; 0591<§) (the upper half unit circle

*Ue? n-1
((1,6,7€R?*; -Zcg <&y, if n=2) in R" are denoted by S""' and ST,
respectively. The half-space ,
((X,y)€R"; xeR™1, y>0) = ((r,@€R"; 8eSTT!, Ocrcrm)

is denoted by Tn'
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Given a domain DcR™ and a continuous function g on a subset ScaD,
we say that h is a solution of the (classical) Dirichlet problem on D
with g, if h is harmonic in D and

lim h(P) = g(Q)
PeD, P-Q

for every QE€S. If D is a bounded domain and g is a boundgd function
on 9D, then the existence of a solution of the Dirichlet problem and
its uniqueness is completely known (e.g. see [10, Theorem 5.211).
Otherwise we may suppose that D is always an unbounded domain by
using the Kelvin transformation.

When D is the typical unbounded domain Tn’ the following results
are known. Let g(X) be a continuous function on STn=Rn_1 satisfying

(1) with a'non~negative integer ¢:

(1) f —LKQHL\I;E dX ¢ +w.
' ph-1 1+]X]

Then Armitage [1, Theorem 2] gave the explicit form of a solution of
the Dirichlet problem on Tn with g (also see Siegel [1H, P.1 and
pP.71). Further, for any continuous function g(X) on STn Finkelstein
and Scheinberg [7] showed the existence of a soyution of the
Dirichlet problem on Tn with g and Gardiner [8] gave the solution
explicitely.

About the uniqueness of solutions of the Dirichlet problem on Tn,
Helms [11, p.42 and p.158] states that even if g(X) is a bounded
continuous function on aTn, the solution of the Dirichlet problem on
Th with g ié not unique and to obtain the unique solutioan(P)
(P=(X,y)€Tn) we must specify the behavior of H(P) as y-»+», In
connection with this remark, Siegel [15, Theorems 1 and 3] gave the

following result to more restricted boundary function g than (1).
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Let L be a non—negative integer. 1f g(X> (XeaTn=Rn—1) is a

continuous function on arn such that

lg(X)] < Gx) xeR™ 1, Ix]=x>0)

for a continuous.functton G(x) (x€R), Gx)=G(-x),

I+° G|

dx < +o»,
—w 1+len+ﬂ

then there exists a solution H(Tn,ﬁ;g)(P) of the Dirichlet problem on

Tn with g satisfying

[}

HCT L2058 (P)=o(r *1cos 0, (r+w)

pree0 ).

If h(P) is a solution of the Dirichlet problem on Tn with g such

(P=(r;6)€Tn, 9=(61,9

that
heP) = ort*l/cos 0>  (P=(r,@eT ),
then
h(P) = H(T_,8;8) (P) + T(h)(P) (PeT ),

where T'(h)(P) is a harmonic polynomial (of P=(x,,x .,xn_l,y)eRn)

EEE
of degree 9 vanishing on

...x eR™1y

STn={(x1,x n-1

X 0)eR™; (%), %

2’ n-1’ 2"

To answer the question of Siegel [15, p.81 Yoshida [19] proved

THEOREM Y1 [19, Theorems 1 and 21]. Let g(Q) be a continuous
function on 8T (n22) satisfying (1) with a non-negative integer L.
Then there exists a solution H(Tn,g;ﬂ)(P) of the Dirichlet problem
with g satisfying

lim r‘Q'lf

n_lH(Tn,.Q;g)(r,Q) cos 91 doe =0
roo S+

(P=(I‘.9)€'ﬂ~n, 8'—'(61192’ .. 'en_l))’

where da8 is the surface element of Sn—l. If h(P) is a solution of
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the Dirichlet problem on T wilh g satisfying

lim r-l_lf h*(r,8) cos 8, do, = 0,
n-1 1 6
row S+

then
( vy () 221)

h(P) = H(Tn,Q;g)(P) + MCh) (P), Mch) (P) = 0 (8=0)
for every P=(x,y)€Tn, where W (h)(P) is a polynomial of

P=(x1,x2,...,xn_1,y)€Rn of degree at most 2-1 and even with respect

to the variable y.
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PART 2. The conical case
1. Introduction

A half-space is a speéial one of more general unbounded domains
cones. To generalize Theorem Y1 to results about cones, we shall
first pay attention to Yoshida’s result [18, Theorem 3] concerning
the Dirichlet problem on a cone. To staté it, we need some
preliminaries.

Let An (n22) be the Laplace operator and An be the spherical part

of the spherical coordinates of An:

2
by = ﬂil g? ¥ zrz ¥ ig An;
Given a domain @ on S""! (n22), consider the Dirichlet problem for
(2) (A ¥ OF =0 on Q
F =0 on 3Q.

we denote the least positive eigenvalue of (2) by x(Q,1) and the
normalized positive eigenfunction corresponding x(Q,1) by f?(e). We
shall denote two solutibns of the equation
t2 4 (n-2)t - 2(Q,1) = 0

by a(Q,1), -8(Q,1) (ax(Q,1), B(Q,1)>0). Given a domain Q on Sn—l,
the set

{(r,8)€R"; (1,8)€Q, reR,) and ((r,8)€R"; (1,8)€8Q, reR,)
in R" are denoted by Cn(Q) and Sn(Q), respectively. If n=2, then

C2(Q) is an angular domain.
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In the following, we put the strong assumption relative to Q on

Sn—l. 2,(!

¢ if n23, Q is a C -domain (0<x<1) on Sn_1 surrounded by a

finite number of mutually disjoint closed hypersurfaces (e.g. see

{10, pp.88-89]1 for the definition of Cz’a—domain).

Let G ((r1,91),(r2.92)) ((rl,el), (r2,92)GCn(Q)) be the Green

Cn(Q)

function of a cone Cn(Q) and let Sh denote the surface area

21™2(rn/2>17! of S"!.  The function
-1_8 _ (2n (n=2)
n achn(Q)(P’Q)’ °n ¥ Ln-2)s_ (n23)
of QGSCn(Q) for any fixed PGCn(Q) is an ordinary Poisson kernel,
where 5% denotes the differentiatin at Q along the inward normal into
Cn(Q). Let F(r,8) be a function on Cn(Q). We put
(3) Ho(F) = lim P02, 1) £F(r,8)f?(e)dae,
r-w
and nF = 1im 2D (5, 0)t%®@)do,,
0 1 8
roew :
Sn"l

if they exist, where do9 is the surface element on

THEOREM Y2 [18, Theorem 3 and Lemma 31]. Let g(Q)=g(t,E) be a
continuous function on Sn(Q) satisfying

f*”t—a(9,1)—1

(4) (feglg(t,E)ldog)dt < 4

and f tB(Q’I)'l(faglg(t,E>ldo:)dt ¢ +e
o g

(if n=2 and Q=(7v,8), then
faglg(t,a>|doc = lgct, | + lgt, 8.

Then the Poisson integral

, . = o1 _9
H(Cn(Q),g)(P) = ¢ JSn(Q)g(Q)SvGCn(Q)(P’Q)doQ

18 a golution of the classical Dirichtet problem on Cn(Q) with g such

that-
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uO(IH(Cn(Q);g)I) = 0 and nO(IH(Cn(Q);g)I) = 0,

sh-1, If h(P) is any solution of

where dog is the surface element on
the classical Dirichlet problem on C Q) with g, then all of the
limits By (hd,

(h) (-=<pyCh), (h)<+®), uo(lhl) and nO(IhI)

Mo Mo
(OSuO(IhI), no(lhl)s+w> erxist, and if -
uo(lhl) { +o and ‘ no(lhl) { +o,

then

-~ (Q,1) BQ,1>, .Q

h(P) = H(Cn(Q),g)(P) + (uo(h)r + no(h)r )fl(e)

for any P=(r,8)eCn(Q).

In this paper we shall show the existence of solutions of the
Dirichlet problem on a cone (Theorems 1 and 2) and a type of
uhiqueness of thém (Theorems 7 and 8) Ey iniroducing the conical
generalized Poisson kernels and Poisson ‘integrals, the special cases
of which are H(Tn,ﬂ;g) and H(Cn(Q);g)(P). They generalize Theorem
Y1 to' the conical case and Theorem Y2 to more unrestricted boundary
function than (4). To prove the uniqueness, we shall give two
results (Theorems 5 and 6) which are the conical version of Kuran’s
result [12, Theorem 101. We also generalize the results of
Finkelstein and Scheinberg [7] and Gardinar [8] to the conical case

(Theorems 3 and 4). Finally a result of Yoshida [19, Theorem 3]

will be generalized in the conical form (Theorem 9).
2. Results about the eXistence of solutions.

We denote the non-decreasing sequence of pdsitive eigenvalues of

(2) by {(x(Q,k)} In this expression we write A (Q,Kk) the same

k=1
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number -of times as the dimension of the corresponding eigenspace.

When the normalized eigenfunction corresponding x(Q,k) is denoted by

fﬁ(e), the set of sequential eigenfunctions corresponding to the same

value of A(Q,k) in the sequence {fﬁ(@))k=l makes an orthonormal

basis for the eigenspace of the eigenvalue A(Q,k). We can also say

Sn—l

that for each Qc there is a sequence (ki} of positive integers

such that k,=1, X(Q,ki)<A(Q,k ),

1 i+l
A(Q,ki)=1(Q,ki+1)=1{9,ki+2)=...=A(Q,ki+1~1) (i=1,2,3,. e )
and (fQ s fQ s seey fQ } is an orthonormal basis for the
ki ki+1 ki+1—1 :

eigenspace of the eigenvalue A(Q,ki) (i=1,2,3,...). It is well

kﬁown that k2=2 and f?

p.451 and p.4581). With respect to'{ki}; the following Remark 1

n-1
+

(8)>0 for any B€Q (see Courant and Hilbert [5,
shows that even in the case Q=S (n=2,3,4,...), not only the
simplest case ki=i (i=1,2,3,...) but also other complex cases can
appear.

if wé note that @ js an (n-1)-dimensional compact Riemannian

manifold with its boundary to be sufficiently regular, we know that

A,k ~ A@, kMDD kL ey
(e.g. see Cheng and Li [4]1) and
S {fg(e)}z ~ B, uxMD/2 e
A(R,k)ILx

uniformly with respeci to 8 (e.g. Minakshisundaram and Pleijel [131],
and also Essen and Lewis {6, p.120 and pp.126-1281), where A(Q,n) anc
B(Q,n) are both ¢0nstantsvdepending'9 and n, respectively. Hence
there exist two positive constants Ml’ M, such that

2
2/(n-1%

(5) M k, A(R,K) C(K=1,2,...)

and
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/2

Ifﬂ(eol‘s M2k1 (B€Q, k=1,2,...)

If we denote two solutions of the equation

t2 + (n-2)t - A(Q,k) = 0

by x(R,k), -8(RQ,kK) (x(Q,k), B(Q,k)>0), then we also have

®(Q,k), B(Q,k) 2 Makl/(n_l) (k=1,2,...),

from (b), where M3 is a positive constant independent of k. We
remark that both

and k(9) (k=1,2,....)

are harmonic on Cn(Q) and vanish continuously on Sn(Q). For a
domain  and the sequence {ki) mentioned above, by I(Q,kQ) we denote
the set of all positive integers less than kl (2=1,2,3,...). In

.spite of the fact I(Q,k1)=¢, the summation over I(Q,kl) of a function

S(k) of a variable k will be used by promising

)X S(k) = 0.
keI(Q.kl)
REMARK 1. Suppose Q=SE_1 (n>2). Then
_1 Q...\ =
(6) ch GVGTn((r’e)’(t’”))
-1 < k+1,-k-n
= 28 2 k. nea’ t cos OlLk’n+2(cqs )
k=0
for any (X,y)=(r,8)€'ﬂ“n and (Z,O)=(t,E)€8Tn satisfying r<t, where
_ k+n-1 . s . , .
Ck,n+2_( K ), Lk,n+2 is fhe (n+2)-dimensional Legendre polynomial
of degree k and 7 is the angle between M=(X,0) and N=(Z,0) defined by

_ (M, N
cos ¥ = TuiTn]

(see Armitage [1, Theorem El). On the other hand, Remark 4 in

Section 4 applied to Q=SE_1 gives the Fourier series expansion of

the function
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-1 8 o
cn SvGTn(‘r’e)’(t’“)) (r<t)
of 8 with respect to the sequence of eigenfunctions of (2).
Hence, in comparison with (2-4) we obtain

' n-1 _
7) q(S+ 'ki) = i,

B(Sf_l’k ) = n+i-2 (i=1,2,3,...; n=2,3,4,.,.).

i
Consider the simplest case n=2 i.e. Q=Si. For (r,el)eT; and

(t,BE)=t€R, we see cos 7=':|sin 91 and hence

k., =i (i=1,2,3,...)

1
Q _ . _
fk(el) = kaOS elLk—1,4(Sln 91) {k=1,2,...),
where
= {f2-1n (cos O.L | (sin @, ))%d0,) 172
8 S N 17k-1,4 1 1 y

Next, suppose n=3 i.e. Q=Sf. Then for (r,9)=(X,y)éT3, 8=(91,92)

and (t,E)€8T3=R2,

]

(I
—(2,52), we see
cos ? = sin Glsin stin &2 + sin Glcos 6200s 52.

If we put

and

L ( sin elsin 92sin &2 + sin Glcos 92cos 82)

k-2

K, 5

_ k
= Qk’o(el,ez)cos &2 + mk’lcel,ez)cos &2 L

-1
6. ycosk 212 k]€2

+ O (91, 2

K, [2 1k] ‘

+ ¥ 9, ,0 )cosk—lﬁ sin £ + 9 0,,0 )cosk—si sin &, +
k,0 "1*'72 2 2 k,1 1°72 2 2 e
k-1-2[(k—1)/2]sin £
2 2

(k=1,2,3...),

+ ¥ (91,92)cos

k,[(k-1)/21

then

k, =1+ iiléll (i=1,2,3,...)
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Q _ -1.1/2
and f1(9) = (2nsn ) cos 91,
pki+j¢i—1,'(el’92) cos 91,
Q _ A . .
fki+j(9) = (j=0,1,...,[¢(i-1)/20])
pkifjwi-l,j-[(i-l)/21-1(91’92) cos 8, ,
(§=0¢i-1)/23+1,...,0Ci-1)/21+[(i-2)/21+1)
(i=2,3,4,...),
where

2 2 -1/2
{fsz ®i_1’j(91,92) cos“8, dog)
(j=0319o-09[(i_1)/2])
2 2 -1/2
{fsz ¥ 1, i-tci-1)/21-1¢91+8,) cos™08, dog)
M (j=[0Ci-1)/21+1,...,0Ci-1)/21+[(i-2)/21+1)

(i=2,3,4,...).

The Fourier coefficient

Q
S F(8) £, (8)dag

Q
of a function F(G)_on Q with respect to the orthnormal segquence
(fﬁ(@)} is denoted by c(F,k), if it exists. Now we shall define
generalized Poisson kernels of the conical type. For two

non-negative intégers 2, m and two points P=(r,9)€Cn(Q),

Q=(t,E)€Sn(Q), we put

(8) V(cn<g),a)(P,Q)=
5 Za(Q,k)+n-lc((Hc)l,k)t-a(Q,k}-n+1ra(Q,k)f§(e)
KEL(Q,k,, )
and

X(Cn(Q),m)(P,Q)=

3)8(9,}()21'1—1

B(Q,kK)-n+1_-~8(RQ,k) Q
2 r f

c((Hy) 4,k ¢
KEI(Q,k_ )

where
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1.8

'(HE)r(Q) = ¢ 9w Cn(Q)((r,B),(Z,s)) (r=1,3).

We introduce two functions of PGCn(Q) and Q=(t,E)esﬁ(Q)

_ V(C (@), 0)(P,Q (1<t<+)
W(C (@), (P,Q |
0 - (0<t<1)
and »
y(c (@),m (P, Q) (0<t<1)
H(C_(Q),m)(P,Q) =
0 (1<t<+) .

The generalized Poisson Kkernel K(Cn(Q),Q,m)(P,Q) with respect to
Cn(Q) is defined by

-1_8

K(C_(Q),2,m (P,@ = c '35 Cn(Q)(P,Q)—W(Cn(Q),Q)(P,Q)-E(Cn(Q),m)(P,Q).
In fact
K(C_(®),2,0)(P,Q = ¢ '3y Cn(Q)(P.Q) W(C (@), ((P,@) (221
~and
K(C (Q),0,0)(P,Q) = c =2 (P,Q)
K€, D, 0, ’ n svic_ @ Y-

REMARK 2. Put 0=S""! and r,=1 in Remark 3 of Section 4. Then
+

2
from (7) we have
—18 .® _1+- L. l_n_. ki+1_1 Q
e 186 ((r,@,t,B) = T 2" IO E 0 eig) ) k£ (8))
. n i=0 k=k1 =

for any (r,e)e'l‘n and any (t,E)GGTn (r<t), which is (6). Hence we

obtain
:2“+i(ki§2-l (L) . 0 £2@)) = 2871 os 0L
S - 15 R = 28,7¢; n+2%08 gk peplcos )
i+1

(i=0,1,2,...).

Since
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k. -1
_ 24-1 .. S i+2
VT 0 P,@ = 3 2B ipi*lymn=l o ism oy L k062
n < _ =71 Kk :
i=0 k=k,
i+l
from (7)), we finally have
2-1 . .
< _ -1 i+l ,-i-n
V(Tn,ﬂ)(P,Q) = an i=Oci’n+2r t cos GlLi’n+2(cos ).

This shows that our kernel K(Tn,Q,O)(P,Q) (4>1) concides with ones in

Armitage [1]1, Siegel [15]1 and Yoshida [19].

Let F(P)=F(r,8) be a function on Cn(Q) and put

_ Q :
N(F)(r) = fQ F(r,8)f (8)dog.
For two non-negative integers p and g we write
-2 (R, k ) B(Q,k )
u_(F) = lim r P*1I"N(F)(r) and ng(F> = lim r 1N RY (),
p ‘T~ r-0

if they exist. Since k1=1, we know that these with p=gq=0 are
consistant -with (3).
The following theorem is a generalization of the first part of

Theorem Y, which is the case {=m=0 of Theorem 1.

THEOREM 1. Let 2, m be two non—negative integers and g(Q)=g(t,=)

be a continuous function on Sn(Q) satisfying (9) with & and (10)

with m:
+o —(R,k )-1
(9) f t 2+1 (£ lg(t,E)ldog)dt < +e
Q S
and’
B(Q,k )'—1
(10) f t mel <£ lgCt,Brldordt < +=.
0 Q =
Then

H(C_(Q),8,m;g) (P) = f Z2(QKC_(Q),2,m) (P,Q)do
n S _(Q) n Q
n
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i8 a solution of the classical Dirichlel problem on Cn(Q) with g
satisfying

uQ(IH<cn(Q),Q.m;g)|) = um(IH(Cn(Q).Q,m;g)I).= 0.

To emphasize that Theorem 1 is also a natural generalization of
the first part of Theorem Yl’ the following Theorem 2 is more

desirable than Theorem 1.

THEOREM 2. Let g(Q)=g(t,8) be a continuous function om 8C_(Q)
satisfying (9) with a non—negative integer L. Then

H(Cn(Q),Q,O;g)(P) = g(Q)K(Cn(Q).Q,O)(P,Q)dO

J )
Sn(Q)

i8 a solution of the classical Dirichletl problem on Cn(Q) with g
satisfying

ng (IHCC (),2,0;8]) = 0.
By taking Q=Sz-1, we obtain from (7)

COROLLARY 1 (Yoshida [19, Theorem 11). Let.g(X) be a continuous
function on aTn=Rn-1 gatisfying (1) with a non¥negative integer 2.
Then H(Tn,Q,O;g)(P) i8 a solution of the Dirichletl problem on Tn with
g such thaf

| | g (IHCT ,2,0520 ) = o.

To solve the Dirichlet problem on Cn(Q) with any function g(Q), we
shall define other Poisson kernels. Let ¢(t) (resp; ¥(t)) be a

positive continuous function of t21 (resp. 0<t<1) satisfying
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" (R, 1) 3,-8Q, 1),

@(1) = (resp. ¥(1) = (

3V

For a domain QcSn—1 and the sequence {a(Q,ki)}?=1 (resp.

{B(Q,ki))l ), denote the set

=1

1

(1215 -o(Q,k; )= (log 2>~ (log(t" lotr))

(resp. (0<t<l; -B(Q,k)= (log g)—llog(tn—IW(t))))
by §(Q,¢,i) (resp. S(Q,¥,i)). Then 165(9,¢,1) (resp. 1€S(Q,¥,1)).

When there is an integer N such that §(Q,Q,N)¢¢ and §(Q,¢,N+1);¢

(resp. S(Q,¥,N)=#¢ and S(Q,¥,N+1)=¢), denote the set {i; 1<i<N) of
integers by F(Q,w) (resp. J(Q,¥)). Otherwise, denote the set of all

positive integers by E(Q,w) (resp. J(Q,¥)). Let t(i)= ?(Q,w,i)

(resp. t(i)= 1(Q,¥,i)) be the minimum (resp. maximum) of elements t
in S(Q,¢,i) (resp. S(Q,¥,i)) for each i€J(Q,9) (resp. J(Q,¥)). In

the former case, we put _t—(N+1)=+oo (résp. t(N+1=0). Then T(l)=1
(resp. t(1)=1).

We define G(Cn(Q),w)(P,Q) (PGCn(Q), Q=(t,8)esn(Q)) by
[0 (0<t<1)

Q(CH(Q),Q)(P,Q) = _ _ _
. V€ (@),i)(P,Q) (LCidStCt(i+l); 1€J(Q,0)).

We also define E(Cn(Q),w)(P,Q) (PGCn(Q), Q=(t,E)€Sn(Q)) by

0 (1< t<(+=)
E(Cn(Q),W)(P,Q) =
V(Cn(Q),i)(P.Q) QG+ttt i) 1€J(Q,¥)).

The Poisson Kernel K(Cn(Q),¢,¢)(P,Q) and K(Cn(Q),¢)(P,Q) (PGCn(Q),
QeSn(Q)) are defined by
K(C (Q),9,¥)(P,Q)

= o198 - -
= C, Gv_Cn(Q)(P'Q) W(Cn(Q),w)(P,Q) E(Cn(Q),W)(P,Q)

and
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K(Cn(Q),w)(P.Q) = c, 5;GCn(Q)(P’Q) - W(Cn(Q),¢)(P,Q)).

Now we have

THEOREM 3. Let g(Q) be a continuous fﬂnetion on Sn(Q).

Then

there are two positive continuous functions ¢(t) of t21 and ¥(t) of

0<t<1 such that
H(C (), ,¥;8)(P) = fsn(Q)g(Q)K<cn(Q),¢,w)(P,Q)daQ

48 a solution of the Dirichlet problem on Cn(95 with g.
We can also obtain
THEOREM 4. Let g(Q) be a continuous function on SCn(Q).

there is a positive continuous function ¢(t) of t=1 such that

H(C  (Q),9;8) (P) =<fsn(g)g(Q)K(Cn(Q),¢)(P,Q)d?Q

is a solutiom of the Dirichtet pfoblem on Cn(Q) uith'g.

If we take Q=Sf—1 in Theorem 4, then we have

Then

COROLLARY 2 (Finkelstein and Scheinberg [7] and Gardinar [81).

Let g(Q) be a continuous function on 8Tn. Then there is a positive

continuous function @(t) of t=1 such that
H(T 058 (P) = faT6g<Q)g(Tn,¢)(P,Q)daQ

i8 a solution of the Dirichlet problen on,Tn with g.
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3. Results about a type of uniqueness of solutions.

The following result is just a generalization of Picard’s theorem
stating that if H is a positive harmonic function in the Euclidean
space then H is a constant.

Let h(r,8) be harmonic omn Rd (d=2). If, for some positive t,

r ety 2 0 (o wey, mch'yry = £, hPr,exdog,
)
then for some positive integer 4 less than t+1
2 ) d
h(r,8) = C + X Pk(r,B) ((r,B8)eR",
k=1

where C i8 a constént and Pk(r,8)=rkYk(6) 18 a homogemeous harmonic
polynomial of order k (Yk(e) i8 a sbhericat harmonic function of
Laplace) (sec e.g. Brelot [2, Appendix, §261).

It is well known that the potential theory in Rn is intimately
related to the potential theory in Rn+2 and many results on harmonic

Rn+2

functions in Rn can easily obtained by a passage to By using

this fact, Kuran proved the following theorem.

THEOREM K (Kuran [12, Theorem 101). Let h(X,y) (=h(r,8)) be a
harmonic function on Tn such that h vanishes continuously on STn.

I1f, for some positive t,
1im r ' 29n* ) = 0, 2uht,o=6H7 | yhT(r,0) as?,
r-wo r s r
r

where S;={(r,8)€Tn; GGSE-I}, s; i3 the surface area of the spherical
part of S: and ds: i8 the surface element of S;, then
h = ynu

in T

n» Where T is a polymomial of (X[ ,Xy,...,X _,,¥) in R" of degree
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less than t and even with respect to the variable y.

Though his method is not applicable, we shall try to extend these
results for functions defined on cones, one of which is the

hal f-space. And we can obtain

THEOREM 5. Let p, q be two positive inlegers and h(r,8) be a
harmonic funcetion in Cn(Q) vanishing continuously on Sn(Q). If nh

satisfies (11) with p and (12) with q:

+
(an nyh*y = 0
and
+

o = 0,
(12) ngh®
then
h(r,8)= = A @ Legy o > B, (yr P82 q),,

keI(Q’kal) k€I (Q,k ) :

for every (r,G)ecn(Q), where Ak(h) (k=1,2,...,k +1-1) and Bk(h)

p

(k=1,2,...,kq+ -1) are all constants.

1

In comparison with Theorem K, the following type is prefered.

THEOREM 6. Let h(r,8) be a harmonic function in Cn(Q) vanishing
continuously on ecn(9>; If h satisfies (11) with a positive

integer p, then

h(r,8)= pa Ak(h)r“(g’k)fﬁ(e)

for every (r,B)GCn(Q), where Ak(h) (k=1,2,...,kp 1—1) are all

+

constants.
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When we specialize Q=Sf-1 i.e. C (=T, from Theorem 6 and
(7), we obtain the following corollary 3. The equality
?(yh",r) = 25 'rN*) ()

shows that this is equal to Theorem K

COROLLARY 3. Let h(r,8) be a harmonic function in Tn vanishing
continuously on STn. I1f, for some positive t,

-(t+1)

lim r NthH ) (r) = o,

r-o

then
h(r,8) = ymu,
where M ig8 a polynomial in R" with degree less than t and even

respect to the variable y.
By using Theorem 5, we can prove the following Theorem 7.

THEOREM 7. @ Let 2, m be two nbh—negative integers and p; q be
two positive integers satisfying p=4, q=m. Let g(t,8) be a
continuous function on Sn(Q) satisfying (9) with 2 and (10) with m.

If h(r,8) is a solution of the Dirichlet problem on Cn(Q) with g

satisfying
+
(13) uy(h*) = 0
and
+
ngh™) = o,
then
h(r,8) = H(C_(Q),2,m;g) (P)
+ T Ak(h)r“(g'k)fﬁce) + b Bk(h)r_B(Q’k)fg(Q)
KE1(®,k, ) KET(Q, K, )



50

for every P=(r,9)ecn(Q), where Ak(h) (k=1,2,...,kp+1—1) and Bk(h)
(k=1,2,...,kq+1—1) are all constants.
1f we take 2=m=0 and p=q=1 in Theorem 7, then we have the

following result containing the second part of Theorem Y2.

COROLLARY 4. Let g(Q) be a continuous function on Sn(Q)
satisfying (4). If h(r,8) is a solution of the Dirichlet problem
on Cn(Q) with g satisfying

*y = h'y = o
ul(h ) = nl( ) = ’
then
a(Q,l)fQ

1(8) + B (mr

for every P=(r,8)ecn(Q), where Al(h)=u0(h) and Bl(h)=n0(h).

—B(Q,l)fQ

h(r,8) ='H(Cn(Q);g)(P) + Al(h)r 1(8)

By Theorem 6, we also have

THEOREM 8. Let 9 be a non-negative integer and p be a posilive
integer satisfying 4<p. Let g(t,8) be a continuous function on
Scn(Q) satisfying (9) with L. If h(r,8) is a solution of the

Dirichlet problem on Cn(Q) with g satisfying (13) with p, then
a(Q,k)fQ

h(r,8) = H(C Q,2,0;8)Y(P) + p A (h)r (8)
N Kk K
kKEI (Q,k )
p+l
for every P=(r,8)ecn(9), where Ak(h) (k=1,2,...,kp+1—1) are all

constants.

If we put Q=SE-1, 2=p and p=p (resp. Qép-l and p=p) (p is a

positive integer) in Theorem 8, we obtain from Corollary 3
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COROLLARY 5 (Yoshida [19, Theorem 2 (resp. Corollary 2)1). Let
p be a positive integer and g(X) be a continuous function on éTn=Rn_1
satisfying (1) with p (resp. (1) with p-1). If h(P) is a
| golution of the Dirichlet problem on Tn with g such that

lim r_(pf])

r-®

Nh¥ )y = o,

then
h(P) = H(Tn,p.Ozg)(P) + YF(h)(P)
(resp. h(P) = H(Tn,p—l,o;g)(P) + yF(h) (P)),
where F(h)(P) is a harmonic polynomial (of P=(x1,x2,...,xn_1,y)eRn)
of at most degree p-1 vanishing on aTn and even wilh respect to the

variable y.

The following Theorem 9 also generalizes a result of Yoshida [19,

Theorem 31.

THEOREM 9. If h(r,8) is a harmonic function on Cn(Q) and i8
continuous on Cn(Q) such that the restriction h=h'acn(n> of h to

acn(Q) satisfies

+o -(X(Q,kg‘+1)'1 }
oot (f Inct,B)ldogddt ¢ +e
aQ =

for some mon-negative integer L and

: +

—— log NC(h ) ()

lim 3 { +o,
ra log r

.then for some positive integer p

h(r,8) = H(C_(Q),2,05h)(P) + b A (h)r“(g’k)fﬁ(e)

k
kEI(Q,kp+1)
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at every P=(r,8)ecn(Q), where Ak(h)‘(k=1,2,...,kp+1—l) are all

constants.

The Proof of all results in this part will be found in Yoshida and

Miyamoto [20].



53

PART 3. The cylindrical case

1. Introduction

There is another typical unbounded domain which is a cylinder
I.(D)=DxR

with a bounded domain D C R"~!. The existence and the uniqueness of solutions of
the Dirichlet problem on I',(D) with a continuous function on dI',(D) are worth being
inquired. In this direction, Yoshida [18] proved the following Theorem A. To state it we
need some preliminaries.

Consider the Dirichlet problem

(14) (A1 +A)f = 0 inD
f =0 ondD

for a bounded domain D C R !(n >.2), where A; = d*/dz®. Let A(D,1) be the least
positive eigenvalue of (14) and fP(X) be the normalized eigenfunction corresponding
to A(D,1). In order to make the subsequent consideration simpler, we put a strong
assumption on D throughout the whole this paper: If n > 3, then D is a C**-domain (0 <
a < 1) in R*! surrouded by a finite number of mutually disjoint closed hypersurfaces (for
example, see Gilberg and Trudinger [9,pp.88-89] for the definition of C**-domain). Let
Gr,(p)(P1, P2) be the Green function of I',(D) (P, P, € T',(D)) and 0Gr,(p)(P,Q)/0v
be the differentiation at @ € 0I',(D) along the inward normal into I',(D) (P € T'(D)).

Given a function F(X,y) on I',(D),we denote the function of y defined by the integral

| P,y fP(x0dx
by N(F)(y), where dX denotes the (n — 1)-dimensional volume element. We write
kol N(F)) = lim exp(—y/A(D, Dy)N(F)(v)

and
Mo(N(F)) = lim exp(y/A(D,1)y)N(F)(y),

y——o0

if they exist.

Theorem A (Yoshida [18, Theorem 6]). Let ¢(Q) be a continuous function on
OI',.(D) satisfying .

(15) | exp(=y/ XD Dl [ la(X,y)ldox)dy < o,
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where dox is the surface area element of 0D at X and ifn =2 and D = (v, ), then

[ la(X,w)ldax = lg(,9)| + 19(6,9)]-
aD :

Then the Poisson integral

=c, P,Q)d
PL(P) = [ 0(@5:Grao(P,@)io
is a solution of the Dirichlet problem on I',(D) with g, where

_ {27r (n=2)
&= (n—2)s, (n>3) (sn is the surface area of the unit sphere S™71)

and dog is the surface area element on OI',(D) at Q. Let h(P) be any solution of the
Dirichlet problem on T'n(D) with g. Then all of the limits po(N(R)).no(N(h)) (—o0 <
po(N(R)), no(N(h)) < 00), po(N(|A])) and no(N(|R])) (0 < po(N(|A])). no(N(|A])) < o0)

exist, and if
(16) Ho(N([])) < 0o and no(N(|R])) < oo

‘then

R(P) = PL,(P) + (ko(N(h)) exp(y/A(D, 1)y) + 10(N(h)) exp(—/A(D, 1))) f(X)
for any P = (X,y) € I',(D).

This Theorem A shows that under the conditions (15)and (16) the existence and a type
of uniqueness of solutions for the Dirichlet problem on I',, (D) can be proved,respectively.

If n = 2, then I',(D) is a strip.The strip I'3((0, 7)) with D = (0,7) is simply denoted
by I';. With respect to the Dirichlet problem on I';, Widder obtained

Theorem B (Widder [13, Theorems 1 and 3]). If g;(¢) (: = 1.2) is a continuous
function on R satisfying

|l lexp(=t)dt < oo,
then '

H(Tyi01,02)(w9) = 5= [ Plat =g+ o= [ Plx— 2.t —y)ga(t)dt

(P(z,y) = —n°

coshy — cosz

is a harmonic function in I'y and a continuous function on I'y such that

H(T3;91,92)(0,9) = gl(y) and H(T2;91,92)(7,y) = ga(y) (—o0 < y < 00).
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If h(z,y) is a harmonic function in Ty and a continuous function on T such that

h0,9) = 6i(v),  h(my) = 0:y) (—00 <y < o0)

and i . )
| 1h(@,y)ldz = o(e)  (ly] - o0),
then
h(xay) = H(F2;91792)($ay)
on Ty.

Though by a conformal mapping a strip is reduced to T which was treated in [20]
as a special case, it may be interested to be indipendently treated as a special case of
cylinders.

In this paper, the first parts of Theorems A and B will be extended by defining gen-
eralized Poisson integrals with continuous functions under more unrestricted conditions
than (15) and (16) (Theorem 1 and Corollary 1). We shall also prove that for any con-
tinuous function g on I',(D) there is a solution of the Dirichlet problem on I',(D) with ¢
(Theorem 2 and Corollary 2). The results (Theorem 3 and Corollary 3) which generalize
the second parts of Theorems A and B will be connected with a type of uniqueness of
solutions for the Dirichlet problem on I'x(D).

2. Statements of our results

We denote the non-decreasing sequence of positive eigenvalues of (15) by {\(D, k)};.
In this expression we write A(D, k) the same number of times as the dimension of the
corresponding eigenspace. When the normalized eigenfunction corresponding A(D, k) is
denoted by fP, the set of sequential eigenfunctions corresponding to the same value of
MD, k) in the sequence {fP}$, makes an orthonormal basis for the eigenspace of the
eigenvalue A(D, k). We can also say that for each D C R""! there is a sequence {k;} of
positive integers such that k; = 1, \(D, k;) < A(D, ki41)

AD,k;) = A(D, ki +1) = A(D, ki +2) = ... = A(D, kiyy — 1)

and {f}g, e, f,£+1_1} is an orthnormal basis for the eigenspace of the eigenvalue
MD, k) (i =1,2,3,...). It is well known that k&3 = 2 and fP(X) > 0 for any X € D
(See Courant and Hilbert [5, p.451 and p.458]). With respect to {k;}, the following
Example (2) shows that even in the case where D is an open disk in R? , not the simplest
case k; =1 (1 =1,2,3,...), but complex case can appear.
When D has sufficiently smooth boundary, we know that

A(D, k) ~ A(D, )k (k > o)
and

Y {f2(X)} ~ B(D,n)e™ D2 (3 - oo)

A(D k)<z
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uniformly with respect to X € D, where A(D,n) and B(D,n) are both constants de-
pending on D and n (e.g. see Weyl [7] and Carleman [3]). Hence there exist two positive
constants M;, M, such that

M ¥ =D < \(D, k) (k=1,2,...)
and
IfP(X)| < Muk'? (X € Dk =1,2,...).

We remark that both

exp(y/A(D, k)y) fP(X) and exp(—/A(D,k)y)fP(X) (k=1,2..)

are harmonic on I',(D) and vanish continuously on oI, (D).

For a domain D and the sequence {k;} mentioned above, by 1 (D, k;) we denote the set
of all positive integers less than k; (j = 1,2,3...). In spite of the fact I(D,k,) = o.
the summation over I(D,k;) of a function S (] ) of a variable 5 will be used by promising

EkeI(D,kl) S(k) =0

Examples. (1) Let D = (0,7). Then (14) is reduced to find solutions f(z) (0 <
z < 7) such that
a*f(z)

T +Af(z)=0 O<z<m)

and
f(0)=f(x)=0
It is easy to see that k; =4, A(D,k) = k? and fP(z) = \/——Esin kz (k=1,2,3,...).

(2) Let D = {(z,y) € R 22 +y% < 1}. Let {anm -, be the increasing sequence of
positive real numbers «,, ,, such that -

Juanm) =0 (n=0,1,2,...),

where J,,(2) is the Bessel function of order n. If the spherical coordinates £ = r cos 6,y =
rsinf (0 <r < 1,0 <0 <2n) are introduced, then J,(c, mr) cosnd and J, (a1 r) sin nb
(n# 0,m =1,2,3,...) are two eigenfunctions coresponding to the eigenvalue A = a?

(see Courant and Hilbert [5]). Since we do not know how the zeros of Bessel functions
distribute, we cannot explicitly determine the sequence {k;} with respect this D.

The Fourier coefficient

L FOO£2(x)dx

of a function F(X) on D with respect to the orthonormal sequence {fP(X)} is denoted
by c(F, k), if it exists. Now we shall define generalized Poisson kernels. Let [ and m be
two non-negative integers. For two points P = (X,y) € I'x(D), Q = (X*,y*) € oT.(D).

we put
V(Ta(D), (P, Q)
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2
= Y exp (VAD, B)e((Hxe)i, B)FP(X) exp(y/N(D, k)y) exp (—/N(D, k)y"),

k€I(D,k1yy)
and
V(T'n(D),m)(P,Q)
=k I(ﬁv'f: )eXP(\//\(D k)) C((Hx‘ 1, k) f2(X) exp(—\/A(D, k)y) exp (1//\(D k)y" ),
€I(D,km41
where

(Hx-)(X) =’c;1—"’;GmD>((X, 1), (X",0))

We remark that V(T',(D), l).(P R) and V(T'(D), m)(P, Q) are two harmonic functions of
P € T,(D) for any fixed Q € O0T',(D). We introduce two functions of P € I',(D) and
= (X*,y") € OT(D)

W(Tn(D),1)(P,Q) = {V(F APLRQ) 2D

(y" <0)
and
W(r.(D),m)(P.Q) = {{ PP =D
The Poisson kernel K (T (D), 1, n_.z)(P, Q)- with respect to I',(D) is defined by

K(Ta(D), L, m)(P,Q) = &7 5-Gra)(P, @) —~ W(Tw(D), (P, @) ~ W(To(D), m)(P, Q).

We note )
K(T (D) 0, 0)(P Q) =c;' 3 Gl‘n(D)(P Q)-

Let p , ¢ be two non-negative integers and I(y) be a function on R. The finite or
infinite limits

Jim exp(—/A(D, kpa)y)I(y) and  Lim_exp(y/M(D, ket1)y)1(y)

are denoted by p,(I) and n,4(I), respectively, when they exist.

Theorem 10. Let I, m be two non-negative integers and 9(Q) = g(X™,y*) be a
continuous function on S,(D) satzsfyzn_q ‘

(17) ' / exp(=v/ND, krs1)y / X*,y*)|dox-)dy* < oo

and

/_00 exp(\/A(D, km41)y )(/ X* y*) |dgx.)dy < oo.

Then
(WD), my3)(P) = [ ((QK(Tu(D),Lm)(P,Q)dog
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is a solution of the Dirichlet problem on ', (D) with g satisfying
p(N(|H(Ta(D),1,m;9)1)) = nm(N(|H(T'n(D),1,m; )])) = 0.

If n =2 and D = (0,7), then we 1mmedlately obtain the following Corollary 6 which
generalizes Theorem B.

Corollary 6. Let l,m be two non-negative mtegers and g1(y*), g2(y*) be two continu-
ous functions on R satisfying

(18) / lg:(y™)| exp(—(I + 1)y*)dy* < o0
and
/_oo lg:(y*) | exp(—=(m + 1)y*)dy* < o0 (i = 1,2).

Then
,H(F2’ l,m; glvg2)($7 y) =

[ o) KT L m) (), 05Dy + [ 6K (T, Lm)(2,9), (v,y7)dy”

is a harmonic function in 'y and a continuous function on Ty such that
H(T3,1,m;91,92)(0,y") = g1(y")

and . : . o
H(F%l’m; 91792)(7'(’?/*) = g2(y*) (—OO < y* < OO)

To solve the Dirichlet problem on I'y(D) with any function g(Q) on 8T, (D), we shall
define another Poisson kernel. Let ¢(t) be any positive continuous function of ¢ > 0
satisfying
' ¢(0) = exp(—/A(D,1)).

For a domain D C R*"! and the sequence {\(D, k:)}, denote the set

{t > 0;exp(—\/A(D, k:)) = p(t)}

by S(D,,1). Then 0 € S(D,p,1). When there is an integer N such that S(D, ¢, N) # ¢
and S(D, ¢, N +1) = ¢, denote the set {z;1 <7 < N} of integers by J(D, ). Otherwise,
denote the set of all positive integers by J(D, ). Let ¢(:) = t(D, ¢, 1) be the minimum of
elements ¢ in S(D, ¢, 1) for each ¢ € J(D,p). In the former case, we put ¢{(N + 1) =
Then (1) = 0.

We define W(Ta(D), #)(P,Q) (P € T(D), Q = (X*,5") € Sa(D)) by

_ _ {0 | (v~ <0)
WD), )P Q) = {70, (), (P.Q) () 1 < ti-+ 1) € (D ).
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We also define W(T,(D),¢)(P,Q) (P € I'n(D),Q = (X*,y*) € S,(D)) by

0 (y* > 0) _
W(T'w(D),¢)(P,Q) = {K(FH(D),i)(P,Q) (Z,I_t(i +1) < y* < —t(2);1 € J(D,9)).

The Poisson kernel K (I'y(D),9)(P,Q) (P € I'n(D),Q € Sn(D)) is defined by

K(Ta(D),9)(P,Q) = &5 5-Groo)(P,Q) ~ W(Ta(D), 0)(P, Q) ~ W(Ta(D), ¢)(P, Q).

Now we have

Theorem 11. Let g(Q) be a continuous function on OT,(D). Then there is a
positive continuous function p(t) of t > 0 connected with g such that

H(T.o(D),¢; 9)(P) = K(Ta(D),)(P,Q)d
(Ca(D)gi)(P) = [ o(@K(Ta(D),9)(P,Q)dog
is a solution of the Dirichlet problem on T,(D) with g.

If we take n = 2 and D = (0, 7) in Theorem 11, we obtain

Corollary 7. Let g:(y*) and g2(y*) be two continuous functions on R. Then there
is a positive continuous functions ¢(t) of t > 0 such that

H(T2,¢;91,92)(z. y)

= /_ Zgl(y*)K(Fz,sa)((w,y),(o,y*)dy*+ /_ Zgz(y*)f((r2,¢)((x, y), (7, y*)dy*

is a harmonic function in I'y and a continuous function on I'y such that

H(T2,¢;91,92)(0,y") = g1(y"), H(T2,0;91,92)(7.y") = g2(y*) (—00 <y" < o).

Theorem 12. Let I,m be two non-negative integers and p,q be two positive integers
satisfying p > 1,q > m. Let g(X*,y*) be a continuous function on 0I',(D) satisfying (17).
If h(X,y) is a solution of the Dirichlet problem on I',(D) with g satisfying

”P(N(h{)) =0 and _Wq(*\r(h+)) =0

then
hX,y) = H(Tn(D),1,m; g)(P)

+ Y Ah)exp(JADEWF(X)+ Y. Bi(h)ezp(—/A(D, k)y) fP(X)
k€Il(D,kp41) k€I(D,kq41) ‘

for every P = (X,y) € Tn(D), where Ax(h)(k = 1,2,...,kp41 — 1) and Bi(h)(k =
1,2,...,ky41 — 1) are all constants. ’
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If we take n = 2 and D = (0, ) in Theorem 12, then we have

Corollary 8. Let I,m be two non-negative integers and p,q be two positive integers
satisfying p > 1, ¢ > m. Let g:(y*), 92(y*) be two continuous function on R satisfying
(18). If h(z,y) is a harmonic function in I'y and a continuous function on I'y such that

R(0,97) = 1(y") and h(r,y") = g2(y™) (—o0 <y" < o0),
and
lim exp(—(p + 1)y) /7r h(z,y)sinzde = lim exp((g+ 1)y) /1r h(z,y)sinzdz = 0,
y—oo : 0 y——0oo 0

then

P 7
h(w,y) = H(F2, l,m;glagZ)(w’y) + Z Ak(h) exp(ky) sin kz + E Bk(h) exp(——ky) sin kz
k=1 k=1
for every (z,y) € Ty, where Ag(h) (k = 1,2...,p) and Bi(h) (k = 1,2...,q) are all

constants.

The proof of all results in this part will be found in Miyamoto [14].
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